
Citation: Liu, Z.; Luo, J.; Zhou, C.

Multi-Hypothesis Marginal

Multi-Target Bayes Filter for a

Heavy-Tailed Observation Noise.

Remote Sens. 2023, 15, 5258.

https://doi.org/10.3390/

rs15215258

Academic Editor: Andrzej Stateczny

Received: 28 September 2023

Revised: 29 October 2023

Accepted: 31 October 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Hypothesis Marginal Multi-Target Bayes Filter for a
Heavy-Tailed Observation Noise
Zongxiang Liu 1,2,* , Junwen Luo 1,2 and Chunmei Zhou 1,2

1 College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China;
2110436085@email.szu.edu.cn (J.L.); 2100432010@email.szu.edu.cn (C.Z.)

2 Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University,
Shenzhen 518060, China

* Correspondence: liuzx@szu.edu.cn; Tel.: +86-755-26732055

Abstract: A multi-hypothesis marginal multi-target Bayes filter for heavy-tailed observation noise is
proposed to track multiple targets in the presence of clutter, missed detection, and target appearing
and disappearing. The proposed filter propagates the existence probabilities and probability density
functions (PDFs) of targets in the filter recursion. It uses the Student’s t distribution to model the
heavy-tailed non-Gaussian observation noise, and employs the variational Bayes technique to acquire
the approximate distributions of individual targets. K-best hypotheses, obtained by minimizing the
negative log-generalized-likelihood ratio, are used to establish the existence probabilities and PDFs
of targets in the filter recursion. Experimental results indicate that the proposed filter achieves better
tracking performance than other filters.

Keywords: multi-target tracking; multiple hypotheses; variational Bayes technique; heavy-tailed
observation noise; multi-target Bayes filter

1. Introduction

Multi-target tracking (MTT) is the process of estimating the states of multiple moving
targets at different time steps according to a set of sensor observations. It has received ex-
tensive attention from scholars [1–8] due to its wide application in many real systems, such
as intelligent transportation systems, video surveillance systems, radar tracking systems,
etc. Two major groups of MTT algorithms have been reported in a lot of articles [9–18]. The
first group includes conventional approaches, including the multiple hypothesis tracking
(MHT) [9] and joint probabilistic data association (JPDA) filters [10]. The second group
includes tracking approaches based on the random finite set (RFS) [1,2], including the
probability hypothesis density (PHD) filter [11,12], the cardinality-balanced multi-Bernoulli
(CBMeMber) filter [13], and their variants for tracking the extended targets [4,5,8,14–17]
and multiple maneuvering targets [18].

Recently, labeled RFS [19,20] was proposed by Vo et al. to overcome the shortcomings
of the RFS. Besides providing the object trajectory, the labeled RFS avoids the require-
ment of high signal-to-noise ratio. In terms of the labeled RFS, the generalized labeled
multi-Bernoulli (GLMB) filter [21] and its variants [22–25] were reported to track vari-
ous kinds of targets such as multiple weak targets [22], spawning targets [23], multiple
maneuvering targets [24], and extended targets or group targets [25]. Unfortunately, the
computational complexity of the GLMB filter is very high because it delivers hypotheses
growing exponentially in the filter recursion. Aiming at this problem, Liu et al. developed
a marginal multi-target Bayes filter with multiple hypotheses (MHMTB filter) [26]. Instead
of delivering hypotheses growing exponentially, the MHMTB filter delivers the probability
density function (PDF) of each target and its existence probability. It employs the K-best
hypotheses, obtained by minimizing the negative log-generalized-likelihood ratio, to gen-
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erate the existence probabilities and PDFs of potential targets. With a lower computational
load, the MHMTB filter can achieve better tracking performance than the GLMB filter [26].

The MHMTB filter is efficient for tracking multiple objects in the presence of clut-
ter, missed detection, and the appearance and disappearance of objects. However, the
existing implementation of the MHMTB filter [26] supposes that both the process noise
and observation noise follow a Gaussian distribution. Due to suffering from frequent
outliers such as temporary sensor failure, irregular electromagnetic wave reflection, and
random disturbance of the observation environment, the observation noise of a sensor is
usually a heavy-tailed noise or glint noise in many real application systems [27–29]. In this
case, assuming the Gaussian distribution of observation noise results in a poor tracking
performance by the MHMTB filter. The motivation of this article is to extend the application
of the MHMTB filter in a heavy-tailed observation noise.

Student’s t distribution is commonly employed to model heavy-tailed noise or glint
noise [30–32]. Many articles have discussed its application in real systems where the heavy-
tailed observation noise is represented by a Student’s t distribution [28–32]. Due to the
significant difficulty of tractability in the use of Student’s t distribution, the variational
Bayes (VB) technique is employed to acquire the approximate distribution to improve the
computational efficiency of the filter [30–32].

Tracking the multiple targets under the circumstance with a low signal-to-noise ra-
tio and a heavy-tailed observation noise is a challenging problem. The conventional
approaches in [29,31,32] generally require the degree of freedom (DoF) of the Student’s t
distribution observation noise to be larger than 2. These approaches are prone to divergence
if the DoF of observation noise is less than or equal to 2. Therefore, in the simulations, the
DoF of observation noise was set to 10 in [31] and it was set to 3 in [32]. The objective of
this article is to deal with a heavy-tailed observation noise whose DoF is less than or equal
to 2. In the Student’s t distribution, a smaller DoF means more heavy trailing [31].

