
Citation: Wu, H.; Yong, B.; Shen, Z.

Spatial Reconstruction of

Quantitative Precipitation Estimates

Derived from Fengyun-2G

Geostationary Satellite in Northeast

China. Remote Sens. 2023, 15, 5251.

https://doi.org/10.3390/

rs15215251

Academic Editor: Simone Lolli

Received: 4 September 2023

Revised: 1 November 2023

Accepted: 1 November 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spatial Reconstruction of Quantitative Precipitation Estimates
Derived from Fengyun-2G Geostationary Satellite
in Northeast China
Hao Wu 1,2,4, Bin Yong 1,2,* and Zhehui Shen 3

1 The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China;
haowu@hhu.edu.cn

2 Cooperative Innovation Center for Water Safety and Hydro-Science, Hohai University, Nanjing 210098, China
3 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; shenzhehui@njfu.edu.cn
4 School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
* Correspondence: yongbin@hhu.edu.cn

Abstract: With the development of the Chinese Fengyun satellite series, Fengyun-2G (FY-2G) quanti-
tative precipitation estimates (QPE) can provide real-time and high-quality precipitation data over
East Asia. However, FY-2G QPE cannot offer precipitation information beyond the latitude band of
50◦N due to the limitation of the observation coverage of the FY-2G-based satellite-borne sensor. To
this end, a precipitation space reconstruction using the geographically weighted regression (GWR)
coupled with a geographical differential analysis (GDA) (PSR2G) algorithm was developed, based on
the land surface variables related to precipitation, including vegetational cover, land surface tem-
perature, geographical location, and topographic characteristics. This study used the PSR2G-based
reconstructed model to estimate the FY-2G QPE over Northeast China (the latitude band beyond
50◦N) from December 2015 to November 2019 with a spatiotemporal resolution of 0.1◦/month. The
PSR2G-based reconstructed results were validated with the ground observations of 80 rain gauges,
and also compared to the reconstructed results using random forest (RF) and GWR. The results show
that the spatio-temporal pattern of PSR2G QPE is closer to ground observations than those of RF
and GWR, which indicates that the PSR2G QPE is more competent to capture the spatio-temporal
variation of rainfall over Northeast China than other two reconstruction methods. In addition, the
reconstructed precipitation dataset using PSR2G has higher accuracy over study area than the FY-2G
QPE below the band of 50◦N. It suggested that PSR2G reconstruction precipitation strategies do not
lose the precision of the original satellite precipitation data.

Keywords: FY-2G; quantitative precipitation estimates; reconstruction; land surface characteristics;
geographically weighted regression; geographical differential analysis

1. Introduction

Precipitation plays a crucial role in the global water cycle and climate system [1–3].
Traditional point-based ground rain gauges cannot capture the continuous spatial variation
of precipitation, and they are distributed unevenly and sparsely, particularly over oceans
and mountainous areas [4,5]. Currently, the Chinese meteorological station network con-
structed by the China Meteorological Administration (CMA) consists of 30,000 automatic
recording rain gauges. These automatic rain gauges are primarily of three types: the tipping
bucket rain gauge, the weighing rain gauge, and the siphon rain gauge [6]. Among them,
the tipping bucket rain gauge sensors are primarily employed as devices for liquid rainfall
observations, while solid precipitation is predominantly measured automatically using the
weighing rain gauge sensors [7]. The tipping bucket rain gauge consists of a device con-
taining one or multiple buckets [8]. When a certain amount of rainwater accumulates, the
bucket automatically tilts. Each time the bucket tilts, it releases the stored water inside and
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triggers a recording device to log the number of tilts. These tilt counts are then converted
into precipitation depth, typically measured in millimeters [8]. The working principle of
weighing rain gauge involves converting the collected mass of solid precipitation into rain-
fall depth over a specific time interval, typically measured in millimeters [9,10]. However,
in practice, due to factors such as topography and wind speed, rainfall gauges may also
introduce significant uncertainties when collecting regional precipitation information [11].

Furthermore, with the advancement of radar technology, meteorological radar has
been increasingly employed in precipitation measurement. Meteorological radar, after
receiving echo information, indirectly obtains precipitation data by converting it using
the radar reflectivity and precipitation intensity relationship (Z-R relationship) [12]. This
approach can provide relatively high spatial and temporal resolution, yielding almost
continuous precipitation estimates. However, meteorological radar is susceptible to en-
vironmental influences, especially in complex mountainous terrain, where radar signals
can be easily obstructed [13,14]. These characteristics of meteorological radar, while en-
abling high-precision precipitation estimation within a local area, are constrained by the
limited observational range and lower coverage, significantly limiting the applicability of
meteorological radar.

Benefitted from the development of satellite-borne sensors and precipitation retrieval
techniques, satellite-based remote sensing offers a complementary perspective compared
to ground-based rain gauges, by providing spatially continuous and temporally complete
precipitation estimates with high quality on a global scale [15,16]. Over the past three
decades, several satellite-based precipitation retrieval algorithms have been developed and
the corresponding precipitation products have been made available to the public, including
the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) [17], the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
(IMERG) [18], the Global Satellite Mapping of Precipitation (GSMaP) [19], the Climate
Prediction Center Morphing technique (CMORPH) [20], Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [21], and the
Chinese Fengyun-based (FY) Quantitative Precipitation Estimates (QPE).

At present, a handful of scholars have evaluated the performance of Fengyun-2 (FY2)
QPE on different spatial scales [22–25]. However, FY2-based QPE cannot completely cover
the entire Chinese mainland due to limitations of observation coverage of the FY-based
satellite-borne sensors. For instance, the latitude range of Fengyun-2G (FY-2G) QPE is
below 50◦N. It hinders the applications of FY-based QPE over high-latitude areas. Moreover,
the number of ground-based rain gauges at northern high latitudes is sparse and only a
handful of rain gauges are operating over Northeast China. It is therefore essential to utilize
other observation sources related strongly to precipitation to reconstruct high-latitude
FY-2G QPE over the lost coverage of the FY-based satellite. Furthermore, existing research
indicated that some Land Surface Characteristics (hereafter referred to LSC) are good proxy
for precipitation [26]. Therefore, based on the existing LSC data related to precipitation,
this study attempts to develop a reconstruction algorithm for FY-2G QPE over Northeast
China.

Before establishing the precipitation reconstruction algorithm, the primary issue is
selecting appropriate LSC that are strongly related to precipitation. Many studies have been
devoted to research on the relationship between precipitation and LSC [26–30]. Schultz
and Halpert [31] suggested that although the Normalized Difference Vegetation Index
(NDVI) and precipitation have an obvious correlation, the lagging time of NDVI response
to precipitation varies with location and type of vegetation. Jia et al. [32] and Fang et al. [33]
used a Multiple Linear Regression (MLR) model to explain the relationship between NDVI
and topographic factors related to precipitation. Eltahir et al. [34] and Brunsell et al. [35]
explored the responses and correlations of soil moisture, vegetation, and rainfall. When
rainfall occurs, the presence of clouds blocks the sunlight, reducing the amount of incoming
solar radiation reaching the surface. Additionally, the wetting of the soil by rainwater leads
to an increase in soil moisture content. Both of these factors contribute to a temporary
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decrease in surface temperature [30]. Therefore, land surface temperature (LST) is also
a crucial factor related to rainfall. In addition, Lu et al. [36] adopted topographic factors
and vegetation indexes as the crucial input data in stepwise regression and geographically
weighted regression (GWR) methods to correct the downscaling IMERG precipitation
data from the universal kriging interpolation, results suggest that the corrected data has
the best performance in the middle and low-elevation region (1000–1500 m). Thus, this
study adopted the above LSC factors related to precipitation as auxiliary variables in the
precipitation reconstruction model, including NDVI, LST, topography, and geographical
location (e.g., latitude and longitude).

