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Abstract: Inverse synthetic aperture radar (ISAR) imaging can be improved by processing Range-
Instantaneous Doppler (RID) images, according to a method proposed in this paper that uses neural
networks. ISAR is a significant imaging technique for moving targets. However, scatterers span
across several range bins and Doppler bins while imaging a moving target over a large accumulated
angle. Defocusing consequently occurs in the results produced by the conventional Range Doppler
Algorithm (RDA). Defocusing can be solved with the time-frequency analysis (TFA) method, but
the resolution performance is reduced. The proposed method provides the neural network with
more details by using a string of RID frames of images as input. As a consequence, it produces better
resolution and avoids defocusing. Furthermore, we have developed a positional encoding method
that precisely represents pixel positions while taking into account the features of ISAR images. To
address the issue of an imbalance in the ratio of pixel count between target and non-target areas in
ISAR images, we additionally use the idea of Focal Loss to improve the Mean Squared Error (MSE).
We conduct experiments with simulated data of point targets and full-wave simulated data produced
by FEKO to assess the efficacy of the proposed approach. The experimental results demonstrate that
our approach can improve resolution while preventing defocusing in ISAR images.

Keywords: ISAR; deep learning; range-instantaneous Doppler; image enhancement

1. Introduction

Inverse synthetic aperture radar (ISAR) can image targets in all weather and at any
time, in contrast with optical imaging. In contrast to Synthetic Aperture Radar (SAR), ISAR
utilizes the synthetic aperture created by the relative motion between the stationary radar
and the moving target for imaging, in other words, imaging maneuvering targets [1–5],
such as aircraft [6], ships [7], missiles [8], etc. Similarly to SAR, ISAR uses wideband signals
to obtain range resolution and utilizes the synthetic aperture accumulated through relative
motion with the target to attain azimuth and pitch resolution. ISAR can then gather details
about the scattering points on the target.

ISAR-based target identification [9–11] and classification [12–14] are of vital impor-
tance. Improving the resolution of ISAR images is essential to increase the accuracy of
identification and classification. Traditional ISAR imaging algorithms include the Range-
Doppler Algorithm (RDA) [15], Polar Format Algorithm (PFA) [16,17], Double Integral
Algorithm, Range-Instantaneous Doppler (RID) [18], and Compressive Sensing (CS) [19].
Among these algorithms, the RDA is the one that ISAR imaging uses the most. The RDA re-
lies on the relative rotation between the target and the radar to accomplish imaging [10,20].
A substantial rotation angle is essential in the relative radar line-of-sight (LOS) direction to
attain a superior imaging resolution in the azimuth profile. Nevertheless, scatterers on the
target span multiple range bins and Doppler bins in imaging with a significant rotation
angle, leading to defocusing in both the range profile and azimuth profile [21,22]. The PFA
is not well-suited for handling large angles, and the Double Integral Algorithm performs
poorly in real time due to its lengthy processing time. By replacing the Fourier transform
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(FT) employed in RDA with the time-frequency analysis (TFA) method, which can show
frequency variations over time, the RID algorithm can address the problem of defocusing.
Short-time Fourier transform (STFT) [23,24], Wigner–Ville distribution (WVD) [25,26], and
Smoothed pseudo-Wigner-Ville distribution (SPWVD) [27,28] are examples of frequently
used TFA methods. The most commonly employed TFA method is STFT, but it is vital
to note that its frequency and time resolution are interconnected and mutually restrictive.
The WVD has problems with crossover terms when a signal has more than two signal
components in the time–frequency plane. To tackle this issue, ref. [29] proposes SPWVD,
which suppresses crossover terms but reduces the time–frequency agglomeration of the
distribution. One class of ISAR imaging techniques, Compressive Sensing (CS), can recon-
struct high-quality target images with high contrast and little sidelobe interference while
using little data. However, its performance and efficiency are limited due to the inaccurate
sparse representation of the imaging scene and the confined efficiency of the reconstruction
algorithm, respectively. Consequently, since imaging systems and intrinsic methodologies
have limits, typical ISAR algorithms struggle to achieve significant resolution enhancement.

