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Abstract: Ecosystem water use efficiency (WUE) and ecosystem photosynthetic efficiency (EPE) are
key indicators in studies of the carbon–water cycle in terrestrial ecosystems. Analyses of WUE and
EPE can enhance our understanding of the relationship between ecosystem light use efficiency and
WUE. Although several studies of individual indexes (i.e., either WUE or EPE) have been conducted,
analyses of variation in both WUE and EPE, as well as their relationships, have rarely been conducted.
Here, we analyzed spatial and temporal variation in WUE and EPE in Central Asia. Specifically,
time trend analysis was conducted to characterize temporal and spatial changes in WUE and EPE in
Central Asia from 2001 to 2020 at different altitudes and latitudes. Pearson correlation analysis was
used to characterize the effects of precipitation and temperature on WUE and EPE. WUE decreased
and EPE increased in Central Asia over the 20-year study period; this might have been due to
interannual variations in precipitation and temperature. WUE was highest in August, and EPE
was highest in June and July. Substantial spatial heterogeneity in WUE and EPE was observed;
WUE was highly variable in Central Asia as well as in western and southern Central Asia. Major
changes in EPE were observed in northern, eastern, and southern Central Asia. We also found that
both WUE and EPE decreased with the increase in altitude. WUE was positively correlated with
temperature and negatively correlated with precipitation, whereas EPE was positively correlated with
both temperature and precipitation. The increase in photosynthetic efficiency might be one of the
main factors contributing to increases in ecosystem productivity in arid environments. The temporal
and spatial variation in WUE and EPE observed in our study will aid ecosystem research, providing
a reliable theoretical basis for ecosystem research in areas with scarce large-scale data, integrated
water resources management, and ecosystem restoration efforts. Our findings also enhance our
understanding of the terrestrial carbon–water cycle and have implications for predicting ecosystem
responses to climate change. The results of this study provide insights that will aid studies of the
terrestrial carbon–water cycle under the background of climate change. It is of great significance to
further study the carbon water cycle in the future.

Keywords: Central Asia; water use efficiency (WUE); ecosystem photosynthetic efficiency (EPE);
carbon–water cycle

1. Introduction

Vegetation is a major component of terrestrial ecosystems that links the soil, hydro-
sphere, and atmosphere; it plays a key role in modulating the carbon and water balance of
terrestrial ecosystems [1]. Environmental factors such as light, temperature, and water have
major effects on the growth and spatial distribution of vegetation. Increases in atmospheric
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carbon dioxide (CO2) concentrations, the intensity and frequency of droughts, and the
occurrence of extreme climatic events have resulted in changes in the structure and function
of ecosystems, such as the death of vegetation, reductions in forest area, desertification,
and even the irreversible degradation of ecosystems [2–5]. Water and light are important
raw materials for the photosynthesis of plant leaves; they also have major effects on the
stability of ecosystems as well as ecosystem changes.

The definitions of WUE are manifold. At the ecosystem level, WUE is defined as the ra-
tio of the gross primary product of vegetation (GPP) to evapotranspiration (ET) [6–9]. WUE
is an important measure of ecosystem function; it is also an important indicator of the de-
gree of coupling between the carbon–water cycle and ecosystem water use strategies. It can
thus be used to evaluate the responses of ecosystems to environmental change. Spatial and
temporal changes in ecosystem WUE are mainly affected by topographic features, climate,
plant functional types, and the physiological regulation of the stomata [10–12]. Previous
studies have indicated that the main factors driving variation in WUE include latitude,
altitude, temperature, precipitation, leaf area index (LAI), vapor pressure deficit (VPD),
soil moisture, enhanced vegetation index, CO2 concentration, and other factors [4,13–16].
Therefore, in this study, we analyzed the influence of the relationship between precipitation
and temperature on WUE and EPE and analyzed the effects of altitude and latitude under
different gradients on the WUE and EPE of different vegetation types. Li et al. obtained
solar-induced chlorophyll fluorescence (SIF) data with a spatial resolution of 0.05◦ using
a data-driven approach [17]. SIF is generated via the photosynthesis of terrestrial vegeta-
tion [18]; research on SIF could provide insights into the function of vegetation and the
terrestrial carbon cycle [19]. Previous studies have revealed a linear relationship between
SIF and GPP at the ecosystem scale [20,21]. Many studies have examined the global carbon
cycle using estimates of SIF [22]. Wei et al. proposed the metric ecosystem photosynthetic
efficiency (EPE) to characterize the relationship between the carbon sequestration rate and
the greening of the earth; it is calculated using SIF and LAI [23]. Most previous studies on
WUE and EPE have focused on analyzing changes in individual indices and the factors
driving these changes. However, few studies have examined changes in both of these indi-
cators and the factors driving these changes. The analysis of temporal and spatial changes
in WUE and EPE and the factors driving these changes could enhance our understanding
of the responses of ecosystems to climate change and offer insights into the relationship
between water and carbon.