Currently, based on the hypothesis that there exists a discernible correlation between
precipitation and the abovementioned LSC, many statistical methods have been proposed
to obtain fine and high-quality satellite precipitation estimates at numerous spatio-temporal
scales, such as exponential regression model [26], MLR model [37], random forest (RF)
regression model [38], and artificial neural network model [37]. However, these statistical
methods could easily lead to over-fitting because they ignore the spatial heterogeneous
relationships between LSC and precipitation [39,40]. The GWR-based algorithm could
greatly deal with the spatial heterogeneity and temporal variety of precipitation [40–42].
For instance, Chao et al. [43] developed a merging method between satellite precipita-
tion data and ground-based gauge measurements to improve the spatial resolution and
quality of CMORPH at a daily scale over the Ziwuhe Basin of China. Wang et al. [40]
developed a downscaling framework combined with the GWR model and stepwise regres-
sion analysis for fine-resolution and high-quality mapping of the GSMaP-Gauge products
over the Qilian Mountains. Given this, this study attempted to establish a precipitation
reconstruction model using the GWR algorithm in this study, and the proposed model
comprehensively considers the spatial heterogeneity of precipitation and LSC datasets.
Although the GWR model could well describe the relationship the precipitation and LSC,
improving the accuracy of estimated precipitation is challenging due to limitations im-
posed by the performance of the original precipitation data. The fusion of satellite-based
precipitation and ground-based measurements could reduce the errors of satellite-based
precipitation estimates to some extent [44]. Therefore, it is highly desirable to explore a
precipitation space reconstruction approach which takes into account the improvement of
accuracy of the reconstructed FY-2G QPE.

Because the monthly NDVI data as one of the crucially explanatory variables is used
in the precipitation reconstruction model, the spatial reconstruction of FY-2G QPE was
conducted at a monthly scale in this study. Moreover, many studies have reported that
vegetation has different lagging times response to precipitation, and the lagging time could
be up to 2–3 months in semi-arid regions [45–47]. Hence, this study needs to determine
the lagging time of NDVI response to FY-2G QPE before establishing the precipitation
reconstruction model. The objectives of this study were as follows: (1) to conduct a com-
prehensive correlation analysis for FY-3C NDVI and FY-2G QPE over study region; (2) to
develop a precipitation space reconstruction model based on GWR coupled with geograph-
ical differential analysis (PSR2G), for reconstructing FY-2G QPE over Northeast China
during the period of December 2015 to November 2019; (3) to investigate the applicability
of reconstructed FY-2G QPE by validation with the ground observations.

2. Study Area and Datasets
2.1. Study Area

Figure 1a presents the spatial distribution of monthly average precipitation obtained
from the FY-2G QPE over the Chinese mainland. From Figure 1a, the FY-2G QPE reveals
notable regional precipitation patterns, with the highest rainfall mainly distributed in a
southeastern coastal region, and the precipitation gradually decreases from southeast to
northwest. It is noted that the FY-2G QPE does not cover Northeast China with a latitude
below 50◦N, and there are only a few stations present in that area. The area of the study
region for reconstruction is about 175,546 km2. Figure 1b provides an illustration of the
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station distribution of the ground-based rain gauges in Northeast China. The study area
of this paper is located in the Songliao River Basin, which is situated in the northeastern
part of the Chinese mainland. The Songliao River Basin, also known as the Northeast
China Plain, is the largest plain in China. The Songliao River Basin, situated between
115◦31′E and 135◦9′E longitude and 38◦35′N and 53◦35′N latitude, stands as a pivotal
hub for both agriculture and industry in northeastern China. The Songliao River Basin
encompasses a drainage area of approximately 1.24 million square kilometers and falls
within the temperate and cold temperate zones, characterized by a continental monsoon
climate [48]. Regarding long-term annual average precipitation, the research indicated
that the study areas present a significant precipitation gradient distribution from beyond
1000 mm in its southern region to less than 350 mm in its northern extremities [48,49].
Furthermore, the long-term average annual air temperature ranges from 1 ◦C to 5 ◦C over
the Songliao River Basin. The central part of the basin is relatively flat, with elevations
mostly below 200 m. This is mainly due to the erosion caused by the Songhua River and
Nen River. The western part of the Songliao River Basin is adjacent to the Greater Khingan
Mountains, the northern part is bordered by the Lesser Khingan Mountains, and the eastern
part extends to the Zhangguangcai Mountains and Qianshan Mountain range, while the
southern part is adjacent to the Liaodong Bay. Figure 1c illustrates the elevation distribution
of the Songliao River Basin, and Figure 1d shows the spatial distribution of the training
area and prediction area over the Songliao River Basin.
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Figure 1. (a) Spatial pattern of monthly mean precipitation for FY-2G at each 0.1◦ × 0.1◦ grid pixel
for the period of 2016 to 2019 over Chinese mainland; (b) Spatial distribution of gauge stations at
each 0.1◦ × 0.1◦ grid pixel for the period of 2016 to 2019 in Northeast China; (c) Spatial pattern of
10 km-resolution DEM in Songliao River Basin; (d) The regional distribution of the training model
and reconstructed precipitation.

2.2. Ground Reference

To verify the performance of reconstructed FY-2G QPE over Northeast China, this
study adopts the ground observations from the gridded hourly China Merged Precipita-
tion Analysis (CMPA) dataset (version 1.0) as the reference. The CMPA contains hourly
precipitation observation data of more than 30,000 automatic weather stations over Chi-
nese mainland since 2008. To match the FY-2G QPE and LSC datasets in temporal scale,
this study accumulates hourly precipitation of the rain gauges to monthly rainfall. The



Remote Sens. 2023, 15, 5251 5 of 24

CMPA datasets could be downloaded from China Meteorological Data Service Centre
(http://data.cma.cn/, accessed on 1 January 2020).

2.3. Fengyun-Based Quantitative Precipitation Estimates

The remote sensing precipitation dataset is FY-2G QPE in this study. The sub-satellite
point of FY-2G, located at 99.2◦E (after 16 April 2018) above the equator, and equipped
with a scanning radiometer and space environment monitor. The scanning radiometer has
five channels, including two long-wave infrared channels, one mid-infrared wave channel,
one visible light channel, and one water vapor channel. FY-2G could obtain a full disk
image that the spatial coverage is limited to 1/3 of the surface of Earth, and it supports
continuous and high-frequency observations. Meanwhile, FY-2G has stretched Visible and
Infrared Spin Scan Radiometer (VISSR) [24]. The basic principles of FY-2G QPE are as
follows [50]: First, precipitation estimates are obtained from the satellite-based infrared
data at an hourly scale. Second, integrate ground reference obtained for rain gauges and
satellite-based precipitation estimates through a new optimal interpolation method in real
time. This study adopts FY-2G QPE with spatiotemporal resolution of 0.1◦/day, and the
FY-2G QPE data can be downloaded from Fengyun Satellite Remote Sensing Data Service
Network (http://satellite.nsmc.org.cn/, accessed on 1 April 2021).