In recent years, deep learning has garnered significant attention and shown successful
outcomes in a wide range of fields, including speech recognition [30], automatic video
annotation [31], object detection [32], target segmentation [33], disaster prediction [34,35],
identification of oceanic elements [36–38], and recognition of dynamic processes [39]. Due
to its intelligent and self-learning capabilities, deep learning can overcome the performance
limitations of traditional methods in signal modeling and manual feature extraction. This
opens up new possibilities for radar-image enhancement and brings fresh perspectives to
the field.

Refs. [40,41] utilize Generative Adversarial Networks (GANs) to enhance the resolu-
tion of ISAR images, effectively mitigating sidelobes and restoring weak scattering points.

In tackling the challenge of incomplete echo data, ref. [42] employs a Convolutional
Neural Network (CNN) for ISAR imaging. The trained network exhibits remarkable im-
provements in imaging results compared to the CS reconstruction algorithm, while also
fulfilling real-time processing requirements. Refs. [43,44] combine model-based sparse re-
construction and data-driven deep-learning techniques to provide effective high-resolution
2D ISAR imaging under low Signal-to-Noise Ratio (SNR) and incomplete data conditions.
Ref. [45] introduces an unsupervised CNN framework that can achieve high-resolution
ISAR imaging under limited measurement conditions, making it well-suited for practi-
cal applications.

To address the defocusing issue when imaging moving targets, ref. [46] introduces the
Complex-Valued Pix2pixHD Network (CVPHD). It is an enhanced complex-valued neural
network based on the GAN framework. It directly takes complex-valued ISAR images
as input and incorporates an innovative adaptive weighted loss function to enhance the
refocusing effect significantly. Ref. [47] utilizes a U-Net-based network to enhance the
resolution of time–frequency distribution maps, effectively improving the resolution of
ISAR imaging for moving targets.

To tackle the challenge of sparse aperture (SA) self-focusing, ref. [48] presents a CS-
based imaging and autofocus framework incorporating phase error estimation into the CS
framework. The compound CS problem in matrix form is then solved iteratively using
the Approximate Message Passing (AMP) algorithm and mapped to a deep network. This
approach demonstrates robust and efficient SA ISAR imaging and autofocus. Ref. [49] intro-
duces a Complex-Valued Alternating Direction Method of Multipliers-Net (CV-ADMMN)
to improve the stability of ADMM and applies it to sparse-aperture ISAR imaging and
autofocus. This method demonstrates superior performance compared to ADMM.

To address the defocusing issue in ISAR images under wide-angle conditions, ref. [50]
proposes a wide-angle imaging method based on the U-Net network. Defocused complex-
valued ISAR images are utilized as the training dataset, and adjustments are made to
the network architecture to accommodate the unique features of ISAR images. The pro-
posed method achieves rapid and precise reconstruction of ISAR images. Similarly, to
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address the imaging challenges posed by targets with large rotation angles and low speeds,
ref. [51] presents an ISAR-imaging algorithm based on trapezoidal transformation and
deep learning. In this approach, the trapezoidal transformation is employed for rough
compensation of the target’s rotation and translational motion, while the U-Net network is
used to generate super-resolution images. Overall, it is evident that deep learning holds
tremendous potential for enhancing ISAR images.

In the current landscape of deep learning-based research, a predominant focus has
been placed on enhancing the resolution of ISAR images, with relatively less attention
directed toward addressing the defocusing challenge encountered in wide-angle conditions.
This paper addresses the defocusing issue in RDA and the restricted resolution problem
associated with the STFT method when imaging moving targets under wide-angle con-
ditions. We present a novel deep-learning approach designed to enhance ISAR images.
Specifically, our approach leverages ISAR-RID images from three consecutive frames as
inputs to the neural network, which is employed to enhance the RID images of the inter-
mediate frames. In doing so, it addresses the defocusing issue encountered in wide-angle
imaging conditions and improves the resolution of the ISAR images.