The major contribution of the article is that we propose an MHMTB filter for heavy-
tailed observation noise by applying the VB technique to the MHMTB filter in order to
address the MTT problem under a heavy-tailed observation noise. In the proposed tracking
filter, we use a Student’s t distribution to model the heavy-tailed observation noise, employ
the VB technique to acquire the approximate distributions of individual targets, and use the
K-best hypotheses to establish the existence probabilities and PDFs of individual targets
in the filter recursion. The tracking performance of the proposed filter is illustrated by
comparing it with the other filters, such as the original GLMB filter, original MHMTB
filter, as well as the GLMB filter for a heavy-tailed observation noise. The advantage of
the proposed filter is that it can deal with observation noise with a small DoF. The DoF of
observation noise was set to 1 in the simulation.

The article is organized as follows. We provide some background on the MHMTB
filter and models for target tracking in Section 2. Then, Section 3 gives the MHMTB filter
for a heavy-tailed observation noise. A comparison of the proposed MHMTB filter with
other filters is provided in Section 4 to evaluate the performance of the proposed filter.
Conclusions are given in Section 5.

2. Background
2.1. MHMTB Filter

The MHMTB filter propagates the PDF of each target and its probability of exis-
tence [26]. Assume that the set of potential targets at time step k− 1 is{

Tk−1,i =
[

pk−1,i(xk−1,i|y1:k−1), rk−1,i, lk−1,i

]}Nk−1

i=1
(1)

where Nk−1 denotes the number of potential targets, y1:k−1 =
{

y1, y2, · · · yk−1
}

is a set
of observations up to time step k − 1; xk−1,i, lk−1,i, pk−1,i(xk−1,i|y1:k−1) and rk−1,i denote
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the state vector, track label, PDF and existence probability of target i, respectively; and
pk−1,i(xk−1,i|y1:k−1) is a weighted sum of individual sub-PDFs and is given by

pk−1,i(xk−1,i|y1:k−1) =
nk−1,i

∑
e=1

we
k−1,i f e

k−1,i(xk−1,i|y1:k−1) (2)

where nk−1,i denotes the sub-item number of target i; we
k−1,i and f e

k−1,i(xk−1,i|y1:k−1) denote
the weight and PDF of sub-item e of target i, respectively; and the weights of individual

sub-items of potential target i satisfy
nk−1,i

∑
e=1

we
k−1,i = 1.

In terms of the prediction equation of the MHMTB filter, the predicted PDF of potential
target i is

pk|k−1,i(xk,i|y1:k−1) =
∫

f (xk,i|xk−1,i)pk−1,i(xk−1,i|y1:k−1)dxk−1,i

=
nk|k−1,i

∑
e=1

we
k|k−1,i f e

k|k−1,i(xk,i|y1:k−1)
; i = 1, · · · , Nk|k−1 (3)

where Nk|k−1 = Nk−1; we
k|k−1,i = we

k−1,i; e = 1, · · · , nk|k−1,i; nk|k−1,i = nk−1,i; f (xk,i|xk−1,i)

denotes the state transition probability; and f e
k|k−1,i(xk,i|y1:k−1) is given by

f e
k|k−1,i(xk,i|y1:k−1) =

∫
f (xk,i|xk−1,i) f e

k−1,i(xk−1,i|y1:k−1)dxk−1,i (4)

The predicted track label and existence probability of target i are as follows:

lk|k−1,i = lk−1,i, rk|k−1,i = pSrk−1,i (5)

where pS denotes the surviving probability.
In terms of the update equation of the MHMTB filter, the updated PDFs of potential

target i are given by

fk,(ij)(xk,i|z
j
k) =

f (zj
k |xk,i)pk|k−1,i(xk,i |y1:k−1)∫

f (zj
k |xk,i)pk|k−1,i(xk,i |y1:k−1)dxk,i

=
nk|k−1, i

∑
e=1

we
k,(ij) f e

k,(ij)(xk,i|z
j
k)

; j = 1, · · · , Mk (6)

where Mk and zj
k ∈ yk denote the number of observations and an observation at time step k,

respectively; f (zj
k|xk,i) is the likelihood between observation zj

k and state vector xk,i; we
k,(ij)

and f e
k,(ij)(xk,i|z

j
k) denote the updated weight and PDF of sub-item e of target i, respectively;

and they are as follows:

we
k,(ij) =

we
k|k−1,i

∫
f (zj

k|xk,i) f e
k|k−1,i(xk,i|y1:k−1)dxk,i

nk|k−1, i

∑
e=1

we
k|k−1,i

∫
f (zj

k|xk,i) f e
k|k−1,i(xk,i|y1:k−1)dxk,idxk,i

(7)

f e
k,(ij)(xk,i|z

j
k) =

f (zj
k|xk,i) f e

k|k−1,i(xk,i|y1:k−1)∫
f (zj

k|xk,i) f e
k|k−1,i(xk,i|y1:k−1)dxk,i

(8)

The probability that zj
k belongs to potential target i is

pij =

nk|k−1, i

∑
e=1

we
k|k−1,i

∫
f (zj

k|xk,i) f e
k|k−1,i(xk,i|y1:k−1)dxk,i (9)
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K-best hypotheses are required in the MHMTB filter to determine whether a potential
target is detected, undetected or disappearing. The generalized joint likelihood ratio for a
hypothesis h is given by

G(h) =
Nk|k−1

∏
i=1

(ρiθi )
δh

iθi (ρi,u)
δh

i,u(ρi,0)
δh

i,0 (10)

where δh
iθi

, δh
i,u and δh

i,0 are the binary variables and θi ∈ {1, · · · , Mk}. The values of δh
iθi

, δh
i,u

and δh
i,0 are either 0 or 1, and δh

iθi
+ δh

i,u + δh
i,0 = 1. Parameters ρij, ρi,u and ρi,0 are defined as

ρij =
pDrk|k−1,i pij

λc
; ρi,u = (1− pD)rk|k−1,i; ρi,0 = 1− rk|k−1,i (11)

The K-best hypotheses are acquired by minimizing the negative log-generalized-
likelihood ratio as

h∗ = argmin
h

(− ln G(h))

= argmin
h

(
−

Nk|k−1

∑
i=1

δh
iθi

ln ρiθi + δh
i,u ln ρi,u + δh

i,0 ln ρi,0

)
(12)

where pD denotes the detection probability and λc =
Nc
Φs

denotes the clutter density; where
Nc is the average clutter number and Φs is the area (or volume) of the surveillance region.