2.4. PERSIANN-CCS

The PERSIANN-Cloud Classification System (PERSIANN-CCS) is a cutting-edge real-
time satellite precipitation product with global coverage, developed by the Center for
Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine
(UCI). This system empowers the categorization of cloud-patch features based on param-
eters such as cloud height, spatial extent, and texture variations obtained from satellite
imagery [21]. At the core of PERSIANN-CCS lies the variable threshold cloud segmen-
tation algorithm. In contrast to the conventional fixed threshold approach, the variable
threshold method allows for precisely identifying and separating individual cloud patches.
These individual patches can then be classified based on texture characteristics, geometric
attributes, dynamic changes, and cloud-top elevation. These classifications are instru-
mental in assigning rainfall values to pixels within each cloud, utilizing a specific curve
that defines the relationship between rain rate and brightness temperature. This study
adopts PERSIANN-CCS with a spatiotemporal resolution of 0.4◦/month and employs
the cumulative averaging method to resample this data to the spatial resolution of 0.1◦

× 0.1◦. In this study, the PERSIANN-CCS data are available and downloadable online
(http://chrsdata.eng.uci.edu/, accessed on 1 October 2023).

2.5. Fengyun-Based Land Surface Characteristics

The LST datasets were obtained from the FY-2G satellite, which is based on the split-
window algorithm for retrieval. This study adopts LST with spatiotemporal resolution of
0.1◦/month. The NDVI datasets were obtained from the Fengyun-3C (FY-3C) satellite. The
FY-3C satellite was successfully launched on 23 September 2013, over the Taiyuan satellite
launch center [51]. Different from the FY-2G, the FY-3C is a polar orbit satellite and equipped
with 12 sets of remote sensing instruments, and its products include ascending orbit
products and descending orbit products [52]. NDVI is obtained from Visible and Infrared
Radiometer (VIRR) to provide a normalized vegetation index, which adopts uniform
grid geographical longitude/latitude projection and with spatiotemporal resolution of
5 km/month. The FY-2G LST and FY-3C NDVI also can be downloaded from Fengyun
Satellite Remote Sensing Data Service Network (http://satellite.nsmc.org.cn/, accessed on
1 April 2021).

2.6. Topographic Characteristic

The DEM data used in this study was obtained from the Shuttle Radar Topography
Mission (SRTM). The SRTM has the advantages of strong reality and free access. The DEM
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data used in this study is based on the latest SRTM (V4.1), which includes three resolutions
of 1 km, 500 m, and 250 m over the Chinese mainland. This study adopts the DEM product
with a spatial resolution of 1 km over Songliao River Basin, from Resource and Environment
Science and Data Center, Chinese Academy of Sciences (http://www.resdc.cn/, accessed
on 1 April 2021).

3. Methods
3.1. Geographically Weighted Regression

As a regional regression method, GWR model was first proposed by Fotheringham
in 1996 [35,53]. Different from global regression algorithms, the GWR model could well
describe the spatial variation of the relationship between the dependent and explanatory
variables because its regression process includes geographical location information [42],
the regression model is defined as Equation (1):

yi = a0(ui, vi) + ∑p
k=1 ak(ui, vi)xik + εi (1)

where i = 1, 2, . . ., n; (ui, vi) are the latitude and longitude coordinates of the i-th sampling
point; a0(ui, vi) and ak(ui, vi) are the intercept estimated and slope estimated of regression
equation at the i-th sampling point, respectively; εi is the residual of regression equation at
the i-th sampling point, εi ∼ N

(
0, δ2), Cov

(
εi, ε j

)
= 0(i 6= j).

The core of the GWR model is the spatial weight matrix, which may express different
understandings of the spatial relationship between data by selecting different spatial weight
functions [35,54,55]. It is essential to select the appropriate spatial weight function for
correctly calculating parameters estimated by the GWR model, and the commonly adopted
spatial weight function is the Gaussian function Equation (2) and bi-square Equation (3)
function [41]:

wi = exp(−d2
i /b2) (2)

wij(ui, vi) =
(

1− (dij/b)2
)2

(3)

where b is a non-negative decreasing function and describes the functional relationship
between weight and distance, namely bandwidth. It is noticed that the parameters es-
timated by the GWR model largely depend on the choice of bandwidth. And d is the
distance between the sample point and its neighboring points, usually defined as Euclidean
distance:

dij =
√(

ui − uj
)2

+
(
vi − vj

)2 (4)

In practice, we found that the GWR model has a slight influence on the choice of func-
tion (Gaussian function or a bi-square function). However, we noticed that the GWR model
was easily limited by the bandwidth of a particular weight function. The bandwidth of the
weight function is obtained by using two traditional methods, e.g., the cross-validation
(CV) and the Akaike Information Criterion (AIC) [56]. The Gaussian function and AIC
criterion were adopted in this study. For the same sample data, the bandwidth in the GWR
weight function tends to be considered optimal when its corresponding AIC value is at its
smallest.

3.2. Random Forest

The RF model, as a primary ensemble learning method for handling classification and
regression problems, was introduced by Professor Breiman [57]. It utilizes decision trees
(Classification And Regression Tree, CART) as weak learners (also referred to as base learn-
ers) and employs the Bootstrap aggregating (Bagging) method. In this approach, decision
trees are constructed based on CART, and the training process involves the introduction
of random attributes. The random attributes of RF primarily involve two aspects: Firstly,
it utilizes sampling perturbation. When training each decision tree, it begins randomly
and with replacement sampling from the original training data set, creating a new sub-

http://www.resdc.cn/
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set of training data. Each decision tree is then independently trained using this subset,
with the remaining data used for validation. Secondly, it employs attribute perturbation.
During the training of each decision tree, it randomly selects a subset of feature attributes
and continuously performs attribute splitting based on the information entropy criterion.
The RF is an efficient and easily implementable prediction method capable of effectively
handling large sample data. It demonstrates high accuracy in regression predictions and
can mitigate overfitting. The incorporation of random attributes into the decision tree base
of RF ensures that it is generally not easily disturbed by outliers. The RF algorithm used
in this paper is implemented through programming with the “randomForest” algorithm
package in the R language.

3.3. Geographical Differential Analysis

This study adopted a Geographical Differential Analysis (GDA) integration framework
combined with an Inverse Distance Weighting (IDW) interpolation technique to calibrate
the reconstructed FY-2G QPE. The GDA is calculated as follows:

∆PGDA
(i,j) = PSatellite

(i,j) − PGauge
(i,j) (5)

PGDA
(m,n) = PSatellite

(m,n) − ∆PGDA
(m,n) (6)

where PSatellite
(i,j) and PGauge

(i,j) are the satellite precipitation estimates and gauge observations

in corresponding grids of the gauged pixel, respectively. ∆PGDA
(i,j) is the rainfall difference

between satellite-based precipitation estimates and ground observations at gauged grids.
The ∆PGDA

(m,n) was derived from the interpolation technique of ∆PGDA
(i,j) , and the PGDA

(m,n) is the
calibrated satellite precipitation based on the GDA integration framework. In this study,
the IDW method was adopted for interpolating rainfall differences between satellite and
rain gauge to generate a spatial continuous map.

