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Abstract: Semantic segmentation of point clouds provided by airborne LiDAR survey in urban scenes
is a great challenge. This is due to the fact that point clouds at boundaries of different types of
objects are easy to be mixed and have geometric spatial similarity. In addition, the 3D descriptions
of the same type of objects have different scales. To address above problems, a fusion attention
convolutional network (SMAnet) was proposed in this study. The fusion attention module includes a
self-attention module (SAM) and multi-head attention module (MAM). The SAM can capture feature
information according to correlation of adjacent point cloud and it can distinguish the mixed point
clouds with similar geometric features effectively. The MAM strengthens connections among point
clouds according to different subspace features, which is beneficial for distinguishing point clouds
at different scales. In feature extraction, lightweight multi-scale feature extraction layers are used
to effectively utilize local information of different neighbor fields. Additionally, in order to solve
the feature externalization problem and expand the network receptive field, the SoftMax-stochastic
pooling (SSP) algorithm is proposed to extract global features. The ISPRS 3D Semantic Labeling
Contest dataset was chosen in this study for point cloud segmentation experimentation. Results
showed that the overall accuracy and average F1-score of SMAnet reach 85.7% and 75.1%, respectively.
It is therefore superior to common algorithms at present. The proposed model also achieved good
results on the GML(B) dataset, which proves that the model has good generalization ability.

Keywords: urban scenes; airborne LiDAR point clouds; fusion attention mechanism; multi-scale
features; semantic segmentation

1. Introduction

Airborne LiDAR point clouds, scanned by light detection and ranging equipment
mounted on aerial platforms, are a collection of points with original geometric properties.
With the rapid development of computer vision and remote sensing technology, the appli-
cation of airborne LiDAR point cloud data to urban scenes is paid more and more attention,
especially in the fields of navigational positioning, automatic driving, smart city, and 3D
vision [1], etc. Point clouds in urban scenes are important information carriers, which are
consisted of complex surface features. In order to accurately understand 3D urban scenes
from the point level, the concept of point cloud semantic segmentation was proposed.
Semantic segmentation, as an important technique for LiDAR point cloud data processing,
is aimed at subdividing point clouds into several specific point sets with independent
attributes, recognizing the target types of point sets, and making semantic marking [2].
Semantic segmentation of airborne LiDAR point clouds in urban scene can quickly extract
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typical feature information and understand complex urban scenes, so as to effectively reflect
the spatial layout, development scale and greening level of the city, which has a crucial role
in the fields of urban development planning, smart city and geo-database [3]. Nevertheless,
semantic segmentation of point clouds is a great challenge since airborne LiDAR point
clouds have characteristics of high redundancy, incompleteness and complexity [4,5].

To extract surface features from 3D point clouds, traditional methods usually construct
the corresponding segmentation model according to geometric attributes and data statistical
features chosen manually, such as support vector machine (SVM) [6], random forest (RF) [7],
conditional random field (CRF) [8], Markov random field (MRF) [9], etc. However, selection
of statistical features mainly relies on priori knowledge of operators, which has great
randomness, limited ability in feature extraction of point clouds, and poor generalization.
With the improvement of calculation power of computers and continuous emerging of 3D
scene dataset, deep learning is taking a dominant role in the field of point cloud semantic
segmentation field.

Deep learning [10] firstly was used for semantic segmentation of point clouds through
rasterization of point clouds. Su et al. [11] proposed Multi-View Convolutional Neural
Network (MVCNN), which got the segmentation results through convolution and aggre-
gation of 2D images of point clouds under different perspectives. According to existing
snapshots, Boulch et al. [12] produced pairs of snapshots which contained RGB views and
depth maps of geometric features, then provided labels for corresponding pixels of each
pair of snapshots, and then mapped the marked pixels onto the original data. Wu et al. [13]
extracted features from projected 2D images by using CNN, output the pixel-by-pixel
labeling chart, refined it with the conditional random field (CRF) model, and finally got
the instance-level labels through the traditional clustering algorithm. Besides, voxelization
of irregular 3D point clouds is a common method that researchers are used to process the
original point clouds. Maturana et al. [14] proposed VoxNet network based on voxelization
of point clouds, which classified point clouds by using the supervised 3D convolutional
neutral network (CNN). Tchapmi et al. [15] generated the bold voxel labels through the
3D fully convolutional neural network based on voxelization of point clouds and then en-
hanced the prediction results by combining the trilinear interpolation and fully-connected
CRF learning fine granularity. Wang et al. [16] implemented multi-scale voxelization of
point clouds and extracts features, made adaptive learning of local geometric features,
and realized global optimization of prediction class probabilities by using CRF with full
considerations to spatial consistency of point clouds. The above semantic segmentation
methods based on multi-views or voxels solve the structural problems and have some prac-
ticability. However, semantic segmentation methods based on multi-views are inevitable
to lose 3D space information in the rasterization process of point clouds. The semantic
segmentation methods based on voxels increase the spatial complexity and incur great
expenses for storage and operation.

Therefore, some effective frameworks for direct processing of point cloud data are pro-
posed. Qi et al. [17] designed PointNet, which made pointwise coding through multilayer
perception (Mlp) and got global features through aggregation function. Nevertheless, it
ignores the concept of local space and lacks extraction and utilization of local features. Qi
et al. [18] proposed the improved version of PointNet, denoted as PointNet++. It proposes
the density adaptive cut-in layer, learns features of point sets at different scales according
to multi-layer sampling and grouping, and captures local detail information. However,
PointNet++ still processes each point independently, without considerations to connections
among neighbor points. In PointNet++, K nearest neighbor searching results have a prob-
lem of single direction. Jiang et al. [19] designed a scale perception descriptor for ordered
coding of information from different directions and effective capture of local information
of point clouds. Based on KNN construction of local neighbor graph, Wang et al. [20] used
EdgeConv module to capture local geometric features of point clouds and learn features by
making full use of point neighborhood information. Based on the local neighborhood pro-
cessing of PointNet++, Zhao et al. [21] increased the adaptive feature adjustment module
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to transform and aggregate upper and bottom information, then integrated information of
different channels through Mlp and max pooling, and strengthened the description ability
of features to local neighborhood. Xie et al. [22] proposed selection, aggregation, and trans-
formation of key components by building shape context kernels, captured and spread local
and global information to express internal attributes of object points. The transformation
component is configured according to the overall network of PointNet. Landrieu et al. [23]
divided point clouds into several super-points according to geometric shapes, and then
learnt features at each super-point by using the sharing PointNet, thus enabling to predict
semantic labels. Li et al. [24] proposed the X-Conv operator based on the spatial local
correlation of point cloud data. The X-Conv operator standardizes the disordered point
clouds through weighting and replacement of input points, and then extracts local features
by using CNN. Based on the SA module of PointNet++, Qian et al. [25] introduced in the
InvResMLP module to realize the high-efficiency and practical scaling of model, which
solved the problem of gradient disappearance and improves ability of feature extraction.
Hua et al. [26] determined features of each point through the pointwise convolution and
thereby realized semantic segmentation. Hu et al. [27] replaced farthest point sampling
(FPS) of PointNet++ by the random sampling and increased the perception field of each 3D
point gradually through the local feature aggregation module, thus retaining the geometric
details effectively. Nong et al. [28] performed densely connected the point pairs based
on PointNet++, supplemented center point features to learn contextual information, and
proposed an interpolation method with adaptive elevation weights to propagate point
features. However, the method is limited by the lack of global information connection.
Due to the great success of the transformer model [29] in capturing contextual information,
researchers have introduced it into 3D point cloud processing [30]. Li et al. [31] proposed
geometry-aware convolution to handle a large number of geometric instances, and then
supplemented the receptive field with dense hierarchical architecture, and designed an
elevation-attention module to improve the classification refinement. Zhao et al. [32] used
the transformer to exchange local feature information and fit geometric spatial layout.
Guo et al. [33] proposed the offset-attention module to better understand point clouds fea-
tures and capture local geometric information using neighbor embedding strategy. Zhang
et al. [34] introduced a bias based on the transformer model to extract relationships between
local points to address the sparsity of point cloud data, and proposed a standardization set
abstraction module to extract global information to complement topological relationships.