In terms of the K-best hypotheses, the MHMTB filter acquires a set of potential targets
at time step k as {

Tk,i =
[

pk,i(xk,i|y1:k), rk,i, lk,i

]}Nk

i=1
(13)

where Nk denotes the number of potential targets; lk,i, pk,i(xk,i|y1:k) and rk,i denote the track
label, PDF and existence probability of potential target i at time step k, respectively; and
pk,i(xk,i|y1:k) is given by

pk,i(xk,i|y1:k) =
nk,i

∑
e=1

we
k,i f e

k,i(xk,i|y1:k) (14)

where nk,i denotes the sub-item number of target i; we
k,i and f e

k,i(xk,i|y1:k) denote the weight

and PDF of sub-item e of target i, respectively; and
nk,i

∑
e=1

we
k,i = 1 We refer readers to [26] for

more detail.

2.2. Models for Target Tracking

In the considered models for target tracking, the target dynamic model is nonlinear as
xk,i = ϕ(xk−1,i) + wk−1 where process noise wk−1 is assumed to be a zero-mean Gaussian
noise with covariance Qk−1; and the observation model is also nonlinear as zj

k = h(xk,i)+ vk,
where observation noise vk is a heavy-tailed non-Gaussian noise. The state transition
probability f (xk,i|xk−1,i) in (3) and (4) is given by

f (xk,i|xk−1,i) = N(xk,i; ϕ(xk−1,i), Qk−1) (15)
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where N(·) denotes a Gaussian distribution. We use a Student’s t distribution to model the
heavy-tailed observation noise. According to [30–32], the observation likelihood function
f (zj

k|xk,i) in (7) and (8) can be given by

f (zj
k|xk,i) = St(zj

k; h(xk,i), Rk, rk)

=
Γ
( rk+mz

2

)
(rkπ)

mz
2 Γ(

rk
2 )
√
|Rk |

{
1 + (rk)

−1
[
zj

k − h(xk,i)
]T

(Rk)
−1
[
zj

k − h(xk,i)
]}− rk+mz

2

=
∫ ∞

0 N
(

zj
k; h(xk,i), s−1Rk

)
Gamma

(
s; rk

2 , rk
2
)
ds

(16)

where St(·) denotes a Student’s t distribution; Γ(w) =
∫ ∞

0 qw−1e−qdq denotes a Gamma

function; Gamma(w; θ, q) = qθ

Γ(θ) sθ−1e−qw denotes a Gamma distribution; rk and Rk are
the degree of freedom and scale matrix of observation noise, respectively; and mz is the
dimension of observation vector.

3. MHMTB Filter for a Heavy-Tailed Observation Noise

The MHMTB filter for a heavy-tailed observation noise consists of the following steps.

3.1. Prediction

Given that the potential targets at time step k− 1 are{
Tk−1,i =

[{
we

k−1,i, f e
k−1,i(xk−1,i|y1:k−1)

}nk−1,i

e=1
, rk−1,i, lk−1,i

]}Nk−1

i=1
(17)

where lk−1,i, rk−1,i and nk−1,i denote the track label, existence probability and sub-item
number of target i, respectively; we

k−1,i and f e
k−1,i(xk−1,i|y1:k−1) denote the weight and

PDF of sub-item e of target i, respectively. According to [31,32], f e
k−1,i(xk−1,i|y1:k−1) can be

given by

f e
k−1,i(xk−1,i|y1:k−1) = N

(
xk−1,i; me

k−1,i, Pe
k−1,i

) mz

∏
l=1

{
Gamma

(
rl

k−1,i; αe,l
k−1,i, βe,l

k−1,i

)
Gamma

(
gl

k−1,i; γe,l
k−1,i, ηe,l

k−1,i

)}
(18)

where αe,l
k−1,i and γe,l

k−1,i are the shape parameters; βe,l
k−1,i and ηe,l

k−1,i are the inverse scale
parameters; and me

k−1,i and Pe
k−1,i denote the mean and covariance of sub-item e of target i.

The predicted potential targets at time step k are{
Tk|k−1,i =

[{
we

k|k−1,i, f e
k|k−1,i(xk,i|y1:k−1)

}nk−1,i

e=1
, rk|k−1,i, lk|k−1,i

]}Nk−1

i=1
(19)

According to [31,32], the predicted PDF of sub-item e of potential target i, and its
predicted existence probability and predicted track label can be given by

f e
k|k−1,i(xk,i|y1:k−1) = N

(
xk,i; me

k|k−1,i, Pe
k|k−1,i

) mz
∏
l=1

{
Gamma

(
rl

k,i; αe,l
k|k−1,i, βe,l

k|k−1,i

)
×Gamma

(
gl

k,i; γe,l
k|k−1,i, ηe,l

k|k−1,i

)} (20)

rk|k−1,i = pSrk−1,i, lk|k−1,i = lk−1,i (21)

me
k|k−1,i = ϕ(me

k−1,i), Φk−1,i =
∂ϕ(xk−1,i)