3.4. Inverse Distance Weighting

Regarding the interpolation methods used in this study, the IDW method was em-
ployed. IDW is a spatial interpolation technique utilized in Geographic Information
Systems (GIS) and geographic statistics. Its purpose is to estimate values at unobserved
locations by relying on the values at nearby observed locations. In other words, IDW
operates on the assumption that the unknown value at any given location can be estimated
as a linear combination of values from the surrounding neighborhood, specifically [58]:

Ẑ(x0) = ∑n
i=1 λiZ(xi) (7)

where Ẑ(x0) represents the estimated value at the grid cells without ground stations x0,
Z(xi) denoting the value of Z at the grid cells with ground stations xi, and λi is the weight
assigned to Z(xi). The random variable Z pertains to the rainfall difference between the
reconstructed QPE and CMPA at grid cells with stations.

IDW is a straightforward interpolation technique where the weights are inversely
proportional to the distance itself, as outlined by Watson and Philip (1985) [59]. The weight
assignment in the IDW method can be described as follows:

λi =
[d(x0, xi)]

−p

∑n
i=1[d(x0, xi)]

−p (8)

where d(x0, xi) represents the distance between x0 at the grid cells without ground stations
and the xi at the grid cells with ground stations. The p stands for the power parameter,
which regulates the assigned weight.
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3.5. Proposed Precipitation Space Reconstruction Model

The relationship between precipitation and LSC variables is indeed influenced by the
specific characteristics of the study area. The relationship can vary across different regions,
and it is important to consider the local conditions when investigating this relationship. In
this study, five LSC factors were chosen to establish a connection with precipitation. Based
on previous research, by incorporating these variables, a spatial reconstruction model for
FY-2G QPE was developed in this study. The five LSC factors adopted in this study include
longitude, latitude, NDVI, DEM, and LST. The relationship between these variables and
satellite precipitation data derived from different versions has been extensively investigated
in various study areas, which suggests a strong correlation between these variables and
precipitation. Given this, this study does not conduct any further analysis on the correlation
between LSC and FY-2G QPE.

In the subsequent sections, this paper will illustrate the development of a spatial
reconstruction model for precipitation using the GWR algorithm coupled with GDA. It
has been noted by several researchers that precipitation exhibits spatial autocorrelation,
according to the principle of spatial dependence wherein locations nearby tend to display
similar patterns in precipitation distribution [30]. Therefore, to ensure the availability of
training samples and based on the first law of geography, this study selects the Songliao
River Basin with latitudes below 50◦N as the training area to reconstruct precipitation in
the Songliao River Basin with latitudes exceeding 50◦N. Figure 2 illustrates the process of
spatial reconstruction of monthly FY-2G QPE using the PSR2G algorithm in this study. The
specific implementation steps are briefly described as follows:

(1) Data resampling. Given that the spatial resolution of FY-2G QPE is 0.1◦ × 0.1◦, to
fully utilize the relationship between the LSC variables and FY-2G QPE, it is necessary
to spatially match the 5 km spatial resolution of FY-3C NDVI with FY-2G QPE. In this
study, the method of cumulative averaging is used to spatially resample the FY-3C
NDVI. As for DEM, this study employs the nearest-neighbor interpolation method to
resample DEM data to the spatial resolution of 0.1◦ × 0.1◦.

(2) Model training. The calculation of bandwidth and kernel function is a crucial step in
training the GWR model. In this study, the GWR algorithm was implemented using
the “GWmodel” package in the R programming language. The “GWmodel” package
offers two primary parameters for the GWR model, i.e., bw (bandwidth) and gweight
(kernel function). To determine the optimal bandwidth value, an adaptive approach
was employed. The optimization process was guided by the AIC value, where the
goal was to minimize the AIC. In this study, a widely used Gaussian kernel function
was selected for modeling purposes. Once the optimal bandwidth was determined,
the GWR model for FY-2G QPE within the training area was established.

(3) Precipitation reconstruction. By inputting the LSC factors from the prediction area
into the final GWR model established within the training area, the reconstructed
FY-2G QPE for the target area can be computed. Specifically, the NDVI, LST, DEM,
and location information (longitude and latitude) are used as explanatory variables in
the reconstruction model.

(4) Merging correction. The GDA method is used for the fusion correction of the recon-
structed results. Firstly, the reconstructed FY-2G QPE is subtracted from the ground
observation to obtain the rainfall error at the station locations. The IDW interpolation
method is used to estimate the rainfall error at locations outside the stations. Then,
these two sets of error values are combined to obtain the complete rainfall error values
within the prediction area. Finally, the reconstructed FY-2G QPE is corrected by sub-
tracting the corresponding rainfall error values. It is worth noting that in the actual
calculations, this study uses a 10-fold CV approach to compute the rainfall errors,
to ensure that the validation data are mutually independent. The IDW algorithm in
this study is implemented based on the “gstat” algorithm package in the R language.
Similarly, the GDA method is also implemented and compiled in R language.
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This study adopts the IDW method to obtain rainfall differences at ungauged grid
cells through the following steps:

(1) Data preparation. Gather the rainfall differences between the ground observation
points, the reconstructed precipitation data, and the geographical coordinates at the
gauged grid cell, including longitude and latitude.

(2) Grid generation. Determine the spatial area that needs interpolation and create a
regular grid covering the entire region. These grid cells will serve as the basis for the
interpolated continuous surface.

(3) Distance calculation. Calculate the distances between grid cells without stations and
observation stations.

(4) Weight allocation. Assign weights to each ungauged grid cell based on their distances
and weight parameters. Closer gauged grid cells typically have higher weights, while
more distant gauged grid cells have lower weights.

(5) Interpolation calculation. Calculate the estimated rainfall differences for ungauged
locations based on the rainfall differences at gauged grid cells and their respective
weights.

(6) Create a continuous Surface. Using the interpolation calculations, generate an esti-
mate for each ungauged grid cell, thereby creating a continuous surface of rainfall
differences.

For the rainfall differences at gauged grid cells, this study obtained them using a
10-fold CV method. The implementation steps are the same as described above, and
after repeating this process ten times, the rainfall differences at all station locations were
obtained.

3.6. Evaluation Method

To accurately measure the performance of the reconstruction results, this study
adopted the three widely used statistical indicators for evaluation [60]: Correlation Coeffi-
cient (CC) could describe the agreement between reconstructed precipitation estimates and
rain gauges, and the optimal value is 1. The Root Mean Square Error (RMSE) represents
the error magnitude between reconstructed precipitation estimates and rain gauges, and



Remote Sens. 2023, 15, 5251 10 of 24

the optimal value is 0. The Relative BIAS can provide the degree of systematic bias of
reconstructed precipitation estimates, and the optimal value is 0.

CC =
∑n

i=1
(
Gi − G

)(
Si − S

)√
∑n

i=1
(
Gi − G

)2 ×
√

∑n
i=1
(
Si − S

)2
(9)

RMSE =

√
1
n∑n

i=1(Si − Gi)
2 (10)

BIAS =
∑n

i=1(Si − Gi)

∑n
i=1 Gi

× 100% (11)

Among them, Gi refers to the baseline (rain gauges) and G is the average of the baseline,
Si and S mean the reconstructed precipitation estimates and their average, n refers to the
number of samples.