Although the above methods have achieved some progresses in semantic segmentation
of point clouds, they have not adequately considered relations among point features and
lack of deep interaction relations. The semantic segmentation of urban LiDAR point
clouds is a challenge due to the uneven spatial data distribution of airborne laser point
clouds, mixed distribution of point clouds at neighborhood surface boundary, and different
scales of the objects with the same semantics. To address these problems, a convolutional
network based on fusion attention mechanism which is used for 3D point clouds directly
was designed in this study on the basis of PointNet++, which was called as SMAnet.
Fusion attention mechanism makes parallel treatment based on self-attention mechanism
(SAM) [35] and multi-head attention mechanism (MAM) [29]. The essence of SAM is
to calculate similarity according to global features of each point and allocate different
weights. With full considerations to interaction among points, the SAM can distinguish the
mixed point clouds at surface boundary effectively. With considerations to influences of
correlations of different local features on points, the multi-head attention module (MAM)
was introduced in. The specific idea behind MAM is to divide high-dimensional features
of points into different feature subspaces which contain different attribute information of
points. Later, it judges feature similarity among different feature subspaces, thus adjusting
subspace channel information. The MAM captures connections among different aspects
of point features, makes full use of information correlation in local features, increases fine
granularity of network, and can recognize surface points at different scales effectively.
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The network also uses the light multi-scale feature extraction and supplements lo-
cal geometric information by local features at different levels. Moreover, different from
previous global feature extraction based on aggregation function, a global information
extraction method based on SoftMax-stochastic pooling (SSP) was designed, which ex-
panded the receptive field of network model and increases calculation efficiency as well as
segmentation accuracy.

The remainder of this study is organized as follows. Section 2 introduces the proposed
SMAnet method and principle. Section 3 introduces the experiment details and experi-
mental results. Section 4 presents the discussion including comparative analysis, ablation
experiments and some other additional experiments. Section 5 summarizes experimen-
tal conclusions.

2. Methods
2.1. Introduction to the Network Structure

The overall framework of the proposed SMAnet is shown in Figure 1. It covers
five modules, namely, data preprocessing layer, feature extraction layer, fusion attention
layer, SSP aggregation layer and feature propagation upsampling layer. Each module is
introduced as follows:

(1) Firstly, the original data were preprocessed by the grid sampling strategy with consid-
erations to uneven distribution and density of urban LiDAR point clouds, thus getting
the standardized massive point cloud dataset as the input of the feature extraction
layer. The framework takes the description of point clouds in a zone (denoted as (N,
D)) for example, where N is the number of points in the zone and D is the number of
point cloud features.

(2) The attribute features of original point clouds cannot be classified and the original
features have to be mapped into a high-dimensional space to learn the high-level
semantic information. The feature extraction layer learns features of point clouds by
the multi-scale and multi-level method, and it contains the sampling and grouping
(SG) and CNN Block. The SG layer firstly makes uniform sampling of input point
clouds and the sampling points are used as centroids. Later, the input point clouds
are divided into point cloud sets of different scales according to number of points
searched within different radii. The numbers of sampling centroids at three layers
are N/4, N/16, and N/64, respectively. The numbers of searched points at different
scales are denoted as S1 and S2. Finally, multilayer perception (Mlp) is used in CNN
Block to extract features of point set in the local neighborhood. The output channel
parameters of Mlp and output features of each block are shown in Figure 1a. Different
from the complicated structure of PointNet++ feature extraction layer, the proposed
SMAnet model applies three-layer feature extraction and takes calculation efficiency
and segmentation accuracy of the model into account.

(3) To address insufficient interaction information of point clouds in PointNet++, the fu-
sion attention layer was designed after the feature extraction layer. High-dimensional
feature information was strengthened by integration SAM and MAM. The basic
principle is shown in Figure 1b,c. The color intensity of segments between two
points represents the strength of relations and associations of multiple aspects are
expressed by combination of different colors. Some points

{
Ps

1 , Ps
2 , Ps

3 , Ps
4 , Ps

5, Ps
6
}

are
given, where Ps

1 is the middle point. The SAM module adds the connection between
each point and the central point through global features. In other words, a thrust
was applied on the point cloud feature space to push surrounding points of feature
deviation Ps

1 to Ps
1 and establish the relationship between surrounding points and Ps

1 .
Based on the diversity principle of point cloud, the MAM module explores the deep
association among point cloud features in feature spaces according to correlations
among different subspace features. Essentially, it applies several different forces onto
Ps

1 to establish multiple aspects of relations with surrounding points and associations
of point clouds are simulated from different perspectives. The fusion attention layer
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establishes associations among points from two aspects, thus improving of semantic
segmentation accuracy of point clouds.

(4) For giving high-dimensional features of attention, max pooling will lose many im-
portant features and it cannot extract global information effectively. Hence, a new
aggregation function of SSP was designed as the pooling layer and point cloud features
with complicated information were aggregated selectively according to probability
after smoothing of SoftMax function to extract global features and filter redundant
information.

(5) The feature spreading upsampling layer and feature extraction layer both contain
three layers, respectively. Features of all input points were retrieved through skip
connections between the learned features and the features from the corresponding
feature extraction layer. Finally, pointwise classification was carried out according to
features, thus getting the semantic segmentation results.
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2.2. Data Preprocessing

Since the urban airborne LiDAR point clouds are sparse and uneven, pre-processing
of the raw point cloud data is required. To protect completeness of surface features as much
as possible and decrease influences of surface feature size on classification accuracy, we
adopted the grid sampling strategy to assure quality of input data and amplify the limited
data size [36].