∂xk−1,i

∣∣∣∣
xk−1,i=me

k−1,i

, Pe
k|k−1,i = Φk−1,iP

e
k−1,iΦ

T
k−1,i + Qk−1 (22)

αe,l
k|k−1,i = τραe,l

k−1,i, βe,l
k|k−1,i = τρβe,l

k−1,i, γe,l
k|k−1,i = τργe,l

k−1,i, ηe,l
k|k−1,i = τρηe,l

k−1,i (23)

where τρ ∈ [0, 1] is the spread factor.
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Given that the potential birth targets at time step k are

{
Tb

k,i =

[{
wb,e

k,i , f b,e
k,i (xk,i)

}nb
k,i

e=1
, rb

k,i, lb
k,i

]}Nb
k

i=1
(24)

where Nb
k denotes the birth target number; nb

k,i, lb
k,i and rb

k,i denote the given sub-item

number, track label and existence probability of birth target i; and wb,e
k,i and f b,e

k,i (xk,i) denote

the weight and PDF of sub-item e of birth target i. According to [31,32], f b,e
k,i (xk,i) can be

given by

f b,e
k,i (xk,i) = N

(
xk,i; mb,e

k,i , Pb,e
k,i

) mz

∏
l=1

Gamma
(

rl
k,i; αb,e,l

k,i , βb,e,l
k,i

)
Gamma

(
gl

k,i; γb,e,l
k,i , ηb,e,l

k,i

)
(25)

where mb,e
k,i is the given mean vector; Pb,e

k,i is the given error covariance matrix; αb,e,l
k,i and γb,e,l

k,i

are the given shape parameters; and βb,e,l
k,i and ηb,e,l

k,i are the given inverse scale parameters.
In order to track the birth targets, it is necessary to combine the potential birth targets

into the predicted potential targets. The predicted potential targets after combining are
given by {

Tk|k−1,i =
[{

we
k|k−1,i, f e

k|k−1,i(xk,i|y1:k−1)
}nk−1,i

e=1
, rk|k−1,i, lk|k−1,i

]}Nk|k−1

i=1

=
{

Tk|k−1,i =
[{

we
k|k−1,i, f e

k|k−1,i(xk,i|y1:k−1)
}nk−1,i

e=1
, rk|k−1,i, lk|k−1,i

]}Nk−1

i=1

∪
{

Tb
k,i =

[{
wb,e

k,i , f b,e
k,i (xk,i)

}nb
k,i

e=1
, rb

k,i, lb
k,i

]}Nb
k

i=1

(26)

where Nk|k−1 = Nk−1 + Nb
k .

3.2. Update

Given the predicted potential targets in (26), the probability that observation zj
k belongs

to potential target i is

pij =

nk|k−1, i

∑
e=1

we
k|k−1,iSt

(
zj

k; h(me
k|k−1,i), Ce

k,iP
e
k|k−1,i(C

e
k,i)

T + Rk, rk

)
(27)

where Rk and rk are the scale matrix and the degree of freedom of observation noise,
respectively, and Ce

k,i is given by

Ce
k,i =

∂h(xk,i)

∂xk,i

∣∣∣∣
xk,i=me

k|k−1,i

(28)

The updated weight of sub-item e of potential target i is

we
k,(ij) =

we
k|k−1,iSt

(
zj

k; h(me
k|k−1,i), Ce

k,iP
e
k|k−1,i(C

e
k,i)

T + Rk, rk

)
nk|k−1, i

∑
e=1

we
k|k−1,iSt

(
zj

k; h(me
k|k−1,i), Ce

k,iP
e
k|k−1,i(C

e
k,i)

T + Rk, rk

) (29)

The updated PDF of sub-item e of potential target i is given by

f e
k,(ij)(xk,i|z

j
k) = N(xk,i; me

k,(ij), Pe
k,(ij))

mz
∏
l=1

{
Gamma

(
rl

k,i; αe,l
k,(ij), βe,l

k,(ij)

)
×Gamma

(
gl

k,i; γe,l
k,(ij), ηe,l

k,(ij)

)} (30)
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where αe,l
k,(ij) and γe,l

k,(ij) are given by

αe,l
k,(ij) =

1
2
+ αe,l

k|k−1,i; γe,l
k,(ij) =

1
2
+ γe,l

k|k−1,i (31)

According to the VB technique [31,32], an iteration procedure is required to determine
mean vector me

k,(ij), covariance Pe
k,(ij) and inverse scale parameters βe,l

k,(ij) and ηe,l
k,(ij). Firstly,

the initial parameters for the iteration procedure are given by

me,0
k,(ij) = me

k|k−1,i; Pe,0
k,(ij) = Pe

k|k−1,i; βe,l,0
k,(ij) = βe,l

k|k−1,i; ηe,l,0
k,(ij) = ηe,l

k|k−1,i, n = 0 (32)

The iteration procedure consists of Equations (33) to (43).