3.7. Rainfall Anomaly Index

The Rainfall Anomaly Index (RAI) is an indicator used to measure the deviation in
rainfall in a region from its long-term average [61,62]. It is commonly employed for the
analysis and monitoring of climatic and meteorological variations, particularly in cases
related to droughts and inadequate rainfall. The RAI was computed for a monthly period
using Equations (12) and (13):

RAI = 3
P− P
H − P

for the positive anomaly (12)

RAI = −3
P− P
L− P

for the negative anomaly (13)

Among them, P is the current monthly rainfall for reconstructed QPEs, satellite-based QPEs
or ground observations; P is the monthly average precipitation of historical series for this
precipitation products. The precipitation data are sorted in descending order, H is the
average of highest rainfall values in the top ten; L is the average of lowest month rainfall
values in the bottom ten. P− P denotes the positive anomaly or negative anomaly based
on positive or negative values.

The RAI can take on positive or negative values, depending on whether the actual
rainfall is higher or lower than the average. Positive values indicate that actual rainfall
exceeds the average, while negative values signify that actual rainfall falls below the
average. The RAI can analyze climate patterns and long-term meteorological trends, such
as precipitation. The RAI is also especially valuable for drought monitoring. When the RAI
reflects negative values, it indicates insufficient rainfall, signaling the potential onset of
drought.

4. Results
4.1. Determine the Lagging Time of NDVI Response to Precipitation

Because the monthly FY-3C NDVI is one of the crucial explanatory variables in the
reconstruction model, this study conducts the spatial reconstruction of FY-2G QPE at
a monthly scale. Some studies have suggested that NDVI response to precipitation has
varying lag response times in different areas, and the time of NDVI response to precipitation
may be as long as 2–3 months [45,46]. Hence, determining the lag response time of the FY-
3C NDVI to the FY-2G QPE is essential before establishing the precipitation reconstruction
model.

This study analyzes the correlation between monthly precipitation and vegetation
index, based on FY-2G QPE and FY-3C NDVI. Figure 3 displays the spatial distribution
of the correlation between FY-2G QPE and FY-3C NDVI in the Songliao River Basin from
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December 2015 to November 2019, with different latency times: (a) no monthly latency time;
(b) one-month latency time; (c) two-month latency time; (d) three-month latency time. From
Figure 3, there are significant variations in CC values between FY-3C NDVI and FY-2G QPE
in most parts of the Songliao River Basin, with a positive correlation between precipitation
and vegetation index. Among the different latency times, the FY-3C NDVI with a one-month
lag exhibits the highest CC value with FY-2G QPE across the entire training area. The FY-2G
QPE and FY3C NDVI exhibit higher CC values in the northern part of the Songliao River
Basin than in the southern region when the lagging time is zero months. If their correlations
between them are weakened, it can potentially introduce outliers during the reconstruction
model training process, making it unfavorable for the reconstruction results. As the delay
time increases beyond one month, the CC between NDVI and precipitation gradually
decreases in the Songliao River Basin, which exhibits significant differences. When the
lagging time reaches two months, there is little to no significant correlation between FY-3C
NDVI and FY-2G QPE in some areas, which is unfavorable for reconstructing precipitation.
Therefore, this study concludes that the response time of the FY-3C NDVI to FY-2G QPE is
one month in the precipitation reconstruction model.
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4.2. Performance of Fitting Precipitation

Figure 4 shows the comparison results of the overall consistency metrics for two fitted
QPEs derived from GWR and RF, as well as the original FY-2G QPE and PERSIANN-CCS
in the training area. Compared with the original FY-2G QPE, the accuracy of the fitted
FY-2G QPEs based on RF and GWR has been greatly improved. This suggests that this
study using these two methods for reconstructing FY-2G QPE in the prediction area is
feasible. The assessment results show that RF and GWR approaches can significantly reduce
the systematic negative BIAS of the original FY-2G QPE in that the BIAS decreases from
−14.62% before adjustments to 3.56% and 3.90%, respectively. Besides BIAS, RF shows a
slight increase of 5.55% in CC relative to the original FY-2G QPE, and its RMSE decreased
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by only 1.7%. Compared to RF, the GWR-based QPE significantly improves the consistency
with ground observations relative to the original FY-2G QPE, with the highest CC value
and lowest RMSE value among the three precipitation datasets. Specifically, the CC of the
original FY-2G QPE has a dramatic increase of 21.46%, and the RMSE has a dramatic drop of
11.79% after fitted by the GWR model. From the fitted QPE, the GWR-based reconstructing
algorithm could provide more accurate precipitation datasets than RF in the training area,
which indicates the significance of adopting the GWR method to illustrate the spatially
non-stationary relationship between precipitation and LSC factors [42].
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Among the four precipitation products, PERSIANN-CCS exhibits larger rainfall errors
within the Songliao River Basin compared to the original FY-2G QPE and fitted QPEs, with
the lowest CC values and the highest RMSE and BIAS values. While both PERSIANN-CCS
and FY-2G QPEs are precipitation retrieval based on infrared data, the overall performance
of the original FY-2G QPE significantly outperforms PERSIANN-CCS over the Songliao
River Basin. This is possibly due to the merging of ground observations during the data
production process in terms of FY-2G QPE. Compared to PERSIANN-CCS, the performance
of fitted FY-2G QPE using RF and GWR is exceptional, indicating that the accuracy of the
reconstructed FY-2G QPEs in this region is not worse than this internationally recognized
precipitation product. On the other hand, in the study area below 50◦N, it is easy to see
that the original FY-2G QPE had noteworthy negative BIAS. Meanwhile, RF and GWR
effectively diminished such underestimation, suggesting the systematic negative BIAS of
the original FY-2G QPE was effectively removed after they were adjusted by the RF and
GWR approaches. The underestimation of the original FY-2G QPE is possibly attributed
to two reasons: firstly, the FY-2G QPE is derived from a single satellite, and it is only
generated from infrared information. The poor performance of FY-2G QPE could primarily
result from increased snowfall in the Songliao River Basin. Although FY-2G QPE merged
gauge observations in the generation step, less rain gauge data was merged in this product
over Northeast China [25]; secondly, there are more missing files in the hourly FY-2G QPE
compared to ground observations. Despite accumulating the daily scale data into a monthly
scale for this study, the quantity of hourly FY-2G QPE is not constant throughout the day
(fixed at 24).

4.3. Overall Performance of Reconstructed Precipitation

Taylor diagrams (Figure 5) are presented to compare the monthly average precipitation
of three reconstructed products (RF, GWR, and PSR2G) with ground observations. Figure 5
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shows that the GWR outperforms RF when only land surface environmental variables are
used for reconstruction. However, after the GDA merging process, the PSR2G significantly
improves the consistency metric of the GWR-based QPE. Although the standard deviation
of RF is the lowest, the PSR2G is closer to ground observation than GWR in terms of the
centered Root Mean Square Difference (RMSD) and CC. The PSR2G exhibits the lowest
RMSD value among the three reconstructed QPEs, reducing by 26.48% compared to GWR.
Additionally, the overall CC values of reconstructed precipitation obtained a remarkable
improvement after adjustment by the proposed algorithm. The PSR2G with the highest
CC value outperforms GWR by increasing 54.59%. These results indicate that the accuracy
of the precipitation reconstruction model is significantly improved by introducing the
GDA-based error correction algorithm. Furthermore, the results demonstrate that PSR2G
outperforms traditional methods in terms of consistency with ground observations in
Northeast China. In conclusion, PSR2G is more suitable for reconstructing the FY-2G QPE
than RF and GWR in Northeast China.
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CMPA over Northeast China.