Arid ecosystems are sensitive to climate change, and the biological diversity of arid
ecosystems is unique [24]. Changes in arid ecosystems can be mediated by both natural
and anthropogenic factors. There is still much to learn regarding the spatial and temporal
relationships between WUE and EPE, as well as the factors driving variation in the rela-
tionship between WUE and EPE, in arid areas. Papanatsiou et al. showed that stomatal
conductance might enhance WUE [25]. Jasechko et al. made water resource predictions
indicating that improvements in the simulation of biological flux should be prioritized in
the development of climate models [26]. Li et al. showed that LAI was the major factor
driving changes in WUE [17]; other important factors affecting changes in WUE included
the atmospheric CO2 concentration and VPD [27]. Wei et al. found that soil moisture was a
key factor affecting changes in EPE [23]. Poulter et al. showed that the growth in semi-arid
vegetation in the Southern Hemisphere is the cause of global carbon sink anomalies [28].

Remote-sensing technology has been used to characterize changes in the ecosystem
carbon–water cycle, as well as the factors driving these changes, at global and regional
scales, and several valuable insights have been provided by the corresponding studies [6,29].
Central Asia is one of the world’s largest arid regions at the mid-latitudes [30]. The
ecosystem of Central Asia is fragile, and this region currently faces several major ecological
problems [31–33]. The carbon cycle and energy in the relationship between the atmosphere
and land in this region are affected by changes in the natural environment, so these cycles
exhibit unique spatial and temporal characteristics [34]. Research shows that a decrease in
precipitation and a rise in temperature can lead to severe droughts in Central Asia, and
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these changes may affect vegetation growth and the ecosystem in Central Asia [35]. In
this study, using MODIS satellite data and the GOSIF dataset developed and processed
by Li et al. [17], the values of WUE and EPE in Central Asia during 2001–2020 were
calculated, and the spatial and temporal variation characteristics were analyzed. We also
analyzed correlations of climate factors with WUE and EPE in this region over the study
period. The main aims of our study were to (1) clarify spatial and temporal patterns in
WUE and EPE and the relationship between changes in WUE and EPE; (2) characterize
changes in the WUE and EPE of different vegetation types with respect to altitude and
latitude; and (3) determine the effects of precipitation and temperature on WUE and EPE.
Analyses of changes in WUE and EPE at different spatial and temporal scales in arid
ecosystems could provide insights that would aid the monitoring of the carbon–water cycle
and vegetation in terrestrial ecosystems. Such studies also provide important information
for carbon and water balance predictions that could aid in the sustainable management
of water resources in areas with fragile ecosystems. Lastly, such studies can enhance the
ac-curacy of predictions of the direction of future climate change, and this affordance has
key implications for the sustainable development of human society.

2. Study Area

Central Asia denotes the central region of Asia; however, there is no consensus on the
geographical units that comprise this region [36]. In our study, we follow the definition of
Central Asia given in a study conducted by Deng et al. [37], in which it was proposed that
Central Asia comprises Kazakhstan, Turkmenistan, Uzbekistan, Kyrgyzstan, Tajikistan, and
China’s Xinjiang Uygur Autonomous Region (Figure 1) [38]. Central Asia has a temperate
continental climate. The altitude of this region is higher in the east and lower in the west,
and the decrease in altitude from east to west is gradual. The climate changes from semi-
arid to arid from north to south. Evapotranspiration is strong, and temperatures are low in
the winter and high in the summer; there is a large temperature difference between day
and night, and sunshine is abundant [38]. These conditions are suitable for the growth of
crops. The northern portion of Central Asia mainly comprises rain-fed agricultural land,
and irrigated areas are abundant in southern Central Asia [39]. Because the altitude in this
region is high in the southeast and low in the northwest, the rivers flow from southeast to
northwest. The growing period spans from April to October and can be divided into three
seasons: spring (April and May), summer (June and August), and autumn (September and
October) [40].
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3. Methods
3.1. Data Sources
3.1.1. Moderate-Resolution Imaging Spectroradiometer (MODIS) Data