Λe,n
k,(ij) = diag

 αe,1
k,(ij)

βe,1,n
k,(ij)

, . . . ,
αe,mz

k,(ij)

βe,mz ,n
k,(ij)

 (33)

al =
γe,l

k,(ij)

2ηe,l,n
k,(ij)

+
1
2

(34)

bl =
γe,l

k,(ij)

2ηe,l,n
k,(ij)

+
1
2

trace
{

Λe,n
k,(ij)

[
zj

k − h(me
k|k−1,i)

][
zj

k − h(me
k|k−1,i)

]T
+ Ce

k,iP
e,n
k,(ij)

(
Ce

k,i

)T
}

(35)

sl =
al
bl

+
1
2

; l ∈ {1, · · · , mz} (36)

S = diag(s1, · · · , smz) (37)

Ke,n
k,(ij) = Pe

k|k−1,i

(
Ce

k,i

)T
[

Ce
k,iP

e
k|k−1,i(vi,k)

(
Ce

k,i

)T
+
(

SΛe,n
k,(ij)

)−1
]−1

(38)

me,n
k,(ij) = me

k|k−1,i + Ke,n
k,(ij)

(
zj

k − h(me
k|k−1,i)

)
(39)

Pe,n
k,(ij) =

(
I−Ke,n

k,(ij)C
e
k,i

)
Pe

k|k−1,i (40)


βe,1,n+1

k,(ij)
...

βe,mz ,n+1
k,(ij)

 =


βe,1

k|k−1,i
...

βe,mz
k|k−1,i

 + 1
2 Idiag

{
S
[
zj

k − h(me
k|k−1,i)

][
zj

k − h(me
k|k−1,i)

]T

+ Ce
k,iP

e,n
k,(ij)

(
Ce

k,i

)T
} (41)

ηe,l,n+1
k,(ij) = ηe,l

k|k−1,i −
1
2

[
1 +

Γ′(al)

Γ(al)
− log bl − sl

]
; l ∈ {1, · · · , mz} (42)

n = n + 1 (43)

where Γ′(x) = d(Γ(x))
dx is the derivative of Γ(x) and Idiag(X) is the main diagonal of matrix X.
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The iteration procedure ends if ‖me,n
k,(ij) −me,n−1

k,(ij) ‖2
< τ, where τ is a given parameter.

Mean vector me
k,(ij), covariance Pe

k,(ij) and inverse scale parameters βe,l
k,(ij) and ηe,l

k,(ij) in (30)
can be given by

me
k,(ij) = me,n

k,(ij); Pe
k,(ij) = Pe,n

k,(ij); βe,l
k,(ij) = βe,l,n

k,(ij); ηe,l
k,(ij) = ηe,l,n

k,(ij) (44)

3.3. Obtaining K-Best Hypotheses and Potential Targets

The minimization problem in (12) can be recast as a two-dimensional (2-D) assignment
problem [26]. The cost matrix of this 2-D assignment is given by Cost =[
Cost1 Cost2 Cost3

]
,where

Cost1 =
[
− ln ρij

]
Nk|k−1×Mk

(45)

Cost2 =


− ln ρ1,u ∞ · · · ∞

∞ − ln ρ2,u · · · ∞
...

...
. . .

...
∞ ∞ · · · − ln ρNk|k−1,u


Nk|k−1×Nk|k−1

(46)

Cost3 =


− ln ρ1,0 ∞ · · · ∞

∞ − ln ρ2,0 · · · ∞
...

...
. . .

...
∞ ∞ · · · − ln ρNk|k−1,0


Nk|k−1×Nk|k−1

(47)

Employing the optimizing Murty algorithm [33] to resolve the 2-D assignment prob-
lem, we can obtain K-best hypotheses. The K-best hypotheses and total costs of individual
hypotheses can be denoted as

Hy =


θh1

1 · · · θh1
Nk|k−1

...
. . .

...
θhK

1 · · · θhK
Nk|k−1

; Total_C =


tch1
tch2

...
tchK

 (48)

where θhe
i ∈

{
1, · · · , Mk + 2Nk|k−1

}
is the column index of matrix Cost, tche is the total cost

of hypothesis he, and i ∈
{

1, · · · , Nk|k−1

}
and e ∈ {1, · · · , K}. We may determine whether

target i is detected, undetected or disappearing according to index θhe
i . If θhe

i ≤ Mk, target i

is detected and observation z
θhe

i
k belongs to target i; if Mk < θhe

i ≤ Mk + Nk|k−1, target i is

undetected; and if θhe
i > Mk + Nk|k−1, target i is disappearing. The weights of individual

hypotheses are given by

whe =
exp(−tche)

K
∑

l=1
exp(−tchl

)

(49)

We employ Algorithm 1 to acquire the potential targets at time step k. The set of
potential targets is {

Tk,i =
[{

we
k,i, f e

k,i(xk,i|y1:k)
}nk,i

e=1
, rk,i, lk,i

]}Nk|k−1

i=1
(50)
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where

f e
k,i(xk,i|y1:k) = N

(
xk,i; me

k,i, Pe
k,i

) mz

∏
l=1

Gamma
(

rl
k,i; αe,l

k,i, βe,l
k,i

)
Gamma

(
gl

k,i; γe,l
k,i, ηe,l

k,i

)
(51)

Algorithm 1: Acquiring the potential targets

set bi = 0 for i = 1 : Nk|k−1,i.
for l= 1 : K

for i= 1 : Nk|k−1

a = θhl
i .

if a ≤ Mk
for e= 1 : nk|k−1,i

bi = bi + 1, wbi
k,i = we

k,(ia)whl
, f bi

k,i(xk,i|y1:k) = f e
k,(ia)(xk,i|z

j
k).

end
else if a ≤ Mk + Nk|k−1

for e= 1 : nk|k−1,i

bi = bi + 1, wbi
k,i = we

k|k−1,iwhl
, f bi

k,i(xk,i|y1:k) = f e
k|k−1,i(xk,i|y1:k−1).

end
end

end
end
for i= 1 : Nk|k−1

nk,i = bi, lk,i = lk|k−1,i, rk,i = ∑
nk,i
b=1 wb

k,i, wb
k,i = wb

k,i/rk,i for b= 1 : nk,i.
end

output:
{

Tk,i =
[{

wb
k,i, fk,i(xk,i|y1:k)

}nk,i

b=1
, rk,i, lk,i

]}Nk|k−1

i=1
.