4.4. Spatial Performance of Reconstructed Precipitation

Figure 6 illustrates the spatial distribution of the consistency metrics of the three recon-
structed QPEs relative to CMPA in Northeast China. The comparison results of traditional
methods show that GWR outperforms RF, indicating that the GWR algorithm can effectively
reconstruct FY-2G QPE in areas without the FY-2G satellite coverage. Although RF and
GWR have similar spatial distributions in terms of CC values, GWR has significantly higher
CC values at most rain gauges than RF, particularly in the southern and northern regions.
This suggests that even incorporating geographic location as an independent variable to
establish the relationship with precipitation, the RF algorithm did not significantly improve
the consistency between reconstructed precipitation and ground observations compared to
the GWR model, which considers spatially non-stationary relationships. As for the BIAS,
the spatial distribution of reconstructed QPEs based on RF and GWR is also similar, but
GWR has lower BIAS values in the central and northern parts of the study area than RF.
Moreover, we found that both GWR and RF have overestimations at the same rain gauges.
One possible explanation for this result is that the reconstruction models based on RF and
GWR fail to adequately describe the relationship between LSC factors and precipitation
at such gauge stations in areas of high latitudes. Regarding the RMSE, it is evident that
GWR outperforms RF in most parts of the study area. The RMSE values of GWR at most
stations are less than 30 mm/month, indicating that the reconstructed QPEs based on the
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GWR model have lower rainfall errors than RF. In short, it further highlights that GWR
could deal greatly with the influence of spatial heterogeneity between precipitation and
LSC factors for the reconstruction of monthly FY-2G QPE.
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Compared with the reconstructed QPEs based on traditional methods, the proposed
PSR2G, which was corrected by the GDA merging framework, significantly improved
the consistency metrics of GWR in the spatial pattern. In terms of the CC, the PSR2G
obviously outperformed RF and GWR on most gauge stations, with CC values exceeding
0.9. Regarding the BIAS, PSR2G was effective in mitigating the overestimation of GWR
in the southeast and western regions, suggesting the PSR2G approach is successful in
correcting such a systematic overestimation of GWR and will still be very effective in
reducing the BIAS. Moreover, the PSR2G also had an obvious improvement of RMSE almost
throughout the entire study area, with RMSE values below 20 mm/month in most stations,
indicating that the reconstructed QPE based on the GDA method effectively reduced the
RMSE of the estimated QPE by GWR. Based on the aforementioned results, PSR2G exhibits
superior performances for reconstructing FY-2G QPE in Northeast China. To be specific, the
merging correction method based on GDA and IDW significantly enhances the accuracy
of the reconstructed precipitation from the traditional algorithm, bringing it closer to the
ground observations compared to RF and GWR.

4.5. Temporal Performance of Reconstructed Precipitation

Boxplots of evaluation metrics for three reconstructed QPEs compared to CMPA in
different seasons are plotted to conduct the temporal validation, as shown in Figure 7.
Overall, PSR2G significantly outperforms the other two reconstructed QPEs in most seasons.
In terms of CC, the RF-based reconstructed QPE has higher CC values than GWR in
summer and winter, but significantly lower CC values in spring and autumn. However,
PSR2G significantly improves the correlation between GWR and ground observations in
all seasons, which is consistent with the spatial distribution. With respect to the BIAS, RF
and GWR exhibit similar characteristics, they overestimate the precipitation in spring and
summer and underestimate the precipitation in autumn and winter. From Figure 7b, the
degree of overestimation and underestimation of the reconstructed FY-2G QPE by GWR
is significantly lower than RF in almost all seasons. Relative to the reconstructed QPEs
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based on traditional methods, PSR2G effectively reduces the systematic BIAS of GWR in all
seasons. Additionally, except for winter, the performance of the GWR-based reconstructed
QPE is superior to RF in most seasons. As for RMSE, the GWR precipitation product
has lower RMSE values than RF in most seasons, indicating that the GWR algorithm can
alleviate seasonally-related rainfall errors to some extent. Meanwhile, PSR2G significantly
reduces the RMSE values of GWR-based reconstructed FY-2G QPE in almost all seasons,
especially in the rainy summer season.
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Based on the performance in different seasons, it can be seen that PSR2G QPE sig-
nificantly improves the performance of GWR-based reconstruction results in all seasons.
However, although the accuracy of GWR has been improved after the GDA merging correc-
tion process, there is still room for further improvement in its performance in winter relative
to other seasons. This is possibly due to the following reason: In cold seasons, satellite
precipitation data often contains considerable missed precipitation and false precipitation
events at a monthly scale. As the dependent variable during the training period of the
reconstruction model in the Songliao River Basin below 50◦N, the FY-2G QPE inevitably
introduces rainfall errors and uncertainties into the reconstructed results. Additionally, this
also leads to a significant reduction in the number of grid cells with stations during the
winter, further reducing the available sample number. On the other hand, we speculate
that insufficient response of some land surface environmental variables to precipitation
during the winter is also an important reason.