It can be seen from Figure 2 that given a 3D ALS point cloud set with r disordered
points {Oi|i = 1, 2, . . . , r}, Oi ∈ Rd, where d = 6, indicating that each point contains six fea-
tures, including coordinate data of point (x, y, z), laser scanning intensity, return number,
number of returns. To build the training set, the maximum and minimum coordinates
along x and y were extracted from the training set, and the length and width of the whole
dataset block were calculated. For grid transformation the whole block, points in each grid
were determined. According to the preset sampling window size (bs) and the movement
step length (s), the whole grid region was retrieved by moving, where the step length
was smaller than or equal to the block size. Blocks with points less than half of the preset
number of sampling points were deleted. In Figure 2, the blue blocks are deleted ones and
the green blocks are the retained ones. The test set was built is the same way. The sliding
step length of the test set is equal to the window size and blocks without sufficient points
were not deleted. In the training process, it needs enough data for feedforward, feedback,
and weight updating of the deep network. To assure that weights of each training of the
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deep network can be propagated very well, it has to guarantee consistency in number of
point clouds of each block. Hence, resampling of points in the block is needed by using
Bootstrap sampling method to complete resampling of each block in the dataset. The
resampling dataset of blocks was recorded as {E v

nc

∣∣∣v = 1, 2, 3 . . . , m
}

, where Ev
nc is the

set where has nc points in the block v and nc is the fixed number. Finally, the min-max
normalization [37] was performed to coordinates of point (x, y, z) and laser intensity. The
normalization formula is expressed as Equation (1):

F =
F− Fmin

Fmax − Fmin
(1)

where F can be viewed as the feature that data have to be normalized and F ∈ Rj, where
j = 4. Fmax is the maximum value of the feature and Fmin is the minimum value of the feature.
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2.3. Feature Extraction

For semantic segmentation of point clouds, the original attribute features of point
cloud data along are far insufficient. It has to learn point features of deeper layers to
explore internal attributes of each point. In this study, points were aggregated into groups
of different layers by using the feature extraction module and multi-scale features were
extracted step by step. It is the first part of the SMAnet. The feature extraction process
of each layer is shown in Figure 3. The input data are the data set Pin which is gained
from normalization of output results (E) of data preprocessing, that is, the input point
data Pin = {p1, p2, . . . , pN}, where Pin is the N × D matrix, N is the quantity of points,
and D is features of point. In SG module, we firstly implemented the farthest point
sampling [38] of Pin to determine the centroids of uniform distribution. Groups were then
constructed through ball query (BQ) [18] through these centroids. The constructed groups
were recorded as PU = {g1, g2, . . . , gG}, where g1, g2, . . . , gG are the set of group sampling
gained by each centroid, PU ∈ RD×G×S, G is the number of groups (that is, the number of
centroids of the farthest point sampling) and S represents the number of sampling points
based on each centroid.
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Local feature extraction was performed to each centroid group (g) gained after SG
sampling and grouping. PU which was gained in the above text was input into the CNN
Block module and convolution, BN [39] batch normalization and ReLU [40] nonlinear
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activation functional operation were performed based on multilayer perception (Mlp) as
Equation (2):

ϕ(g1, g2, . . . , gG) = Mlp(ReLU(BN(Conv(PU)))) (2)

In this study, neighborhood aggregation of centroids was carried out according to
multilayer structure based on different radii. Moreover, features on different scales were
combined. This process can determine local features of different scales well and supplement
contextual information.

2.4. Fusion Attention Mechanism
2.4.1. Self Attention Module (SAM)

Urban airborne LiDAR point clouds are complex and diverse. During semantic
segmentation of point cloud data in urban scenes, points of adjacent surface categories
are easy to be confused (especially at the connection among different surface features). It
can be seen from Figure 4a,b that the point clouds of this block are relatively complicated
and cover several types of surface features. Point clouds of adjacent surface features were
mixed and difficult to be distinguished effectively. As shown in the green circle in the
figure, in one case there are roofs and trees which have height feature similarity, and in
the other case there are neighbouring shrubs and facades. These adjacent point clouds
of different surface objects with similar features are often classified wrongly. Although
multi-scale features gained from multilayer learning can supplement local features very
well and high-level expression of point clouds can be gained, the information utilization is
low and classification has poor precision due to lack of associations among features. To
address these problems, the SAM module was introduced into the model. This module
allocates different weights to point cloud features according to their associations, thus
establishing relations among global features. This improvement strengthens inner links
among high-dimensional features of points, and effectively solves the problem that points
in adjacent regions of different surface features are difficult to be distinguished.
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Figure 4. (a) is mixed region of buildings, shrubs and tree points, Tree points in region (c) have
different scales, (b–d) are colour images of the corresponding regions of (a–c).

The specific operation of SAM module is shown in Figure 5. ϕ(g1, g2, . . . , gG) after
feature extraction was used as input, which was recorded as PD×G×S. It was input into the
convolutional layer with D output channels, getting two new feature mapping QD×G×S and
KD×G×S. After reshaping of Q and K, QD×M and KD×M were acquired, where M = G × S,
representing quantity of point clouds. The calculation formula of self-attention matrix
(Sam) is expressed as Equation (3), where Sam ∈ RM×M.

Samb
e =

exp((QTK/
√

k)
b
e )

M
∑

w=1
exp((QTK/

√
k)

b
w)

(3)
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where b and e are the positions of the features. (Q TK/
√

k
)b

e
is point feature at the appoint

position of row b, column e. Specifically, b = 1, 2, . . ., M and e = 1, 2, . . ., M. Samb
e refers to

influences of b-th feature on e-th feature, Samb
e ∈ Sam. The attention score matrix Sam is

essentially calculated from QTK dot product and SoftMax function. Two features with the
higher similarity also have the stronger association. k is the number of channels with a key
value of K. For great feature values, QTK in Equation (3) increases significantly. To prevent
partial derivative approaching to 0 due to excessive input value of SoftMax [41], such effect
is offset by dividing by

√
k [29].
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Moreover, the input feature P was input into a convolutional layer with D channels
to generate new feature mapping VD×G×S. It was reshaped as VD×M. Subsequently, the
matrixes of V and the transposition of Sam were multiplied and the result dimensional
shape was adjusted as RD×G×S. Finally, it was multiplied with the scale parameter α and
calculate sum of elements with original data P. The feature matrixes OutSAM ∈ RD×G×S

with associations were output:

OutSAM= α(V · SamT)+P (4)

where α is a learnable parameter and it is initialized as 0. It makes the network firstly rely on
feature information at the current position and then learn long-distance information slowly.
P is the original input data and it makes the ultimately generated features have global
context information. The SAM module aims to adjust the feature information for each point
by allocating weights to the overall features of the point. This treatment established global
dependences among different features, so that the network is beneficial for classification of
point clouds in the mixing region.