3.4. Extracting the Track Labels and Mean Vectors of Real Targets

Identical to the approach in [26], if the existence probability of potential target i is
greater than ρτ ,where ρτ is a given threshold, we identify that this potential target is a real
target. Using Algorithm 2 to acquire a set consisting of mean vectors and track labels of

real targets, the acquired set can be given by
{

me
k, le

k
}Nt

k
e=1 where Nt

k denotes the estimated
number of targets. This set is used as the output of the filter.

3.5. Pruning and Merging

Identical to the approach in [26], potential objects with a small existence probability
and sub-items with a weak weight should be discarded to decrease the computational
burden. For each potential target, the sub-items which are close together should be merged
into a sub-item. Algorithm 3 describes the pruning and merging approach where τ1, τ2 and
τ3 are the given thresholds and

αe
k,i =


αe,1

k,i
...

αe,mz
k,i

; βe
k,i =


βe,1

k,i
...

βe,mz
k,i

; γe
k,i =


γe,1

k,i
...

γe,mz
k,i

; ηe
k,i =


ηe,1

k,i
...

ηe,mz
k,i

 (52)

According to Algorithm 3, the residual potential targets after pruning and merging
can be given by {

Tk,i =
[{

we
k,i, f e

k,i(xk,i|y1:k)
}nk,i

e=1
, rk,i, lk,i

]}Nk

i=1
(53)

where Nk denotes the number of targets. These potential targets are propagated to the next
time step.



Remote Sens. 2023, 15, 5258 10 of 17

Algorithm 2: Extracting the track labels and mean vectors of real targets

set e = 0.
for i= 1 : Nk|k−1

if rk,i > ρτ

e = e + 1, le
k = lk,i.

b = arg max
c∈[1,··· ,nk,i ]

(wc
k,i), me

k = mb
k,i.

end
end
Nt

k = e.

output:
{

me
k, le

k
}Nt

k
e=1.

Algorithm 3: Pruning and merging

b =
{

i = 1, · · · , Nk|k−1|rk,i > τ1

}
, Nk = length(b).

for i= 1 : Nk
r̂k,i = rk,b(i), l̂k,i = lk,b(i), ñk,i = nk,b(i).{

w̃e
k,i, m̃e

k,i, P̃
e
k,i

}ñk,i

e=1
=
{

we
k,b(i), me

k,b(i), Pe
k,b(i)

}nk,b(i)

e=1
.{

α̃e
k,i, β̃e

k,i, γ̃e
k,i, η̃e

k,i

}ñk,i

e=1
=
{

αe
k,b(i), βe

k,b(i), γe
k,b(i), ηe

k,b(i)

}nk,b(i)

e=1
.

A =
{

i = 1, · · · , ñk,i|w̃e
k,i > τ2

}
, e = 0.

repeat
e = e + 1, l = argmax

c∈A
(w̃c

k,i).

B =

{
c ∈ A|(m̃c

k,i − m̃l
k,i)

T(
P̃

l
k,i

)−1
(m̃c

k,i − m̃l
k,i) ≤ τ3

}
.

ŵe
k,i = ∑

c∈B
w̃c

k,i, m̂e
k,i =

1
ŵe

k,i
∑

c∈B
w̃c

k,im̃
c
k,i.

P̂e
k,i =

1
ŵe

k,i
∑

c∈B
w̃c

k,i(P̃
c
k,i + (m̃c

k,i −me
k,i)(m̃

c
k,i −me

k,i)
T).

α̂e
k,i =

1
ŵe

k,i
∑

c∈B
w̃c

k,i α̃
c
k,i, β̂e

k,i =
1

ŵe
k,i

∑
c∈B

w̃c
k,i β̃

c
k,i.

γ̂e
k,i =

1
ŵe

k,i
∑

c∈B
w̃c

k,iγ̃
c
k,i, η̂e

k,i =
1

ŵe
k,i

∑
c∈B

w̃c
k,i η̃

c
k,i.

A = A\B.
until A = ∅
n̂k,i = e.

end

output:
{{

ŵe
k,i, m̂e

k,i, P̂e
k,i, α̂e

k,i, β̂e
k,i, γ̂e

k,i, η̂e
k,i

}n̂k,i

e=1
, r̂k,i, l̂k,i

}Nk

i=1
.

Identical to the MHMTB filter in [26], the proposed filter requires K-best hypotheses
to generate the existence probabilities and PDFs of targets at each recursion. Unlike the
original MHMTB filter that requires a Gaussian observation noise, the proposed filter
obviates this requirement by modeling the heavy-tailed observation noise as a Student’s t
distribution. The VB technique is applied in the proposed filter to acquire the approximate
posterior distributions of individual targets.