MODIS data [41] were downloaded from the National Aeronautics and Space Admin-
istration (NASA) website (https://modis.gsfc.nasa.gov/ (accessed on 22 August 2022)).
The MODIS sensors deployed on the NASA Terra and Aqua satellites cross the equator at
10:30 and 13:30, respectively; these satellites were launched as a part of NASA’s Earth Ob-
servation System (EOS) mission [42]. The MODIS sensors receive electromagnetic radiation
in 36 narrow bands across a wide range of the electromagnetic spectrum, and these data
are updated frequently. GPP (MOD17A2H), ET (MOD16A2), LAI (MOD15A2H), and land-
cover-type (MCD12Q1) data acquired via MODIS were used in our study. The temporal
resolution of MCD12Q1 was one year, whereas that of the other data was 8 d; the spatial
resolution of the data was 500 m. Several studies have shown that these data are reliable
and accurate [43–45]. To minimize large errors in the classification process and the effects
of changes in land cover, only stable pixels from 2001 to 2020 were used (i.e., areas in which
there was no change in the dominant land-cover-type from 2001 to 2020) [46]. The Global
Vegetation Classification scheme of the International Geosphere–Biosphere Project, which
is a landcover dataset containing 17 land cover classes, including eleven natural vegetation
classes, three developed and inland land classes, and three non-vegetation classes, was
used in our study [47]. The main land cover types in Central Asia are grassland, desert,
scrub, farmland, and woodland (Figure 2). Because ET data were lacking for bare land, no
analyses were conducted on the image metadata from bare land, water bodies, and areas
with unstable pixels. The above image metadata were removed using Arcgis10.8 software.
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3.1.2. SIF Data

Li et al. used enhanced Vegetation index (EVI), photosynthetically active radiation
(PAR), VPD, and air temperature data to calculate and forecast SIF data using a stereo
regression tree model [17]. The ability to acquire remote-sensing observations of SIF has
revolutionized measurements of terrestrial photosynthesis. We used the GOSIF dataset for
the 2001–2020 period, which has globally continuous coverage and high spatial resolution.
The model for predicting SIF was based on OCO-2 data, MODIS data, and reanalyzed
meteorological data. These data were highly correlated with GPP data collected from
91 FLUXNET sites (R2 = 0.73, p < 0.001). The temporal and spatial resolution values of the
SIF data were 8 d and 0.05◦, respectively [17]. SIF data were obtained from the following
website: http://globalecology.unh.edu/data/GOSIF.html (accessed on 22 August 2022).

3.1.3. Climatic Research Unit (CRU) Data

Sun et al. showed that precipitation and temperature have major effects on climate
using one of the largest climate datasets available, CRU TS V4.05 (Climatic Research Unit
Grid Time Series) [16]. This is a high-quality dataset that can be widely applied [48–51].
This dataset was generated by the UK Centre for Atmospheric Science and covers all
land areas, with the exception of Antarctica, at a spatial resolution of 0.5◦ latitude × 0.5◦

longitude [52]. This dataset includes data from 1901 to 2021 and is updated annually. These
data were downloaded from the following website: https://crudata.uea.ac.uk/cru/data/
hrg/cru_ts_4.05/cruts.2103051243.v4.05/ (accessed on 22 August 2022).

3.1.4. Digital Elevation Model (DEM) Data

DEM data used in this study were derived from the Space Shuttle Radar terrain
mission (SRTM), which was initiated in February 2000 as a collaborative project between
NASA and the National Imaging and Mapping Agency [53]. Elevation data for over 80%
of the Earth’s surface were collected during the SRTM [54,55]. The spatial resolution of
the SRTM DEM data is 90 m. The penetration ability of the STRM satellites permits all-
weather and all-day surface images to be obtained. These data were downloaded from the
geographical spatial data cloud website (http://www.gscloud.cn/search (accessed on 22
August 2022)).

3.2. Calculation Formulas

WUE estimated using MODIS data was verified using flux tower data, and the cor-
relation coefficient between the two ranges from 0.74 to 0.96 [38]. WUE governs the
carbon–water cycle of an ecosystem, and its value can reflect the stability of an ecosystem
in stressful environments [30]. The formula used for calculating ecological WUE (g·kg−1)
in our study is shown below

WUE = GPP/ET (1)

where GPP is the primary productivity of the ecosystem (g C·m−2), and ET is evapotran-
spiration (kg H2O·m−2).

Wei et al. [23] proposed a new index of EPE (W·m−2·sr−1·µm−1); in their study, the
photosynthetic capacity per unit leaf area was quantified, and it was calculated using the
following formula:

EPE = SIF/LAI

Here, SIF is sun-induced chlorophyll fluorescence (W·m−2·µm−1·sr−1), which was
developed by Li et al. through reanalysis of data, and LAI is the leaf area index.