2.4.2. Multi-Head Attention Module (MAM)

Similar with “the same object with different spectra” in remote-sensing images, there’s
also a phenomenon of “the same object with different structures” in LiDAR point clouds,
especially for point clouds of trees. It can be seen from Figure 4c,d that point clouds of two
trees in the oval region have different heights and geometric structures. Due to uneven
scale of point clouds of the same surface feature, the point clouds of trees are often wrongly
classified as other point clouds. Although SAM can use global information effectively, it
will pay attention to its position excessively during coding of information of the current
position [42], but uses feature information of other positions insufficiently, thus resulting
in information deviation. This is disadvantageous for point cloud classification of surface
features with complicated structures. In fact, local features of each point in a complicated
feature space are corresponding to diversity attribute of the point. Hence, associations
of several features from different aspects in the deep feature space have to be captured
fully to establish associations among different points to extract effective information better.
To make full use of associations among local features of points, the model is expected to
learn different behaviors and capture dependences among different attributes in the feature
subspaces based on local features. In this study, the MAM was introduced into processing
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of point cloud data. It uses query, key, and value (QKV) together in different subspaces to
supplement semantic associations among different points, thus strengthening associations
in point cloud deeply. This is beneficial for classification of the same category of point
clouds with different scales.

The specific process of MAM is shown in Figure 6. The input data PD×G×S were
input into several convolutional layers with D channels and the channels were divided
into h heads, getting feature mapping of different subspaces Qo, Ko and Vo. Specifically,
Qo, Ko, Vo ∈ RL×G×S, where L = D/h and o = 1, 2, . . . , h. The calculation formula of
feature mapping of each subspace is:

Qo = WQ
o ⊗ P + bQ

o
Ko = WK

o ⊗ P + bK
o o = 1, 2, 3, . . . , h

Vo = WV
o ⊗ P + bV

o

(5)

where WQ
o , WK

o , WV
o ∈ RL×L, bQ

o , bK
o , bV

o ∈ RL×G×S. Subsequently, the mapped features
Qo,Ko and Vo were reshaped into QL×M

o , KL×M
o and VL×M

o . Next, they were input into the
scaled dot-product attention module to adjust feature channel information of different
subspaces. The process of the scaled dot-product attention module is similar with that of
SAM. By calculating the subspace attention Mao, Mao ∈ RM×M, different subspace feature
matrix after enhancement (Mamo) was finally calculated. The specific calculation process is:

Mamo(Qo, Ko, Vo) = Vo · (Softmax
(

QT
o Ko/

√
l) )

T
o = 1, 2, 3, . . . , h (6)

where Mamo means to establish the associated feature matrix in each subspace, Mamo ∈
RL×G×S, and l is the number of channels of Ko. Later, each subspace feature was combined
together and then multiplied with the learning parameter (β), followed by adding the origi-
nal data (P) to supplement information. Finally, the feature matrix (OutMAM ∈ RD×G×S)
with associations of several features was output, as shown in Equation (7).

OutMAM = β · Concat(Mamo) + P o = 1, 2, 3, . . . , h (7)

where β is initialized as 0 and Concat expresses combination of features. The main purpose
of MAM is to learn features and optimize different features of each input data by estab-
lishing different subspace attention mechanism according to multiple sets of QKVs, thus
balancing possible deviations of SAM. As a result, the semantic features of point clouds
have more diversified expressions and the model effect is improved better.
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Point features extracted by multiple processes belong to high-dimensional spatial
features and they contain a lot of information, all of which have their own positions and
internal attributes. For better understanding and simulating the complicated interaction
relationship among different points, associations of features of discrete points were estab-
lished from two aspects. On one hand, the SAM analyzes global features of points and
supplements the key information of global associations among points from the perspective
of global features. On the other hand, the MAM interprets deep connections among dis-
crete points from different feature spaces according to the philosophy that point features
are diversified, and it considers association among discrete points more comprehensively.
Additionally, the semantic information of point clouds was strengthened by the strategy of
parallel SAM and MAM. In other words, association information extracted by SAM and
MAM was integrated, which not only can reflect global information association, but also
can reflect fusion attention feature matrix of local information associations. Subsequently,
global features are extracted through aggregation function. Dimensions of features are
decreased and redundant information is reduced. Finally, fusion attention feature matrixes
at different scales were combined to supplement the context information.

2.5. SSP Aggregation Algorithm

After associations of features are established based on fusion attention mechanism,
it has to extract global information from points with close feature associations by using
aggregation function. In PointNet++, the global features are extracted through max pooling
(MP) [43]. By selecting the maximum value in the pooling region through MP, the texture in-
formation can be well learnt, which has the advantage of high-efficiency memory. However,
the MP is weak in information retaining and it is easy to lose key information. To explore
information of deep point clouds, stochastic pooling [44] was introduced in to process point
features. Stochastic pooling calculates probability in feature spaces by using the pooling
window with a fixed size and chooses features randomly according to probability, which
is conducive to extract information of point cloud spaces. However, extreme situations in
feature spaces, for example, negative features are all 0 during function activation based on
ReLU, may disturb feature information, thus bringing significant deviations in probability.
As a result, it cannot extract effective information accurately. Moreover, it may lose some
information upon great fluctuation of the probability space, which is also against extraction
of global features. Hence, SoftMax-stochastic pooling (SSP) was designed in this study
based on stochastic pooling. Essentially, the SSP normalizes probability through SoftMax
function and implements smoothing the feature probability space. This aggregation func-
tion makes more information to be used, expands the receptive field of the network, and
increases the information acquisition ability of the model.

The SSP aggregation algorithm is shown in Figure 7. For the input feature I, probability
of each group was calculated under the fixed pooling kernel. Take the first group for ex-
ample. The probability was denoted as { sp1

u
∣∣u = 1, 2, 3, . . . , a }, where sp1

u is the probability
set of the first column, and a is the quantity of features in each column. This probability is
the proportion of feature values of each position in all feature values of the group. Next,
smoothing of probability of each group was carried out based on SoftMax, thus getting
the relatively gentle probability set { ssp1

u
∣∣u = 1, 2, 3, . . . , a }. Finally, extraction of features is

carried based on processed probabilities. The SSP algorithm is realized through average
pooling and K-nearest neighbor sampling [38], as shown in Equations (8) and (9).

sp =
I

λ× δ(AP(I))
(8)

OutSSP = γ(Softmax(sp)) (9)

where I is the output of the fusion attention module, AP refers to average pooling, δ refers
to the nearest neighbor interpolation, λ means the number of K-nearest neighbor samples,
and γ expresses probability-based sampling. The SSP algorithm can prevent overfitting of



Remote Sens. 2023, 15, 5248 11 of 24

the model effectively, increase perception field of features, and deepen fine granularity of
the network.
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2.6. Upsampling and Semantic Segmentation

Downsampling was applied in the feature extraction layer. Although it can guarantee
the acquisition of global information, it may fail to complete the segmentation task due
to the decrease of points. To assure the same numbers between input and output points
of the model, the adjacent point features were chosen for interpolation and features were
propagated from subsampling point clouds to the denser point clouds. Feature propagation
(FP) [18] is mainly realized through linear interpolation and Mlp. It makes upsampling
layer by layer and supplements points of high-dimensional features. Essentially, feature
propagation is realized according to K-nearest neighbor (KNN) [45] and inverse distance
weighted interpolation (IDW) [46]. The point closer to the interpolation point has the
higher weight and greater influences on features of the interpolation point. Each FP layer
combines the interpolation features and features of the corresponding feature extraction
layer through skip connections to supplement information. Finally, eigenvectors were
updated by Mlp.