4. Simulation Results

The proposed MHMTB filter for a heavy-tailed observation noise is referred to as the
VB-MHMTB filter. The efficient implementation of the GLMB filter (EIGLMB filter) [21] and
original MHMTB filter [26] are selected as the comparison objects in this experiment. The
VB technique can also be applied to the EIGLMB filter to form an EIGLMB filter for a heavy-
tailed observation noise (VB-EIGLMB filter). This filter is also used as a comparison object
in this experiment. The performance of the VB-MHMTB filter is evaluated by comparing it
with the original MHMTB filter, EIGLMB filter and VB-EIGLMB filter in terms of OSPA(2)

error (i.e., the distance between two sets of tracks) [34] and average cardinality error (i.e.,
the difference between the estimated number of targets and the true number of targets).
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For two sets of tracks X =
{

ξ(1), ξ(2), · · · , ξ(m)
}

and Y =
{

τ(1), τ(2), · · · .τ(n)
}

, if

m ≤ n, the OSPA(2) error between X and Y is defined as

d(c)p,q(X, Y; w) =

(
1
n

(
min
π∈Πn

m

∑
i=1

d(c)q

(
ξ(i), τ(π(i)); w

)p

+ cp(n−m)

))1/p

(54)

where p and q are the order of the base distance, w is a collection of weights, and it can
be given by using a sliding window with the length of window Lw. If m > n, then
d(c)p,q(X, Y; w) = d(c)p,q(Y, X; w). For more detail, we refer the reader to [34]. The parameters
used in the OSPA(2) error are given by Lw = 5, c = 100 m and p = q = 2.

Unlike the OSPA error [35] used to measure the dissimilarity between the two sets of
states, the OSPA(2) error is employed to evaluate the difference between the two sets of
tracks. Since the above four filters can provide the target trajectory, it is better to select the
OSPA(2) error as a metric in the experiment.

The simulated hardware and software environments are Lenovo ThinkPad T430,
Windows 7 and Matlab R2015b (32 bits). Figure 1 illustrates a surveillance region where a
radar located at [0, 0] observes the ten moving targets. The state of target i at time step k is

given by xk,i =
[
ηx

k,i
.
η

x
k,i η

y
k,i

.
η

y
k,i ωk,i

]T
where ηx

k,i and η
y
k,i are its position components;

.
η

x
k,i and

.
η

y
k,i are its velocity components; and ωk,i is its turn rate. Table 1 gives the initial

states of the ten targets and their appearing and disappearing times.
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Figure 1. Surveillance region and real trajectories of targets.

ϕ(xk−1,i) and Qk−1 in (15) and (22) are given by

ϕ(xk−1,i) =


1 sin(ωk−1,iT)

ωk−1,i
0 − 1−cos(ωk−1,iT)

ωk−1,i
0

0 cos(ωk−1,iT) 0 − sin(ωk−1,iT) 0

0 1−cos(ωk−1,iT)
ωk−1,i

1 sin(ωk−1,iT)
ωk−1,i

0
0 sin(ωk−1,iT) 0 cos(ωk−1,iT) 0
0 0 0 0 1

xk−1,i (55)
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Qk−1 =

q 0 0
0 q 0
0 0 T2σ2

ω

; q =

[
T4/4 T3/2
T3/2 T2

]
σ2

v (56)

where T is the scan period; and σv = 2 ms−2 and σω = π/180 rads−2 are the standard
deviations of process noises.

Table 1. Initial state, appearing time and disappearing time of the target.

Target Initial State Appearing Time (s) Disappearing
Time (s)

1 [1000, −10 , 1300,−10, (2π/180)/8 ]T 1 101
2 [−1000, 20 , 1000, 3,−(2π/180)/3 ]T 10 101
3 [−1500, 25 , −1000, 15,−(2π/180)/2 ]T 10 101
4 [−1500, 25 , −1000, −15, (2π/180)/2 ]T 10 101
5 [250, 11 , −500, 5, (2π/180)/4 ]T 20 80
6 [−1000, 5, 1000, −20, (2π/180)/2 ]T 40 101
7 [1000, 0 , 1300, −10, (2π/180)/4 ]T 40 101
8 [250, −45 , −500, 0,−(2π/180)/4 ]T 40 80
9 [1000, −45 , 1300, 0,−(2π/180)/4 ]T 60 101
10 [250, −35 , −500, 25, (2π/180)/4 ]T 60 101

h(xk,i) in (16) and (28) is given by

h(xk,i) =

[
θ(xk,i)

r(xk,i)

]
=

arccos

(
ηx

k,i−sx√
(ηx

k,i−sx)
2+(η

y
k,i−sy)

2

)
√
(ηx

k,i − sx)
2 + (η

y
k,i − sy)

2

 (57)

where
[
sx sy

]
=
[
0 0

]
denotes the position of the radar. The observation noise is

assumed to be a Student’s t distribution with degree of freedom rk = 1 and scale matrix

Rk =

[
σ2

θ 0
0 σ2

r

]
, where σθ = 0.5π/180 rad and σr = 3 m. Set ps = 0.99, Nc = 10 and

pD = 0.9 to generate the observations. The simulated observations for a Monte Carlo run
are given in Figure 2.

In the simulated experiment, the potential birth objects at each recursion are given

by
{

Tb
k,i =

[{
wb,e

k,i , f b,e
k,i (xk,i)

}nb
k,i

e=1
, rb

k,i, lb
k,i

]}Nb
k

i=1
where Nb

k = 4, nb
k,i = 1, wb,e

k,i = 1, rb
k,i = 0.03,

lb
k,i =

[
k
i

]
and f b,e

k,i (xk,i) is given by (25) where mb,e
k,1 =

[
−1500 0 −1000 0 0

]T, mb,e
k,2 =[

−1000 0 1000 0 0
]T, mb,e

k,3 =
[
250 0 −500 0 0

]T, mb,e
k,4 =[

1000 0 1300 0 0
]T, Pb,e

k,i = diag([50; 50; 50; 50; 6π/180])2, αb,e,1
k,i = αb,e,2

k,i = 160, βb,e,1
k,i =

βb,e,2
k,i = 2300, γb,e,1

k,i = 0.001, γb,e,2
k,i = 160, ηb,e,1

k,i = 160 and ηb,e,2
k,i = 1. The parameters used in

the VB-MHMTB filter are set to K = 30, τρ = 0.98, τ = 0.1, ρτ = 0.3, τ3 = 4, τ2 = 10−5 and
τ1 = 10−3. We perform the four filters for 100 Monte Carlo runs. The results are shown in
Table 2 and Figures 3 and 4.
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Table 2. OSPA(2) errors, cardinality errors and performing times.