Slope trend analysis method was used to calculate the inter-annual variation trends of
WUE and EPE. In trend analysis, a linear regression analysis of changes in variables over

http://globalecology.unh.edu/data/GOSIF.html
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/cruts.2103051243.v4.05/
http://www.gscloud.cn/search
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time was performed, and the pixel-by-pixel least-squares fitting method was used [56,57].
The following formulas were used to conduct these analyses:

slopewue =
n × ∑n

i=1 (i × WUEi)− ∑n
i=1 i × ∑n

i=1 WUEi

n × ∑n
i=1 i2 − (∑n

i=1 i)2

slopeepe =
n × ∑n

i=1 (i × EPEi)− ∑n
i=1 i × ∑n

i=1 EPEi

n × ∑n
i=1 i2 − (∑n

i=1 i)2

Above, slope is the slope of the pixel regression equation; i is year, which assumes
a value from 1 to 20; and WUEi and EPEi are water use efficiency and ecosystem-scale
photosynthetic efficiency in year i, respectively. For example, a slope greater than 0 indicates
that the WUE and EPE of the pixel have increased over the past 20 years. A slope of 0
indicates that the WUE and EPE of the pixel have remained unchanged over the past 20
years. A slope less than 0 indicates that the WUE and EPE of this pixel have decreased over
the past 20 years.

The aim of Pearson correlation analysis is to characterize the relationships between
geographical elements; correlation coefficients indicate the magnitude of the correlation
between two elements. The formula for calculating Pearson’s correlation coefficient (r) is
shown below

r =

20
∑

i=1
(EPEi − EPE)(WUEi − WUE)√

20
∑

i=1
(EPEi − EPE)2

√
20
∑

i=1
(WUEi − WUE)2

where r is the correlation coefficient; EPEi and WUEi are the photosynthetic efficiency and
water use efficiency at the ecosystem scale in year i; and EPE and WUE are the average
photosynthetic efficiency and water use efficiency at the ecosystem scale over 20 years,
respectively. Values of r greater than 0 indicate positive correlations, whereas values of r
less than 0 indicate negative correlations.

3.3. Data Processing

Our analysis was conducted from 2001 to 2020 during the growing season (i.e., from
mid-April to early October) because vegetation would be covered with snow in the non-
growing season, so satellite sensors would not be able receive vegetation signals, thus
affecting the reliability of the data acquired. The MODIS data were preprocessed using the
MODIS reprojection tool; this process mainly involved mosaicking images, reprojecting
images, and converting the formats of images. From 2001 to 2020, the monthly mean
WUE and annual mean WUE were calculated using the average GPP and ET of the 8-day
interval in each month; the monthly mean EPE and annual mean EPE were calculated
using the average SIF and LAI of the 8 d interval in each month. Variations in the monthly
and annual means of WUE and EPE and the spatial distribution of WUE and EPE were
analyzed; changes in the slope of the annual mean were also analyzed. The WUE data
calculated were resampled by a margin of 0.05◦ so that they were consistent with the EPE
data, and Pearson correlation analysis was conducted to clarify the relationship between
WUE and EPE. Data for land cover types that remained stable (i.e., did not change) over
the 20-year study period were reclassified, and the WUE and EPE data of the different
land cover types were extracted to characterize changes in the WUE and EPE of different
vegetation types at different latitudes and altitudes. Finally, the relationships of WUE and
EPE with climatic factors were analyzed. Figure 3 presents a flow chart of this study.
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4. Results and Analysis
4.1. Temporal Variation in WUE and EPE
4.1.1. Temporal Variation in WUE

A unimodal pattern was observed in the monthly mean value of WUE in Central Asia
(Figure 4a). WUE first increased and then decreased in April, and WUE was highest in
August. Vegetation began to decrease in the autumn, and ET will increase in the autumn,
so the WUE began to rapidly decrease during this period. Large fluctuations were observed
in the annual mean WUE from 2001 to 2020 (Figure 4b). The highest value of WUE was
recorded in 2007, and the lowest value was recorded in 2016; there was an overall decrease
in WUE over the study period.