The original point cloud features are supplemented through upsampling, which can
realize semantic segmentation of point clouds. It can be seen from Figure 8 that N× 9 tensor
was acquired through multi-layer convolution of significant features gained through above
feature propagation. Later, predicted scores of each point were calculated from the Softmax
function, and the index corresponding to the maximum score was used as the prediction
result. For the training set, the prediction results and real labels were implanted into cross-
entropy loss function to calculate losses, implement backpropagation and calculate gradient.
Later, weights of the model were updated through the optimizer and the model parameters
were optimized. In addition, the validation set is necessary to evaluate and monitor the
performance of the model during the training process. In this paper, the preprocessed
training set was divided into a training subset and a validation subset according to the
ratio of 8:2. The hyperparameters were adjusted according to the training and validation
effects, and then the adjusted hyperparameters were used to train the original training
set. The model was trained from scratch until reaching the optimal solution. The above
trained model was tested by using the test set. A nine-dimensional vector of each point
was output according to forward propagation. This vector expresses the probability for
each point belonging to each of the nine categories c =

{
c f

∣∣∣ f = 1, 2, 3 . . . , 9
}

. The index
f corresponding to the maximum probability was used as the corresponding tag to be
distributed to each point and used as the semantic segmentation results of each point in the
test set.
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3. Results
3.1. Brief Introduction to Experimental Data

The experiment used the Germany Vaihingen Town 3D Semantic Labeling Contest
dataset provided by International Society for Photogrammetry and Remote Sensing (IS-
PRS) [47,48]. There are 753,876 and 411,722 points in the training set and test set, where
the distribution of the LiDAR point cloud data and the corresponding geo-referenced
IR-R-G images are shown in Figures 9a and 9b, respectively. These point cloud data were
acquired based on the Leica ALS 50 system at an average altitude of 500 m above ground
level. There were four points in each square meter and each laser point contains 3D point
coordinates, laser intensity, return number, number of returns and corresponding semantic
labels. Geo-referenced images of the entire data area have a ground sampling distance
of 8 cm. The training set located in a residential area is mainly composed of buildings,
vegetation and impervious surface, supplemented by few other surface features, covering
an area of 399 m × 421 m. The test set is centered at Vaihingen City where has diversified
surface features in dense distributions with an area of 389 m × 419 m. Unlike the training
set, there are large mixed regions of shrubs and trees in addition to common surface fea-
tures. The Vaihingen dataset is a typical urban surface dataset and the competition official
divides surface features in the dataset into nine categories, which are powerline (pow), low
vegetation (l_veg), impervious surfaces (i_surf), car, fence/hedge (f_hedge), roof, façade
(fac), shrub and tree. Statistics of points in each category are shown in Table 1. Specifically,
there are more points in the low vegetation, impervious surfaces, roofs, shrubs and trees
categories, which are the keys of semantic segmentation. The rest surface categories with
small quantities, such as powerline, car, fence/hedge, and façade, are challenges of seman-
tic segmentation. The Vaihingen dataset contains complex and irregular surface features
with rich geo-graphic environments, urban environments and buildings, which can fully
validate the performance of the proposed model in urban scenes.
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Table 1. Point quantity of different categories in Vaihingen dataset.

Class pow l_veg i_surf car f_hedge roof fac shrub tree Total

TraniningSet 546 180,850 193,723 4614 12,070 152,045 27,250 47,605 135,173 753,876
TestSet 600 98,690 101,986 3708 7422 109,048 11,224 24,818 54,226 411,722

3.2. Network Parameters

The proposed method was implemented using the PyTorch framework based on
NVIDIA GeForce GTX1070 8G GPU. Model design parameters of the proposed method
are mainly based on PointNet++ [18]. In the preprocessing of original data, the sampling
block size was set 15 × 15 and 5 was chosen as the sliding step length. In each block, a total
of 1024 points were chosen for sampling. There were 256, 64, and 16 centroids for group
sampling in each feature extraction layer. The two radii in multi-scale BQ were [0.05, 0.1],
[0.1, 0.2], and [0.2, 0.4], respectively. There were 8 heads in MAM. In model training, the
batch size was set 16 and 200 epoch was trained. The Adam [49] optimizer with a learning
rate of 0.001 and an attenuation step length of 10 was used. The learning rate showed
exponential attenuation with the increase of iteration times.

3.3. Experimental Results and Analysis
3.3.1. Accuracy Evaluation Metrics

The ability of the proposed SMAnet was evaluated quantitatively by using common
metrics for semantic segmentation of point clouds, including overall accuracy (OA), time
complexity, precision, recall, and comprehensive evaluation metric (F1-score). Time com-
plexity is the model inference time for the test set. Precision is the proportion of all points
predicted by the classifier to be in the category that are accurately classified. Recall is the
proportion of accurately classified points in total points of the category. F1-score is an index
to measure model accuracy and it is defined as the harmonic average of precision and recall,
and it is ranged between 0 and 1. OA is the proportion of accurately classified samples in
total samples. The calculation formulas are shown in Equation (10).

Pr =
ZTP

ZTP+ZFP
, Re =

ZTP
ZTP+ZFN

F1 = 2× Pr×Re
Pr+Re

ZOA = ZTP+ZTN
ZTP+ZTN+ZFP+ZFN

(10)

where ZTP is the number of true positives, ZTN is the number of true negatives, ZFP is the
number of false positives, and ZFN is the number of false negatives.

3.3.2. Overall Performance

The standard data for semantic segmentation of point clouds in Vaihingen is provided
by ISPRS 3D Semantic Labeling Contest. With references to ISPRS 3D competition, the
quantitative performance metrics, including OA, precision, recall, F1-scores and Time, were
chosen to evaluate segmentation accuracy of the SMAnet model. The classification results
of SMAnet and amplification results of three blocks are shown in Figure 10. The confusion
matrix statistics of classification results are presented in Table 2, with the OA is 85.7% and
Time is 47 s. According to analysis of Figure 10 and Table 2, SMAnet can achieve good
semantic segmentation for most surface objects.
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Table 2. Confusion matrix of SMAnet classification results (OA = 85.7%, Time = 47 s).