4.6. Temporal Analysis of Precipitation Anomalies

Figure 8 depicts the temporal distribution of RAI values derived from four QPEs and
CMPA and overall CC values in terms of the RAI values from these QPEs against CMPA at
a monthly scale over the Songliao River Basin. When RAI > 0, it indicates that the rainfall is
above the average level, making it more susceptible to flooding. When RAI < 0, it signifies
insufficient rainfall, which can lead to drought conditions. Based on ground observations,
the months of July 2016–2017 had the highest RAI values, with August following closely
behind. Similarly, in 2018 and 2019, August recorded the highest RAI values, with July as
the next in line. This suggests that July and August are the rainiest months in the region.
Conversely, January to March and November to December in the years 2016–2019 were
consistently characterized as dry months, indicating lower precipitation during the cold
season. In the comparison of satellite-based QPEs, we found that the RAI curve of the
original FY-2G closely aligns with ground observations. For instance, the original FY-2G
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RAI also detected drought months from January to March and November to December,
which is consistent with ground observations. Similarly, the RAI curve of the fitted FY-2G
QPEs closely resembles that of the original FY-2G, with RAI values remarkably consistent
with ground observations. Furthermore, from Figure 8b, it is evident that the fitted GWR
precipitation product’s RAI exhibited the highest CC values with ground observation RAI,
followed by RF, both slightly outperforming the original FY-2G. This implies that this
reconstruction method accurately captures variations in precipitation and maintains a high
level of consistency with the original FY-2G QPE in simulating rainfall patterns. It is worth
noting that PERSIANN-CCS demonstrated poorer performance than other QPEs. While it
did detect some rainy months, it frequently misclassified drought months as rainy, resulting
in a higher false alarm rate. This discrepancy is also reflected in its RAI and has the lowest
CC value with ground observation RAI, which is less than 0.3. As a precipitation product
based on infrared data retrieval, the performance of PERSIANN-CCS is significantly worse
than the original FY-2G and even the fitted precipitation products, exhibiting a substantial
difference in RAI values compared to ground observations. This suggests that PERSIANN-
CCS faces challenges in accurately capturing and detecting rainfall patterns related to both
wet and dry conditions, requiring further refinement and calibration.
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Figure 9 depicts the temporal distribution of RAI values derived from four QPEs
and CMPA and overall CC values in terms of the RAI values from these QPEs against
CMPA at a monthly scale in Northeast China. The ground observations from May to
September 2016 to 2019 have positive RAI values, except for the RAI values of the ground
observations from May to June 2018 are negative, which are slightly lower than 0. This
indicates that for areas with a latitude band beyond 50◦N over the Songliao Basin, May to
September seems to be the rainy season, while the other months typically experience dry
conditions. Similar to the performance in the training area, the RAI values of PERSIANN-
CCS exhibited almost no significant correlation with the RAI values of ground observations
in the prediction region. Precipitation anomalies reconstructed using RF and GWR are
significantly closer to ground observations than PERSIANN-CCS, with their CC values
exceeding 0.8. Additionally, precipitation anomalies of GWR outperform RF in terms of RAI.
However, although temporal trends of the RAI values derived from purely reconstructed
QPEs are consistent with ground observations, they still have significant differences in their
numerical values for RAI. For example, in August 2016, the ground observations yielded a
positive RAI value of 0.631, while the RAI values calculated by RF and GWR were −0.191
and 0.002, respectively. In September of the same year, the ground observations yielded
a positive RAI value of 1.092, while the RAI values from RF and GWR were negative at
−0.101 and −0.03, respectively. From these results, while precipitation anomalies of GWR
are closer to the ground observations than RF, it still occasionally misclassifies rainy months
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as dry months. After fusion correction, the RAI of PSR2G in August and September 2016
is 0.575 and 1.059, respectively, which not only reduces the phenomenon of false alarm
events but also the calculated RAI values are closer to ground observations than RF and
GWR. This demonstrates that PSR2G can significantly improve the performance of GWR in
detecting rainy and dry conditions by calculating precipitation anomalies.
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5. Discussion
5.1. Sensitivity Analysis of the Proposed Algorithm to the Size of the Prediction Area

From the fundamental formula of GWR, the modeling process involves using LSC
factors as explanatory variables and FY-2G QPE as the response variable by training in
adjacently spatial locations. The trained model is then applied to nearby LSC data to predict
the precipitation estimate. It should be noted that the distance between the prediction area
and the training area may affect the prediction results.

Figure 10 shows the spatial distribution of different prediction regions over Northeast
China. The different numbers of prediction areas actually represent the number of times
that the data needs to be predicted. For example, a partition number of 2 means that
the prediction area above 50◦N in the Songliao River Basin is divided into two parts
(Figure 10b), 1 and 2. First, the GWR model is trained on the training area below 50◦N, and
the independent variable data of prediction area 1 is used as input for prediction using the
built model. After the precipitation data in area 2 is predicted, the independent variable
data and predicted precipitation data in area 1 are integrated with the training data and
retrained. Finally, the independent variable data of prediction area 2 is used as input into
the rebuilt model for prediction. As the number of prediction areas increases, it indicates
that the prediction area is getting closer to the training area.

To better analyze the influence of the distance between the prediction area and the
reconstruction results, this study plots the performance of GWR and PSR2G under different
prediction areas in Figure 11. From Figure 11, we can see at least three pieces of information:
Firstly, the accuracy indicators of GWR show significant variations for different numbers
of prediction areas, indicating that the GWR model is highly sensitive to the position
of the prediction area. Secondly, as the number of prediction areas increases from 1 to 8,
suggesting that the prediction area is getting closer to the training area, the accuracy of GWR
improves gradually, especially for CC and RMSE. The GWR exhibits the highest CC value
and the lowest RMSE value when the number of prediction areas is 8, further validating
that the GWR model is sensitive to the position variations of the prediction area. It suggests
that as the distance between the training and prediction regions decreases, the density of the
encompassed sample during model training also rises in training regions. The precipitation
and LSC factors have a stronger spatial correlation in such regions, resulting in land surface
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environmental data to explain precipitation yields superior performance. Finally, under
different subregion numbers, PSR2G significantly improved the performance of GWR, as
shown by PSR2G having higher CC, lower BIAS and RMSE than GWR, especially when
the subregion number of 8. This also suggests that the improvement of PSR2G over GWR
accuracy is also dependent on the accuracy of the original data.
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5.2. Strengths of the Proposed Method

GWR-based reconstruction QPE has demonstrated its capability in generating finely
accurate datasets. It is noted that the spatial heterogeneity in the connections between pre-
cipitation and LSC factors is prevalent [63]. To address the challenge of spatial heterogeneity,
the GWR model was proposed to capture the intricate connections between precipitation
and LSC factors by local regression analysis [42]. Unlike conventional approaches that
assume constant spatial relationships between precipitation and environmental variables
during the reconstruction process, GWR takes into account the spatial variability of these
relationships [26,29,33]. This enables GWR to provide a spatially adaptive reconstruction,
resulting in enhanced accuracy and applicability of the reconstructed precipitation data.
Consequently, considering the effectiveness of GWR in downscaling satellite-derived pre-
cipitation data becomes evident, warranting its selection for the spatial reconstruction of
FY-2G QPE in the current investigation.

Satellite-based precipitation estimates provide notable benefits in capturing precipi-
tation changes with high precision in both space and time, particularly in regions where
ground-based rain gauges are limited [44]. Nonetheless, these products being indirect esti-
mations of precipitation, inherently encompass systematic biases and random errors that
stem from regional, seasonal, and diurnal scales [44,64]. For the GWR-based precipitation
reconstruction model, the FY-2G QPE as a crucial response variable, results in reconstructed
precipitation still introducing intrinsic errors and uncertainty inherited from the FY-2G
QPE. Some research studies indicate that these rainfall errors can be effectively mitigated
by incorporating ground-based observations, thus enhancing the accuracy of satellite-only
precipitation estimates [17]. Hence, a precipitation space reconstruction algorithm based on
GWR coupled with GDA was developed in this study, to reconstruct and calibrate FY-2G
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QPE in the coverage miss area. Table 1 shows the overall consistency metrics for three recon-
structed QPEs and PERSIANN-CCS in Northeast China and the original FY-2G QPE in the
training area. In general, the PSR2G QPE performs the best among the three reconstructed
FY-2G QPEs, followed by GWR, and then RF. The accuracy of the reconstructed results
after merging correction is better than those before merging correction, which manifests
that the GDA algorithm has significantly contributed to the advancement of the estimated
FY-2G QPE from the GWR model. Furthermore, relative to original FY-2G QPE in adjacent
areas (the latitude band of the Songliao River Basin below 50◦N), the performance of three
reconstructed QPEs outperforms the original FY-2G QPE, particularly with PSR2G. This
suggests that the reconstructed QPEs based on these three methods did not compromise
the accuracy of the original FY-2G QPE. It is worth noting that the existing global satellite
precipitation product, PERSIANN-CCS, exhibits a performance in the study region that
closely mirrors its performance in the training area. It is unsatisfactory that it still has the
worst performance among the five products. Even the reconstructed products, including RF
and GWR before merging, outperform PERSIANN-CCS. This indicates the reasonableness
and effectiveness of the research approach and findings presented in this study.
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Table 1. The continuous metrics of the original FY-2G QPE, PERSIANN-CCS and three reconstituted
precipitation products against the CMPA in this study.