4.1.2. Temporal Variation in EPE

The pattern in monthly mean EPE in Central Asia was similar to that of WUE. A single
peak was observed, and EPE was generally highest in June and July, with this period being
followed by a gradual decrease (Figure 4a). The changes in annual mean EPE from 2001
to 2020 were similar to the changes in annual mean WUE (Figure 4c). Large fluctuations
in EPE were observed. EPE was lowest in 2014 and highest in 2016; there was an overall
increase in EPE over the study period.
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4.2. Spatial Variation in WUE and EPE
4.2.1. Spatial Variation in WUE

The greatest changes in inter-annual WUE in Central Asia from 2001 to 2020 were
observed in the central, western, and southern regions. WUE increased in the western and
southern portions of Southern Kazakhstan as well as in the vicinity of Balkhash Lake; WUE
slightly decreased around the Taklimakan Desert in the southern part of Xinjiang, China
(Figure 5). High WUE was mainly observed in western Tajikistan, eastern Kyrgyzstan,
and Southern Kazakhstan, as well as in the Yili, Tacheng, Bortala, and Changji regions of
Xinjiang, China. WUE was low in northern Kazakhstan, northern Xinjiang, and Kyrgyzstan
(Figure 6a). Changes in WUE over the past 20 years were determined by calculating the
slope (Figure 6b). Pixels with a slope less than 0 accounted for 79.7% of the total number of
pixels. Pixels with a slope greater than 0 accounted for 20.3% of the total number of pixels.
Thus, there was an overall decrease in WUE over this 20-year period.
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4.2.2. Spatial Variation in EPE

Significant changes in EPE from 2001 to 2020 were observed in the northern, eastern,
and southern regions of Central Asia (Figure 7). Over the study period, the EPE in Tajikistan
and Uzbekistan increased, and the EPE in Southern Kazakhstan and around Balkhash
Lake decreased. High EPE was mainly observed in eastern Uzbekistan, western Tajikistan,
Southern Kazakhstan, northern Kyrgyzstan, and the Ili region of Xinjiang, China (Figure 8a).
EPE was high in Kyrgyzstan and northern Xinjiang, China, and this was not consistent
with the WUE values in these same areas. Changes in EPE over the past 20 years were
determined by calculating the slope (Figure 8b). The number of pixels with a slope less
than 0 accounted for 34.3% of the total number of pixels. The number of pixels with a
slope greater than 0 was 65.7%. Thus, there was an overall increase in EPE over the 20-year
period analyzed. Figure 9 provides the level of significance of WUE and EPE.

We used Pearson correlation analysis to analyze correlations between WUE and EPE
over the 20-year study period. Negative and positive correlations between WUE and EPE
were observed in 73% and 27% of the study area, respectively (Figure 10). Therefore, WUE
and EPE were generally negatively correlated.

4.3. Variation in WUE and EPE with Altitude and Latitude
4.3.1. Variation in the WUE of Different Types of Vegetation with Altitude and Latitude

The WUE of savanna increased over altitude bins 1 to 2, decreased over altitude bins
2 to 4, and did not change after altitude bin 4 (Figure 11a). The WUE of mixed forest,
deciduous broad-leaved forest, evergreen coniferous forest, and steppes increased over
altitude bins 1 to 2, decreased over altitude bins 2 to 3, and did not change after altitude bin
3. The WUE of farmland decreased with altitude and did not change after altitude bin 4.
The WUE of open shrubland increased over altitude bins 1 and 2, decreased over altitude
bins 2 to 3, and did not change after altitude bin 5. The WUE of grassland also decreased
with altitude, and the WUE of grassland did not change after altitude bin 5. Overall, the
WUE of all vegetation types decreased with altitude. The WUE of most types of vegetation
did not change after altitude bin 3 (Figure 11c).
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Figure 11. Variation in the WUE of different vegetation types with altitude and latitude. (a) Relation-
ship between WUE and altitude. (b) Relationship between WUE and latitude. (c) Linear relationship
between WUE and altitude. x axis 1: −227–1424; 2: 1424–3075; 3: 3075–4726; 4: 4756–6377; 5:
6377–8028 (m). (d) Linear relationship between WUE and latitude. x axis 1: 30.0–35.6; 2: 35.6–38.3;
3: 38.3–40.9; 4: 40.9–43.5; 5: 43.5–46.1; 6: 46.1–48.8; 7: 48.8–54.0(◦). The parameters in Figure 10 are
the same.

The WUE of savanna, farmland, open shrubland, and grassland decreased with
latitude (Figure 11b). The WUE of mixed forest, deciduous broadleaved forest, evergreen
coniferous forest, and steppes increased with latitude. Overall, WUE was lower at higher
latitudes (Figure 11d). Table 1 provides their R2 and p.

Table 1. WUE of different vegetation types and R2 and p values of altitude and latitude under
different gradients.