Class pow l_veg i_surf car f_hedge roof fac shrub tree

pow 90.8 0.0 0.0 0.5 0.0 6.7 0.5 0.2 1.3
l_veg 0.0 83.2 6.3 0.4 0.8 1.0 0.3 5.7 2.2
i_surf 0.0 7.2 91.1 0.2 0.5 0.4 0.1 0.4 0.0

car 0.0 2.2 1.8 86.1 1.0 2.3 1.6 4.8 0.1
f_hedge 0.0 5.7 1.1 1.4 51.1 1.8 1.3 21.5 16.1

roof 0.2 1.9 1.7 0.0 0.1 93.1 0.8 0.6 1.6
fac 0.2 5.7 0.7 0.9 1.1 10.9 59.6 10.8 10.2

shrub 0.0 12.4 0.6 1.7 4.3 4.9 1.6 53.8 20.8
tree 0.1 2.7 0.1 0.3 0.7 2.8 0.6 6.0 86.8

Precision 62.5 84.5 91.7 72.9 54.1 95.1 75.0 48.5 81.3
Recall 90.8 83.2 91.1 86.1 51.1 93.1 59.6 53.8 86.8

F1-score 74.1 83.9 91.4 78.9 52.5 94.1 66.4 51.0 83.9

The confusion matrix was analyzed based on the probability (recall) of correctly clas-
sified points in each category. The SMAnet model achieves the best performances in
powerline, impervious surfaces and roof, with a segmentation accuracy of 90.8%, 91.1%,
and 93.1%, respectively. The model can distinguish point clouds in the mixing region with
similar features very well, such as powerline and roof, roof and façade, impervious surfaces
and low vegetation. However, it has moderate segmentation performances to fence/hedge,
façade and shrub, showing a segmentation accuracy of 51.1%, 59.6% and 53.8%, respec-
tively. The fence/hedge is often difficult to distinguish from other categories. Specifically,
21.5% fence/hedge points are wrongly classified as shrubs, and 16.1% fence/hedge points
are wrongly classified as trees. This is due to the fact that shrubs and trees have similar
performances with fence/hedge in term of spatial structure, geometric features and spec-
tral reflectance. Since façade and roof are both components of buildings, façade is easy
to be mixed with adjacent shrubs and trees. Hence, façade points are mainly wrongly
classified into roof, shrub and trees by 10.9%, 10.8%, and 10.2%, respectively. Shrub is
mainly wrongly classified as low vegetation and trees by 12.4% and 20.8%, respectively.
This is mainly caused by elevation similarity between shrub and low vegetation, and shrub
has similar structural and topological relations with tree, thus resulting in the low classifi-
cation precision of shrub. Besides, shrub and tree are major cause of confused semantic
segmentation of most point clouds, and most surface features are wrongly classified as
shrub or tree. This is due to the fact that shrub and tree are similar with most surface
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features and there are mixed point clouds at boundaries. Moreover, shrub and tree have
similar geometric features and they are difficult to be distinguished effectively. Although
this can be improved by establishing connections among different types of points, semantic
segmentation of point clouds of highly similar surface features such as fence/hedge, shrub
and tree is still a great challenge.

4. Discussion
4.1. Comparative Experiments

To further verify performances of the SMAnet model, it was compared with 8 com-
petition results provided by ISPRS 3D Semantic Labeling Contest. The IIS_7 [50] makes
supervoxel segmentation of LiDAR data such as shape, color and strength, and extracts
spectral and geometric features of hypervoxels by using them as the processing units.
Each point is marked by KNN classifier. The UM [51] method input several features of
point-like attribute information, texture information, and geometric attributes into the
one-to-one classifier for semantic segmentation. The HM_1 [52] is determined by geometric
features of point neighborhood and performs semantic analysis of point clouds by using
RF classifier [8]. The WhuY3 [53] method transforms 3D spatial features of point clouds
into 2D image features and then classifies point clouds successfully by the high-level ex-
pression of CNN extracted features. The LUH [54] designs a two-layer CRF framework and
increases classification precision by iteration and context propagation of the framework.
The BIJ_W [55] method proposes a pooling based on distance minimum spanning tree to
process point features and increase semantic segmentation precision of point clouds. Based
on the 3D coordinates and corresponding spectral information, The RIT_1 [56] method
designs an end-to-end 1D fully convolutional network. The NANJ2 [57] method learns
based on the deep-layer features of image context based on multi-scale CNN.

Result statistics of the proposed SMAnet model and above eight methods are listed
in Table 3, mainly including F1-scores of different types of surface features, OA, average
F1-score (A.F1), and Time. It can be understood from the comparative analysis that the
SMAnet model shows the best general performances. The OA and average F1-scores of
the SMAnet model reach 85.7% and 75.1%, which are 0.5% and 5.8% higher than those of
NANJ2 method provided by the Contest. The SMAnet improves the segmentation effect of
fence/hedge and façade the mostly. Its F1-scores are 11.8% and 10.1% higher compared to
those of NANJ2 and LUH methods. In particular, the maximum improvement is achieved
when there are limited training samples of fence/hedge and façade. Besides, SMAnet also
achieves good effect in classification of powerline, car, façade and tree. NANJ2 achieves the
best segmentation performances for low vegetation and shrub, and F1-scores are both 4.9%
higher than that of SMAnet. This is due to the fact that the NANJ2 can learn deep-layer
features better by using the multi-scale CNN. With respect to impervious surfaces, F1-scores
of HM_1 and RIT_1 methods are both 0.1% higher than that of SMAnet. This is due to the
fact that the HM_1 method can classify some surface points very well by using artificial
features. RIT_1 extracts spectral features by using fully convolutional network (FCN),
which is beneficial for extraction of Impervious surfaces. For roof, SMAnet and LUH show
similar F1-scores and the F1-scores of LUH is 0.1% higher. This is due to the fact that LUH
which uses voxel segmentation technique is more beneficial for semantic segmentation of
point clouds of roof. Due to the model complexity, the model inference time in this paper
does not reach the highest degree of the competition results. However, the SMAnet has
some advantages in terms of segmentation accuracy and computational efficiency.
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Table 3. Experimental results (%) of different algorithms for ISPRS 3D Semantic Labeling Contest.

Method pow l_veg i_surf car f_hedge roof fac shrub tree A.F1 OA Time/s

IIS_7 54.4 65.2 85.0 57.9 28.9 90.9 - 39.5 75.6 55.3 76.2 -
UM 46.1 79.0 89.1 47.7 5.2 92.0 52.7 40.9 77.9 58.9 80.8 -

HM_1 69.8 73.8 91.5 58.2 29.9 91.6 54.7 47.8 80.2 66.4 80.5 120
WhuY3 37.1 81.4 90.1 63.4 23.9 93.4 47.5 39.9 78.0 61.6 82.3 70
LUH 59.6 77.5 91.1 73.1 34.0 94.2 56.3 46.6 83.1 68.4 81.6 -

BIJ_W 13.8 78.5 90.5 56.4 36.3 92.2 53.2 43.3 78.4 60.2 81.5 -
RIT_1 37.5 77.9 91.5 73.4 18.0 94.0 49.3 45.9 82.5 63.3 81.6 3.7