Statistical Metric FY-2G PERSIANN-CCS RF GWR PSR2G

CC 0.42 0.04 0.57 0.64 0.89
BIAS (%) −14.62 166.27 12.78 9.99 0.71

RMSE (mm/month) 54.71 75.09 35.29 30.31 16.80

The PSR2G retains the advantages GWR model to adaptively account for variations in
relationships across different geographical locations, leading to a more accurate depiction of
how precipitation and LSC factors interact. Furthermore, another advantage of the PSR2G
is that the incorporation of ground observations and the GDA algorithm has significantly
contributed to reducing rainfall errors for the reconstructed precipitation data. This is
also consistent with the previous assessment results that the PSR2G is the more suitable
method for reconstructing FY-2G QPE than RF and GWR in Northeast China. The PSR2G
approach can provide high-quality precipitation datasets over the lost coverage of the
satellite precipitation estimates, and estimated results hold practical utility for hydrological
and meteorological investigations.

5.3. Sources of Uncertainty and Future Research

The results mentioned above have validated the effectiveness of the precipitation
reconstruction methods employed in this study; nevertheless, there remain certain uncer-
tainties that could potentially lead to systematic and random errors within the reconstructed
precipitation datasets.

Based on the FY-2G QPE and explanatory variables over Songliao River Basin with a
latitude band below 50◦/N, this study adopts the proposed PSR2G algorithm to reconstruct
FY-2G QPE with a spatiotemporal resolution of 0.1◦/month over Northeast China. How-
ever, because the spatial resolution of some explanatory variables does not match the FY-2G
QPE, this study adopts the accumulative average method to resample the resolution by
neighboring gird. This process could lead to a loss of intricate details within these variables,
particularly in regions of complex topography such as mountains [40,42]. Hence, in order
to prevent the introduction of new error sources during the data resampling process, it is
crucial to take a comprehensive approach by considering both the spatial scale and the
matching method when choosing data of different spatial resolutions.

Further research is essential to explore optimal strategies for selecting the most appro-
priate set of explanatory variables. It is important to note that some unused LSC factors also
possess the capability to present the spatial distribution of precipitation, thus potentially
enriching the precision of reconstructed precipitation [36]. Wang et al. [40] pointed out that
some LSC elements like relief, aspect, slope, surface roughness, and humidity are studied as
having crucial roles in the downscaling precipitation. However, our current study restricts
its focus exclusively to latitude, longitude, altitude, LST, and NDVI overlooking these
supplementary variables. Moreover, in this study, only LSC products were investigated
as the auxiliary variable to reconstruct the FY-2G precipitation data. It is noted that some
atmospheric variables are also strongly related to the spatial distribution of precipitation,
such as cloud-top temperature. Considering this, it is hopeful to utilize these atmospheric
variables to reconstruct satellite precipitation estimates in regions lacking satellite coverage.

Precipitation fusion is an effective tool for producing improved precipitation data
by combining gauge and satellite observations [43,58]. However, the accuracy and num-
ber of rain observations are crucial in affecting the performance of fusion results. It is
worth noting that gauge measurements still exist with systematic errors, which include
wind-induced undercatch, wetting loss, evaporation loss, and the underestimation of trace
precipitation [40]. The great BIAS may appear in cold regions characterized by elevated
latitudes and altitudes, as was previously documented by Wang et al. [40]. The recon-
structed precipitation data in this study is located in such areas. We noted that in the study
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region with a total area of 175,546 km2; only 80 ground-based rain gauges were adopted to
merge reconstructed FY-2G QPE and ground observations over the study region [30]. It
means that per ground-based observation station represents an area exceeding 2000 km2.
Furthermore, the ground stations are distributed unevenly over the study region, most
concentrated in the eastern regions while sparsely covering the western and northern areas,
which suggests that the ground-based rain gauges cannot sufficiently represent the spatial
pattern of precipitation over the entire study region. Hence, the quality of reconstructed
precipitation data coupled with sparse ground observation data inevitably limits the GDA
methods in the PSR2G procedure for improving GWR results, which is consistent with the
conclusion of Duan and Bastiaanssen [29]. Li et al. [65] have demonstrated that augmenting
the density of the gauge network can indeed enhance the quality of fused products.

Satellite-derived precipitation exhibits worse performance during the colder months [36,66].
While the reconstructed precipitation through PSR2G represents a notable enhancement
over previous methods like GWR and RF, its improvement during the cold season remains
unsatisfactory. Hence, the reconstruction and fusion correction of satellite-derived precip-
itation data during these colder periods hold significant importance. Given this, further
refinement and advancement of this algorithm are necessary for subsequent studies.

6. Conclusions

Limited by observation coverage of Fengyun-based satellite-borne sensor, at present,
the obtained FY-2G QPE are still missing over Northeast China. In this study, a precipitation
space reconstruction based on GWR coupled with GDA (PSR2G) was developed, to recon-
struct and calibrate FY-2G QPE over Northeast China at a monthly scale from December
2015 to November 2019. The reconstructed precipitation products were compared to the
ground observations to assess its temporal-spatial performance. The major conclusions of
this study are summarized as follows:

1. The relationship between monthly FY-2G QPE and FY-3C NDVI highlights significant
lagging times in the response of NDVI to precipitation. The results showed that the
highest correlation between FY-2G QPE and FY-3C NDVI in the Songliao River Basin
was achieved when the lagging time was one month, and FY-2G QPE and FY-3C
NDVI had no correlation in most areas of the Songliao River Basin when the lagging
time was three months. Therefore, we determined that the NDVI response time to
precipitation for the reconstruction model is one month.

2. From the assessment results for fitted QPEs, the CC values of the fitted FY-2G QPEs
derived by GWR and RF were significantly improved compared to the original FY-2G
QPE in the study area with a latitude below 50◦N, and the BIAS and RMSE values were
also significantly reduced, with GWR outperforming RF. As For the reconstructed
results, it is noted that the accuracy of the GWR model, which considers spatial
non-stationarity, is still better than that of RF. This further demonstrates that the
GWR method could more accurately describe the relationship between land surface
environmental variables and precipitation than RF in Northeast China.

3. Statistical evaluation revealed that the PSR2G QPE has the highest accuracy in es-
timating precipitation in regions where FY-2G satellite coverage is lost among the
three reconstructed products, followed by GWR and RF. The performance of recon-
struction precipitation after the merging correction is significantly superior to the
only reconstructed precipitation product. This also indicates that GDA algorithms
successfully reduced the rainfall errors of the GWR QPE by introducing ground ob-
servations, which further improves the consistency of the reconstructed QPE with
ground observation.

4. Comparison of GWR QPE based on the slide prediction in different subregions with
gauged data showed that the GWR QPE has a higher performance as the distances
between the prediction area and the training area were closer. The increase in sample
numbers in the training area may also be responsible for the GWR QPE has better
performance than other subregions when the number of slide predictions is maximum.



Remote Sens. 2023, 15, 5251 22 of 24

Although the accuracy of GWR QPE exists instability, PSR2G presents similar behav-
iors, in which such results from short-distance prediction have the highest accuracy
while long-distance prediction has the worst accuracy. This means that the accuracy
of PSR2G QPE still depends on the performance of the original data even if PSR2G
significantly improves the performance of GWR.
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