Savannas Mixed
Forests

Deciduous
Broadleaf

Forest

Evergreen
Needleleaf

Forest
Croplands Open

Shrublands Grasslands Woody
Savannas

Altitudinal
gradient (m)

R2 = 0.620 R2 = 0.704 R2= 0.656 R2= 0.739 R2= 0.870 R2= 0.856 R2= 0.969 R2= 0.698
p = 0.114 p = 0.076 p = 0.097 p = 0.062 p = 0.021 p = 0.024 p = 0.002 p = 0.078

Latitudinal
gradient (◦)

R2 = 0.408 R2= 0.443 R2= 0.044 R2= 0.268 R2= 0.979 R2= 0.684 R2= 0.748 R2= 0.349
p = 0.123 p = 0.103 p = 0.653 p = 0.234 p = 0.001 p = 0.022 p = 0.012 p = 0.219

4.3.2. Variation in the EPE of Different Types of Vegetation with Altitude and Latitude

The EPE of savanna increased with altitude; specifically, the EPE of savanna increased
over altitude bins 1 to 2, decreased over altitude bins 3 to 4, and did not change after altitude
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bin 4 (Figure 12a). The EPE of mixed forest, deciduous broadleaved forest, farmland, and
open shrubland increased over altitude bins 1 to 2, decreased over altitude bins 2 to 3,
and did not change after altitude bin 3. The EPE of evergreen coniferous forest decreased
with altitude and did not change after altitude bin 3. The EPE of grassland increased over
altitude bins 1 to 2, decreased over altitude bins 3 to 4, and did not change after altitude
bin 5. The EPE of multi-tree steppes increased over altitude bins 1 and 2, decreased over
altitude bins 2 to 3, increased over altitude bins 3 to 4, decreased over altitude bins 4 to 5,
and did not change after altitude bin 5. Overall, the EPE of all types of vegetation decreased
with altitude, and the EPE of most types of vegetation did not change after altitude bin 3
(Figure 12c).
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Figure 12. Variation in the EPE of different types of vegetation with altitude and latitude. (a) Relation-
ship between EPE and altitude. (b) Relationship between EPE and latitude. (c) Linear relationship
between EPE and altitude. (d) Linear relationship between EPE and latitude.

The EPE of savanna, farmland, and savannah decreased with latitude (Figure 12b).
The EPE of mixed forest, deciduous broadleaved forest, evergreen coniferous forest, open
shrubland, and grassland increased with latitude. Overall, the EPE of all vegetation types,
with the exception of open shrubland and grassland, decreased with latitude (Figure 12d).
Table 2 provides their R2 and p.
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Table 2. EPE of different vegetation types and R2 and p values of elevation and latitude under
different gradients.

Savannas Mixed
Forests

Deciduous
Broadleaf

Forest

Evergreen
Needleleaf

Forest
Croplands Open

Shrublands Grasslands Woody
Savannas

Altitudinal
gradient (m)

R2 = 0.861 R2 = 0.638 R2 = 0.686 R2 = 0.773 R2 = 0.707 R2 = 0.856 R2 = 0.617 R2 = 0.504
p = 0.020 p = 0.110 p = 0.080 p = 0.050 p = 0.074 p = 0.784 p = 0.115 p = 0.179

Latitudinal
gradient (◦)

R2 = 0.008 R2 = 0.168 R2 = 0.064 R2 = 0.279 R2 = 0.626 R2 = 0.236 R2 = 0.197 R2 = 0.478
p = 0.851 p = 0.360 p = 0.583 p = 0.223 p = 0.034 p = 0.270 p = 0.318 p = 0.085

4.4. Relationships of WUE and EPE with Temperature and Precipitation
4.4.1. Relationship between WUE and Temperature and Precipitation

There was an overall positive correlation between the mean WUE and the mean
temperature of each month from April to October in Central Asia (Figure 13a). WUE
increased with temperature at the monthly scale. The highest monthly mean temperature
in Central Asia generally occurs in July, and this is followed by rapid cooling. The mean
annual WUE decreased and air temperature increased from 2001 to 2020, which indicated
that mean annual WUE and air temperature were negatively correlated at the yearly scale
(Figure 14a).
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There was a negative correlation between the mean monthly WUE and precipitation
from April to October; that is, WUE was higher in months when precipitation was lower
(Figure 13a). Mean annual WUE and precipitation amount decreased over the 20-year
study period; mean annual WUE and annual precipitation were thus positively correlated
at the yearly scale (Figure 14a). WUE was high in 2007, 2008, and 2012, but the amount of
precipitation in these years was not very high.

4.4.2. Relationship between EPE and Temperature and Precipitation

There was a positive correlation between the mean EPE and mean temperature of each
month from April to October, and EPE increased with temperature (Figure 13b). Across
the 20-year study period, the mean annual EPE and temperature increased; they were thus
positively correlated at the yearly scale (Figure 14b).