NANJ2 62.0 88.8 91.2 66.7 40.7 93.6 42.6 55.9 82.6 69.3 85.2 -

SMAnet 74.1 83.9 91.4 78.9 52.5 94.1 66.4 51.0 83.9 75.1 85.7 47

Except for comparison with the above methods, this study further compared the
proposed SMAnet with PointNet [17], PointNet++ [18], PointSIFT [19], DGCNN [20],
RandLANet [27], A_PointNet++ [28], GADHNet [31] and PCT [33] which have been
proposed in recent years. Particularly, the DGCNN is a graph-based convolutional semantic
segmentation model, the GADHNet and PCT are semantic segmentation models based on
attention mechanisms. These eight models can process the original point cloud data directly,
without need of rasterization of point clouds. Hence, they provide great contributions to
semantic segmentation of point clouds. The results of different models are listed in Table 4.
Results of different models all come from test results of open-source codes or publicly
available results from papers using the same data. According to our observations, SMAnet
achieves the optimal results in semantic segmentation of most surface features. Its average
F1-scores and OA are 2.5% and 1.1% higher than those of the optimal reference baseline
PointSIFT provided by Table 4. Moreover, the F1-scores of each surface features of the
SMAnet are on average 0.4% higher than the optimal F1-scores of different surface features.
For powerlines, impervious surfaces and cars, the F1 scores of A_PointNet++ are 3.5%, 0.3%
and 0.3% higher than the models proposed in this paper, respectively. This is due to the
fact that the former is able to distinguish surface feature points with similar elevations well
by using adaptive elevation interpolation. Since the GADHNet model uses the elevation
attention module to establish the point cloud elevation feature connection, it can distinguish
between the uniformly distributed roof points. PointSIFT offsets insufficient neighborhood
information through resampling in eight neighborhoods, thus increasing the segmentation
precision of shrub by 0.1% compared to that of SMAnet. In addition, compared to other
complex models, the model in this paper has low computational complexity, can inference
the data quickly, and has strong practicality.

Table 4. Semantic segmentation results (%) of different models.

Method pow l_veg i_surf car f_hedge roof fac shrub tree A.F1 OA Time/s

PointNet 59.9 77.5 88.7 61.1 22.9 85.0 26.9 36.6 71.4 58.9 76.2 13
DGCNN 68.1 78.2 89.1 61.6 27.9 90.5 40.8 41.4 75.5 63.6 79.7 15

PointNet++ 74.3 78.9 89.7 73.9 30.6 92.1 56.8 43.3 79.7 68.8 81.5 59
RanLANet 76.8 79.3 87.3 68.1 46.7 91.0 57.9 50.6 83.7 71.2 82.2 55

A_PointNet++ 77.6 82.7 91.7 79.2 38.9 92.2 61.3 43.2 79.1 71.8 83.5 -
PCT 75.2 80.7 90.9 70.2 41.6 91.9 61.8 48.9 82.3 71.5 83.8 42

GADHNet 75.4 82.0 91.6 77.8 44.2 94.4 61.5 49.6 82.6 73.2 84.5 56
PointSIFT 67.6 82.7 91.2 74.7 49.1 91.9 62.6 51.1 83.1 72.6 84.6 145

SMAnet 74.1 83.9 91.4 78.9 52.5 94.1 66.4 51.0 83.9 75.1 85.7 47

For visual interpretation of experimental results, two representative models of Point-
Net and PointNet++ were chosen. Results of PointNet and PointNet++ as well as the
proposed SMAnet were displayed for qualitative analysis. PointNet is the pioneer of se-
mantic segmentation of point clouds and PointNet++ is the improved version of PointNet.



Remote Sens. 2023, 15, 5248 17 of 24

Based on PointNet++, this study further proposed the SMAnet model. The semantic seg-
mentation results (upper rows) and positive-negative chart (lower rows) of three models
under the test set are shown in Figure 11. By comparing the results in the ellipses in
the figure, experimental results of PointNet and PointNet++ have obvious wrong classi-
fications. In particular, they have low classification precisions in the mixing distribution
regions of point clouds, such as of buildings and trees, or shrubs and trees, as shown in
Figure 11a,b. The SMAnet model can inhibit such wrong classification effectively and its
classification precision is improved significantly compared to those of the PointNet and
PointNet++ models.
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4.2. Ablation Experiments

To better understand influences of various strategies on precision of the SMAnet
model, an ablation experiment was carried out in this section by adding and subtracting
modules flexibly to compare abilities of different strategies. A total of six strategies were
designed based on the SAM (S) module, MAM (M) module, fusion attention mechanism
(SM) and softmax-based stochastic pooling (SSP). Different strategic designs are shown in
Figure 12. SMAnet (BASE) has no attention module and extracts features by multi-scale
sampling, and extracts global information through MP. SMAnet (S) and SMAnet (M) means
to apply SAM or MAM modules based on SMAnet (BASE). SMAnet (S+M) uses different
attention modules based on two scales of paths in multi-scale feature extraction. One path
uses SAM module and the other path uses MAM module. SMAnet (SM) combines fusion
attention mechanism and MP. SMAnet (SM+SSP) is the proposed model in this study. This
mode uses fusion attention mechanism and SSP aggregation function.
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Statistics of experimental results of different strategies are shown in Table 5. The
average F1-scores and OA of other five strategies are higher than those of SMAnet (BASE),
indicating that S, M, SM modules and SSP aggregation function are all conducive to improve
performances of models. SMAnet (M) has higher F1-scores than SMAnet (S) for most surface
features. The F1-scores of SMAnet (M) are 9.0% and 9.4% higher in term of fence/hedge
and shrub. This is due to the fact that the M module gives full considerations to deep
connections of all aspects of discrete points. This is beneficial for distinguishing point clouds
(e.g., fence/hedge and shrub) which have different scales and different shapes. For point
clouds (e.g., powerline, car and roof) which are easy to be confused with other categories,
SMAnet (S) shows better performances. Additionally, the SMAnet (SM) strategy which
uses two attention modules simultaneously is superior to the model using single attention
module or the SMAnet (S+M) model, showing the reasonability of the fusion attention
module. In particular, F1-scores of SMAnet (SM) on most surface features are higher than
those of SMAnet (S+M). This is due to the fact that SMAnet (S+M) considers only global
information or subspace information in high-dimensional features, while SMAnet (SM)
considers close connections among point clouds from perspectives of global information
and subspace information. The average F1-scores of SMAnet (SM+SSP) are 1.3% higher
than those of SMAnet (SM). This is due to the fact that SSP aggregation function can expand
the receptive field of network very well, increases utilization of global information, and
assures segmentation precision of the model. Although the different modules increase
the computational complexity of the model, it is worth it for the increase in segmentation
accuracy. To sum up, the SMAnet (SM+SSP) model has good performances in most surface
features and it is applicable to semantic segmentation of point clouds well.

Table 5. Ablation experimental results (%).

Method pow l_veg i_surf car f_hedge roof fac shrub tree A.F1 OA Time/s

SMAnet (BASE) 72.8 78.0 89.7 73.1 29.2 92.7 57.1 42.0 79.2 68.2 81.3 30
SMAnet (S) 77.7 78.4 89.9 78.1 33.5 93.7 60.5 41.4 80.5 70.4 82.4 34
SMAnet (M) 72.6 81.0 91.2 68.6 42.5 92.3 63.3 50.8 82.2 71.6 83.9 39

SMAnet (S+M) 68.9 81.5 91.1 73.9 48.2 92.1 63.7 55.4 82.8 73.0 84.3 35
SMAnet (SM) 69.6 82.6 91.1 74.6 51.3 93.0 64.9 54.5 82.9 73.8 84.9 43

SMAnet (SM+SSP) 74.1 83.9 91.4 78.9 52.5 94.1 66.4 51.0 83.9 75.1 85.7 47

For more intuitive observation and analysis of experimental results of different strate-
gies, three representative areas in the test set were chosen and displayed as Figure 13a–c.
They are from typical regions in the test set, as shown in oval regions in Figure 10. All three
areas are in the mixing region. Semantic segmentation results of SMAnet (BASE), SMAnet
(SM) and SMAnet (SM+SSP) in three areas are shown in the first three columns in Figure 13.
The fourth column is the ground truth provided by ISPRS 3D official website.
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mixing region composed of independent houses, low vegetation and surrounding shrub and trees.