Filter EIGLMB MHMTB VB-
MHMTB

VB-
EIGLMB

OSPA(2) error (m) 41.7111 39.6084 31.2915 35.6949
Cardinality error 0.6257 0.4748 0.1330 0.2174

Performing time (s) 92.6159 3.6816 7.1489 111.2920

The result in Figure 3 and the data in Table 2 are used to evaluate the performance of
the VB-MHMTB filter and other filters. A smaller OSPA(2) error indicates that a filter has
a better tracking accuracy, a low cardinality error means that a filter accurately estimates
the number of targets, and a larger performing time implies that a filter has a higher
computational load. The OSPA(2) errors and cardinality errors in Table 2 and Figure 3
illustrate that the VB-MHMTB filter and the VB-EIGLMB filter perform better than the
MHMTB filter and the EIGLMB filter. The reason for this phenomenon is that the MHMTB
filter and EIGLMB filter require a Gaussian observation noise. Direct application of the
MHMTB filter and EIGLMB filter to a heavy-tailed observation noise leads to a deteriorated
filter performance. By using the VB technique to acquire the approximate distributions of
individual targets in the case of a heavy-tailed observation noise, the tracking performance
of the VB-MHMTB filter and the VB-EIGLMB filter is improved. In terms of the results in
Table 2 and Figures 3 and 4, the VB-MHMTB filter outperforms the other filters because it
has a smallest OSPA(2) error and provides the most accurate cardinality estimate (i.e., the
lowest cardinality error) among the four filters. The performing times in Table 2 reveal that
the VB-MHMTB filter requires a significantly lower computational cost than the EIGLMB
filter and the VB-EIGLMB filter, and a slightly larger computational cost than the MHMTB
filter. The application of the VB technique to the MHMTB filter increases the computational
load of the filter.

Effect of spread factor τρ: To provide guidance in selecting the spread factor τρ, an
analysis of the effect of spread factor on the tracking performance of the VB-MHMTB
filter is needed. Table 3 illustrates the average OSPA(2) error and cardinality error of
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the VB-MHMTB filter over 100 Monte Carlo runs for various spread factors to reveal
the effect of spread factor τρ on the performance of the VB-MHMTB filter. The OSPA(2)

error and cardinality error suggest that it is better to select the spread factor τρ from the
interval [0.93, 1.0].
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Table 3. OSPA(2) error and cardinality error for different τρ.

τρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0

OSPA(2) error 34.79 33.24 32.30 31.53 31.15 30.99 31.05 30.97 31.05 31.00 31.13
Cardinality error 0.130 0.127 0.128 0.129 0.128 0.129 0.136 0.131 0.132 0.129 0.137
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Effect of picking probability ρτ : The picking probability is an important parameter
in the VB-MHMTB filter and it is needed to provide guidance for the selection of this
parameter. The average OSPA(2) and cardinality errors for different picking probabilities
are given in Table 4 and reveal the effect of picking probability on the performance of the
VB-MHMTB filter. According to the result in Table 4, it is better to choose the picking
probability ρτ from the interval [0.3, 0.6], and the VB-MHMTB filter performs best at
ρτ = 0.4.

Table 4. OSPA(2) error and cardinality error for different ρτ .

ρτ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OSPA(2) error 40.65 34.51 31.75 30.58 32.10 32.32 33.05 35.46 37.44
Cardinality error 0.283 0.149 0.139 0.161 0.282 0.343 0.397 0.466 0.575

Computational complexity: Identical to the MHMTB filter, the computational com-
plexity of the VB-MHMTB filter is O

(
K(M + 2N)3

)
,where K is the number of hypotheses,

M is the number of observations and N is the number of potential targets. Compared
with the MHMTB filter, the VB-MHMTB filter needs an iteration procedure to determine
the updated mean vector and covariance of each sub-item. Therefore, it has a higher
computational cost than the MHMTB filter.

In above simulation experiments, the number of time steps is 100, i.e., from 1 to 100;
the true number of targets or cardinality at each time step is given by the green line in
Figure 4; the average number of noise observations (i.e., average clutter number) at each
time step is 10; and average clutter density is 7.9577× 10−4 rad−1m−1.

5. Conclusions

In this study, we apply the MHMTB filter to address the MTT problem under heavy-
tailed observation noise. By using the Student’s t distribution to model a heavy-tailed
observation noise and applying the VB technique to acquire the approximate distributions
of individual targets, we proposed a VB-MHMTB filter. Identical to the MHMTB filter, the
VB-MHMTB filter propagates the existence probabilities and PDFs of individual targets.
The K-best hypotheses acquired by minimizing the negative log-generalized-likelihood
ratio are used to establish the existence probabilities and PDFs of targets at each recursion.
Experimental results indicate that the VB-MHMTB filter can achieve a better tracking
performance than the selected comparison objects because it exhibits a lower cardinality
error and a smaller OSPA(2) error. Experimental results also reveal that the VB-MHMTB
filter has a significantly lower computational load than the EIGLMB filter and VB-EIGLMB
filter, and a higher computational cost than the MHMTB filter.

Tracking multiple maneuvering targets and tracking the extended targets in a real-
world environment are potential applications for the proposed filter. This is also a possible
research topic in the future.
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