There was a positive correlation between the mean monthly EPE and precipitation
from April to October (Figure 13b). Throughout the 20-year study period, mean annual
EPE increased, and annual precipitation decreased; EPE and annual precipitation were
thus negatively correlated at the yearly scale (Figure 14b). The EPE value in 2016 was the
highest, and the precipitation value at this time was also the highest.

The correlation coefficients for the precipitation–EPE, precipitation–WUE, temperature–EPE,
and temperature–WUE correlations at the yearly scale were 0.535 (p = 0.015), −0.456
(p = 0.043), 0.174 (p = 0.463), and 0.042 (p = 0.042), respectively (Figure 15). All these correla-
tions were positive, with the exception of a negative correlation between precipitation and
WUE. The correlation between precipitation and EPE was the strongest, and the correlation
between temperature and WUE was the weakest.
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5. Discussion
5.1. Limitations of the Study and Reliability of the Data

Remote-sensing satellite data have various advantages, including the large scale at
which these data can be continuously collected; however, several factors, such as climatic
conditions, can affect the quality of remote-sensing data. Several uncertainties in the remote-
sensing data obtained in this study require consideration. For example, the remote-sensing
data do not account for the effects of environmental factors, anthropogenic disturbance,
and other factors. However, bare land with sparse vegetation cover was excluded from
our analyses, and this increased the robustness of our results. GPP and ET data were
used to calculate WUE; SIF and LAI data were used to calculate EPE; and the effects of
CRU, MOD12Q1, DEM, and other types of data on WUE and EPE were examined. Several
experimental studies have been conducted to assess the accuracy and applicability of
the above data [4,17,23], and these studies have suggested that these data are sufficiently
reliable to be of use in practical applications. However, due to the lack of verification of
ground observation or independent datasets, the above data still have some limitations,
which introduced some uncertainties in this study.

5.2. Temporal Variation in WUE and EPE

Mean WUE and EPE were analyzed at the monthly and annual scales in Central Asia.
The patterns of mean monthly WUE and EPE were unimodal. Large fluctuations in WUE
and EPE and multiple peaks of WUE and EPE were observed at the yearly scale. Zhu
et al. examined seasonal changes in the WUE of typical forest and grassland ecosystems
in China and found that several environmental and biological factors associated with
drought are responsible for the bimodal or multi-peak patterns in WUE in dry years [58].
This conclusion is consistent with the results of our study. We found that inter-monthly
WUE and EPE in Central Asia first increased and then decreased over the growing season,
and this behavior was related to seasonal changes, anthropogenic disturbance, and other
factors. Variation in interannual WUE in arid ecosystems is consistent with variation in
GPP. Therefore, WUE is higher in years with high GPP [59–63]. Over long time scales, the
WUE of regional ecosystems increases or decreases depending on changes in environmental
conditions [64]. In our study, WUE decreased and EPE increased from 2001 to 2020.
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5.3. Spatial Variation in WUE and EPE at the Yearly Scale

Tian et al. observed significant spatial variation in WUE [65]. In our study, WUE was
high in the western and southern portions of Southern Kazakhstan as well as in the vicinity
of Balkhash Lake; WUE was low around Taklimakan in southern Xinjiang, China. These
findings are consistent with the results reported by Zou et al. [1]. Regions with high WUE
and EPE and low WUE and EPE were observed; however, some regions with high WUE
had low EPE. There was large spatial heterogeneity in WUE and EPE, and there are several
potential explanations for this spatial heterogeneity. The responses of WUE and EPE to arid
climates differ; in fact, the lack of precipitation results in drought and higher evaporative
demand due to air dryness (high VPD), increasing ET [66,67]. Usually, at the beginning of
a water deficit, plants close their stomata, so stomatal conductance and ET decrease at a
higher rate than GPP, thus increasing WUE [68]; from another point of view, water stress is
high when GPP is decreased to a level where WUE can be decreased [69,70]. Studies have
shown that Central Asia experienced a severe drought in 2008, with high water stress and
a rapid decline in WUE [71], and this finding is consistent with the results of this study.
In arid areas, increases in light intensity can lead to increases in EPE. In addition, natural
factors, such as drought, soil moisture, VPD, and CO2 levels, and anthropogenic factors,
such as grazing [72] and habitat degradation, can explain spatial heterogeneity in WUE and
EPE. All of the above factors can lead to environmental changes that affect WUE and EPE;
thus, the relationship between WUE and EPE is complex and dynamic. Several studies
have shown that drought is negatively correlated with WUE and positively correlated with
EPE. Therefore, heterogeneity in the spatial distribution of drought and WUE might be
related to arid climatic conditions.