2. Turntable Model and the Imaging Principle
2.1. Two-Dimensional (2D) ISAR Imaging Turntable Model

In ISAR imaging, the motion of the target relative to the radar can be broken down into
two components: the rotation of the target around its reference point and the translation
of the target relative to the reference point [52]. Following motion compensation, only the
rotational aspect is considered, and the target’s motion can be represented using a turntable
model, as illustrated in Figure 1 [53]. This paper assumes far-field imaging conditions and
that the translational component of the target has already been compensated for.
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Figure 1. Radar-Target coordinate system.

In Figure 1, the radar remains relatively stationary and is employed for target ob-
servation, while the aircraft, serving as the observed target, undergoes relative rotation.
uOv is the radar coordinate system that remains stationary relative to the radar; xOy is the
target coordinate system that remains stationary relative to the aircraft. O is the center of
rotation of the target, around which the target undergoes rotational motion. R0 represents
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the distance from the target center reference point to the radar. The observation angle θ
represents the angle between the target coordinate system and the radar coordinate system.
Its variation indicates the magnitude of the relative rotational angle between the target and
the radar.

Assuming that θ0 is the initial angle between the target coordinate system and the
radar coordinate system, wθ and αθ , respectively, represent the initial speed and acceleration
of the target’s rotation, and tm represents the slow time, then

θ = θ0 + wθtm +
1
2

αθt2
m (1)

The correspondence between the u− v coordinate system and the x− y coordinate
system is:

u = x cos θ − y sin θ (2)

v = x sin θ + y cos θ (3)

Assuming that the coordinate of the i-th scattering point on the target in the target’s
coordinate system is represented as (x, y), the instantaneous distance between the point
and the radar is:

Ri =
√
(R0 + v)2 + u2

=
√

R02 + v2 + u2 + 2R0 · v

=
√

R02 + x2 + y2 + 2R0 · v

=
√

R02 + x2 + y2 + 2R0(x sin θ + y cos θ)

(4)

When the distance is significantly greater than the size of the target, the above equation
can be simplified as follows:

Ri ≈ R0 + x sin θ + y cos θ (5)

τi(s) is the round-trip delay between the i-th scattering point on the target and
the radar,

τi(s) =
2× Ri

c
(6)

where c is the speed of light. The stepped-frequency signal emitted by the radar can be
modeled as [54]:

x(t) =
1
M

M

∑
m=1

1√
Tp

rect(
t−mTr

Tp
) exp(jπk(t−mTr)

2) exp(jwmt) (7)

where wm = 2π( f0 + (m− 1)∆ f ), f0 is the starting frequency of the stepped-frequency
signal transmitted, ∆ f is the increment of frequency, Tr represents the pulse repetition
interval (PRI), T1 denotes the width of the sub-pulse, k = ∆ f

T1
signifies the FM slope of the

chirp sub-pulse, and M is the number of frequency points.
Suppose P is the number of equivalent scattering center points on the target, then the

radar’s received echo can be expressed as:

xr(t, s) =
P

∑
i=1

δi[
1
M

M

∑
m=1

1√
Tp

rect(
t−mTr − τi(s)

Tp
) exp(jπk(t−mTr − τi(s))

2) exp[jwm(t− τi(s))]] (8)

where δi represents the target-scattering coefficient.

2.2. RID Imaging Theorem

Figure 2 illustrates the flow of the RID imaging algorithm. As shown in Figure 2,
the RID algorithm exhibits similarities with the RDA when handling data in the range
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dimension. Both algorithms initially compress the echo data in the range dimension to
generate a one-dimensional range profile. Afterwards, motion compensation is applied
to the echo data based on the envelope and phase of the one-dimensional (1D) range
profile. The crucial difference is that the RID algorithm uses TFA instead of FT employed
in the RDA when the data is processed in the azimuth dimension. Consequently, the RID
algorithm can obtain the Doppler transient value at any given time.
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The STFT is a commonly used method for TFA. It operates by employing a sliding
window mechanism where the size of the window and the step’s size can be adjusted. The
window slides along the time-domain signal x(t), and the FT is computed for each window.
This process generates frequency-domain signals corresponding to different time windows.
These signals are then combined to form a presentation of frequency changing over time,
which is known as the time-frequency signal. The formula for the STFT is as follows:

STFT(t, w) =
∫

x(τ)w(τ − t) exp(−jwτ)dτ (9)

where x(t) is the signal that needs to be processed, w(t) represents a short-time wide
window function, and w(t) moves along the time axis with the change of time. Therefore,
the frequency of the signal over time can be observed.