Qualitative analyses of the ablation experiments were carried out according to the
elliptical circles in Figure 13. With respect to classification results in Area (a), SMAnet
(BASE) achieves relatively poor classification results, while the other two strategies based
on the SM module of the fusion attention mechanism can distinguish point clouds of
mixed surface features very well (for example, point clouds of surface features with similar
structures, such as impervious surface and low vegetation, as well as façade and tree). This
is due to the fact that SM can establish the global dependence relations among features
effectively. In Area (b), SMAnet (BASE) classifies most roof and façade points wrongly as
tree points. SMAnet (SM+SSP) and SMAnet (SM) both can distinguish the mixed point
clouds which are highly similar very well. In treatment of details (the finer points of
classification), the precision of SMAnet (SM) declines since it uses MP aggregation function
that may loose some important features. SMAnet (SM+SSP) can process details of point
clouds in mixing regions well, since it uses SSP aggregation function that can increase
information utilization very well and capture important features, thus increasing semantic
segmentation precision. For the shrub point clouds of different scales in Area (c), SMAnet
(BASE) is easy to classify shrub wrongly as tree, thus decreasing classification precision.
SMAnet (SM+SSP) can distinguish shrubs which have complicated structures and different
scales very well. In a word, SMAnet (SM+SSP) can distinguish point clouds of mixed
surface features very well and shows good segmentation performances to surface features
with irregular structures.

4.3. Experiments with the Number of Heads of MAM

Additionally, the following experiment was designed to verify influences of number
of attention heads in MAM on capture of local feature subspace information. Based on
the SMAnet model, this experiment kept the SAM module and implemented training and
testing by using MAM with 2, 4, 8, and 16 heads. The results are shown in Table 6. It can be
found when there are 8 heads, the SMAnet model achieved the highest average F1-scores
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and OA. If there are few heads, it is easy to capture insufficient local feature subspace
information. Hence, the precision increases with the increase of heads. However, excessive
subspaces may affect precision [58] and inference time, bringing information redundancy
and making it difficult to capture accurate information.

Table 6. Effects of head number in MAM on experimental results (%).

heads A.F1 OA Time/s

SMAnet (2) 70.6 83.1 36
SMAnet (4) 73.9 84.8 40
SMAnet (8) 75.1 85.7 47
SMAnet (16) 73.4 84.5 59

4.4. Experiments on Grid Sampling Parameters

To verify the effect of data preprocessing on the proposed model, different grid
sampling strategies are selected for experiments. The experimental results are shown in
Table 7, where S_Points represents the number of points sampled in the block, and P_Time
represents the time of data preprocessing. It is observed that the sampling strategy with
15 × 15 block size can be well applied to the proposed SMAnet model. Large block size
will lose a lot of point cloud information, leading to poor classification accuracy. The mall
block size contains less information in the local area, which is not conducive to the SMAnet
model establishing the feature connection between different points, and generates extra
computation time.

Table 7. Experimental results (%) of different grid sampling strategies.

Block Size S_Points A. F1 OA P_Time/s

40 m × 40 m 4096 71.1 82.2 4
30 m × 30 m 2048 71.7 82.7 5
15 m × 15 m 1024 75.1 85.7 8
10 m × 10 m 512 72.3 84.4 17

4.5. Experiments with the GML(B) Dataset

To verify the generalization ability of the SMAnet model, we performed generalization
experiments on the GML(B) [59] dataset. The GML(B) dataset is acquired by an airborne
Leica ALTM 2050 system, and each point only contains spatial coordinate data. It belongs
to part B of the GML dataset. GML(B) dataset mainly contains four surface features:
ground, buildings, high vegetation (h_ve) and low vegetation (l_ve). The experiments were
conducted using the same strategy and hyperparameters as on the Vaihingen dataset. The
experimental results are shown in Table 8. From Table 8, it can be seen that SMAnet has
good scores in terms of inference time and classification accuracy. The proposed model
can achieve better classification results for buildings, high vegetation and low vegetation
points. In addition, the training loss curve and the validation accuracy curve of SMAnet
are shown in Figure 14. It can be seen that the proposed model performs well, achieves a
low loss, and obtains a high accuracy.

Table 8. Experimental results (%) of different models on GML(B) dataset.

Method Ground Buildings h_ve l_ve A.F1 OA Time/s

PointNet 99.5 76.0 88.2 42.9 76.6 96.3 39
PointNet++ 99.4 80.8 90.8 47.4 79.6 96.7 145
PointSIFT 99.6 88.8 94.9 56.7 85.0 97.8 227
SMAnet 99.5 92.4 96.8 64.4 88.3 98.3 69
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5. Conclusions

In this study, a SMAnet framework is proposed based on PointNet++. Compared with
PointNet++, the SMAnet model has the following three characteristics: (1) The SMAnet
model strengthens feature associations of points and supplements semantic information of
each point by integrating fusion attention mechanism into the process of feature extraction.
The fusion attention mechanism is composed of SAM and MAM. The SAM establishes
associations through global features of points, enhances important feature channels, and
overcomes difficulties in classifying mixed point clouds at boundaries of different semantic
surface features. The MAM establishes internal associations of the containing features
in feature subspaces of different points to explore the deep associations of point clouds.
It extracts semantic associations among points more comprehensively and can classify
point clouds of the same surface feature which has different scale and shapes very well.
(2) SMAnet extracts multi-scale features by using the light feature learning framework and
supplements local information. It considers both computational efficiency and segmenta-
tion precision. (3) The global information is extracted based on SSP. It extracts information
in feature spaces selectively, expands receptive field of the network, and increases precision
of semantic segmentation. The proposed model performs well on both GML(B)dataset and
Vaihingen dataset.

Nevertheless, the SMAnet has the following limitations: (I) Block sampling of dataset
may lose some key points. The original point cloud information will be supplemented by
improved grid sampling algorithms in subsequent studies. (II) There are still poor classifi-
cation precision on some surface features, such as fence/hedge and shrub. Fence/hedge
and shrub are adjacent to other categories and they are difficult to distinguish effectively.
It is suggested that one supplies additional relevant information such as local neighbor-
hood geometry information in feature extraction. (III) The SSP may loose some important
features since the extraction of features based on probabilities is random, which requires
further constraints. In the future, the proposed model will be improved to accommodate
more point cloud data, such as noisy and incomplete point clouds. Consideration is given
to encoding local region point clouds through geometric and relative position information,
thus complementing the neighborhood information. The attention mechanism can also
be embedded into the pooling algorithm so that the network can focus on global feature
extraction. In addition, reducing the computation time by designing a more lightweight
framework is also a strategy to improve the performance of the model.
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