5.4. Relationship between WUE and EPE

WUE and EPE were negatively correlated according to Pearson correlation analysis.
EPE was highest in June and July, and WUE was highest in August (Figure 3a). We speculate
that plants first use light and then reuse water in the growth process. Chung et al. [73] noted
that photoinduced stomatal responses can enhance the drought tolerance of plants [74], and
the water stress of plants is temperature-dependent [75]. Thus, increases in photosynthetic
efficiency might be one of the main reasons for the increases in ecosystem productivity
in arid environments. In our study, the effects of the drought index on these two factors
were not examined. The results of previous studies indicate that WUE decreases in arid
climates [76–79]. However, EPE increases with the intensity of drought [23]. Thus, we
concluded that the intensity of drought was positively correlated with EPE and negatively
correlated with WUE. Additional studies are needed to verify these assumptions.

5.5. Variation in the WUE and EPE of Different Types of Vegetation with Altitude and Latitude

Gang et al. noted that approximately 39.76% of grassland areas in the world were in a
state of drought from 2000 to 2011 [80]. Zhu et al. showed that WUE decreases significantly
with altitude, and they argued that this pattern is related to the distribution of ecosystem
types associated with altitudinal variation in climate [15]. Xue et al. found that WUE
varies with latitude [44]. We found that patterns of variation in WUE and EPE varied with
altitude and latitude. The growth of vegetation tends to be constrained at higher altitudes.
Consequently, WUE and EPE tended toward zero at high altitudes. Climatic zones vary
with latitude, and the WUE and EPE of different types of vegetation decreased from south
to north.

5.6. Relationship of WUE and EPE with Temperature and Precipitation

Xue et al. examined patterns in WUE on a global scale from 2000 to 2013, as well
as the factors driving these patterns, and found that WUE is negatively correlated with
temperature and solar radiation [44]. However, Zhou et al. showed that WUE is positively
correlated with temperature [81]. We found that WUE and temperature were weakly
positively correlated from 2001 to 2020, and this was related to spatial and temporal
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differences in vegetation and climatic characteristics. At high temperatures, the rate of
increase in ET is much higher than that of GPP [10]; consequently, WUE decreases as
temperature increases [82]. At the monthly scale, WUE was positively correlated with
temperature, and WUE was highest in the summer; adequate WUE can also maximize
the absorption and conversion of water during the summer when plants are growing
and flourishing. Temperature and EPE were negatively correlated from 2001 to 2009 and
positively correlated from 2010 to 2020. The temperature was higher in July and August
than in May and June, but EPE was lower in July and August than in May and June; this
was not only related to the abundance of light but also to LAI. Light is abundant in July and
August, and LAI is stable during this period. In addition, high temperatures can inhibit
the photosynthesis of plants [83]. SIF and LAI differ among different plants, and this is not
only related to the chlorophyll content and photosynthetic capacity of leaves but also to the
amount of sunshine; temperature can have a major effect on the photosynthetic activity of
plants. Temperature is thus an important determinant of the global carbon balance [84,85];
the relationship between EPE and temperature should be positive. WUE and precipitation
have been shown to be negatively correlated in many studies [86]. Yang et al. examined
the effects of different factors on changes in WUE in Northwest China and found that
the contribution of precipitation to increases in WUE is as high as 66%, whereas that of
temperature is 12% [87]; these findings are consistent with the results of our study.

6. Conclusions

We used remote-sensing data and geographic information system technology to ana-
lyze spatial and temporal variations in WUE and EPE in Central Asia from 2001 to 2020
as well as the relationships of WUE and EPE with precipitation and temperature. At the
monthly scale, variation in WUE and EPE was unimodal, and EPE and WUE were highest
in June–July and August, respectively. From 2001 to 2020, WUE decreased, and EPE in-
creased. There was a high degree of spatial heterogeneity in WUE and EPE. WUE and EPE
were negatively correlated. WUE and EPE decreased with altitude, and the WUE and EPE
values of most types of vegetation were zero after the 3075–4276 m altitude bin. The WUE
and EPE of the different types of vegetation decreased with latitude. From 2001 to 2020,
precipitation was the main factor affecting variation in WUE, and temperature was the
main factor affecting variation in EPE. We analyzed temporal and spatial variation in WUE
and EPE. Our findings provide valuable information that will aid future studies on the
carbon–water cycle in Central Asia and provide guidance on regional water management
and land use planning. However, in this study, we did not carry out field verification,
so the data had certain limitations, and other driving factors were not analyzed, such as
drought index, soil moisture, photosynthetically active radiation, etc. In future studies, we
will examine the data and fully consider the influences of various factors on water resource
use efficiency and ecosystem-scale photosynthetic efficiency.
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