3. Method of ISAR Image Enhancement Using Neural Networks
3.1. Flow of RID Image Enhancement

As the accumulated observation angle increases, the azimuthal resolution of ISAR
images improves. However, a challenge arises when the angle increases beyond a certain
threshold. The scattering points of the target undergo a phenomenon called “migration
through range cells” (MTRC), leading to the shifting of one scattering point to the posi-
tion of other scattering points. This phenomenon negatively affects the imaging process.
Consequently, the image may not only be distorted but also potentially suffer from severe
defocusing. As a result, the classical ISAR imaging algorithm, such as the RDA, may
become invalid.
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In this paper, our objective is to enhance the resolution of ISAR images while ad-
dressing azimuthal defocusing issues. We employ the RID imaging technique on the
accumulated echo data that corresponds to defocused RDA images to achieve this. This
enables us to capture multiple frames of RID images that encompass diverse scattering
information of the targets. The consecutive RID images are input into the network for
image enhancement, enabling the network to grasp and utilize the target characteristics
effectively. To enhance the Doppler resolution in the RID images, we extend the duration of
the time window as much as possible, while ensuring that the RID images remain focused.
Finally, three consecutive ISAR-RID images are simultaneously input into the network to
enhance the image of the intermediate frame. Through this approach, our objective is to
address the issue of RDA imaging defocusing while improving the resolution of the ISAR
image and reducing sidelobes.

Figure 3 illustrates the process of enhancing RID images using a neural network.
Initially, the RID algorithm is applied to process the ISAR echoes and obtain RID images.
Subsequently, the real and imaginary components of three consecutive RID images are
input into the neural network as six channels. By training the network with the ideal
RID image of the intermediate frame as the label, the network can learn the optimal
mapping between inputs and outputs, ultimately generating high-resolution ISAR images.
In practical applications, when we have approximate knowledge of the target’s distance
range and radar parameters, it is unnecessary to possess specific information about the
target’s characteristics. We can train a neural network by simulating point targets within
the corresponding distance range. In such cases, it is possible to simulate ideal RID images.
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3.2. Multi-Frame RID Network Structure

Figure 4 illustrates the network employed for enhancing the RID image. The network
can be divided into six layers and three parts. The initial segment is the feature-extraction
layer, encompassing the first convolutional layer. Its primary role is to extract features
from radar images. The subsequent segment is the non-linear transformation layer, com-
prising convolutional layers two to five. These layers process the features extracted by
the feature-extraction layer and convey them to the output layer. The final component is
the output layer, consisting of the sixth convolutional layer, responsible for amalgamating
the output data from the non-linear layers to form the enhanced ISAR image. Detailed
information about the network structure’s parameters is provided in Table 1. After the
first five convolutional layers, the ReLU activation function is used to help the network
learn the nonlinear relationship between input and output, and its calculation speed is very
fast. We use the ‘same’ convolution mode to ensure that the input and output image sizes
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remain the same. In addition, we configure the following training parameters: 200 epochs,
a learning rate of 1 × 10−5, a batch size of four, weight decay of 1 × 10−5, and the Adam
optimization algorithm.
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Table 1. The parameters of the network’s structure.

Layer Number of Channels Kernel Size Number of Kernels

Conv_1_ReLU 10 9 × 9 60
Conv_2_ReLU 64 3 × 3 124
Conv_3_ReLU 128 3 × 3 252
Conv_4_ReLU 256 3 × 3 124
Conv_5_ReLU 128 3 × 3 60

Conv_6 64 5 × 5 1

Considering the different characteristics between the central and peripheral regions of
the ISAR image, this paper introduces a positional encoding scheme for the ISAR image.
This encoding serves to delineate the pixel positions within the ISAR image and comprises
four channels. The relationship between the real and imaginary components of the ISAR
image contains high-order information. When the complex ISAR image is directly fed into
the neural network, it struggles to capture the image’s features effectively. Therefore, in this
paper, the real and imaginary parts of the three ISAR-RID images are input into the network
separately, resulting in a total of six channels for the image component. Consequently, the
total number of input channels for the network is 10, including the real and imaginary
parts of the three consecutive RID images received by the network and four channels for
position encoding. The position encoding is also concatenated in the channel dimension
after each convolutional layer.

For ISAR images, the defocusing level becomes more pronounced as the distance from
the center of the scene increases. Additionally, defocusing in the azimuthal direction is more
pronounced than in the range direction. In other words, the degree of defocusing varies
between the horizontal and vertical directions of ISAR images. To address this characteristic,
we designed a positional encoding scheme to indicate the pixel point locations within ISAR
images. This allows the neural network to enhance its feature-learning capabilities when
processing ISAR images. This encoding comprises radius encoding and angle encoding.

Figure 5 illustrates the layout of radius encoding and angle encoding. The encodings
in Figure 5 serve as an example corresponding to a 10× 10 ISAR image. Figure 5a rep-
resents the radius encoding. As the distance from the image center increases, the color
corresponding to the squares gradually transitions from green to lighter shades and then
gradually changes to red. This indicates that further away from the ISAR image center, the
level of defocus increases. In this representation, each square corresponds to a pixel point
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in the ISAR image, and the numerical value within each square represents the distance
from the square’s center to the entire image’s center. In other words, it denotes the distance
between the corresponding pixel point and the image center, essentially serving as a radius
marker for that pixel. Additionally, complementary radius encoding is necessary to prevent
the network from interpreting the radius encoding as weights during training instead of
labeling. Therefore, the numerical value for each square in the complementary radius
encoding is the complement of the corresponding square in the radius encoding. In other
words, their values add up to the radius of the largest circle in the image.
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Figure 5b depicts the angle encoding. Similarly, the color of each square changes based
on the variation in the angle between the line connecting it to the image center and the
x-axis. The value on each square represents its corresponding angle, specifically, the angle
between the line connecting the element at the same position in the ISAR image as the
square to the center point and the x-axis. Complementary angle encoding is necessary to
ensure the network does not interpret these values as training weights. The sum of values
at corresponding positions in complementary angle encoding and angle encoding is equal
to 2π.

3.3. Generation of Sample-Label Pairs

We selected a stepped-frequency signal with a frequency range of 8.8 to 9.2 GHz, with
a step size of 5 MHz, totaling 80 steps for our simulated experiments. In this paper, the
direction of range refers to the axis parallel to the direction of radar propagation toward
the target, and the azimuth direction is defined as the axis perpendicular to the direction
of range. The overall range for the scene’s range direction is from −20 to 20 m, and the
azimuth range is also from −20 to 20 m. We divide the imaging scene into 400 grids in the
range direction and 500 grids in the azimuth direction. As a result, the grid size of each
range element is 0.1 m, and the grid size of each azimuth element is 0.08 m.

The actual imaging scene of the point targets in this paper spans the range direction of
(−8, 8) meters and the azimuth range of (−6, 6) meters. Within this scene, we randomly
generate a maximum of 200 point targets, which rotate at a uniform speed. In this paper,
we define a specific observation angle range of six degrees for each RID image frame, with
3-degree rotation occurring between adjacent frames. To maintain the focus of the RID
image while maintaining the highest possible resolution, we set the RID image to just
avoid defocusing. This ensures that the RID image maintains focusing and the highest
possible resolution. We found through experiments that this condition can be met when the
target rotation speed is 37.497◦/s, which means the target rotates at an angle of 37.497◦ per
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second, the STFT window length is 158, and the noverlap is 79. Each set of sample-label
pairs includes three consecutive RID images and the ideal RID image of the intermediate
frame. The ideal coordinates of the targets in the RID image are convolved with a Gaussian
kernel function to obtain the ideal RID image, which serves as the label. Its expression is
as follows:

I(x, y) =
∫ ∫

T(u, v) · h(x− u, y− v)dudv (10)

where T(u, v) is the function of the target, I(x, y) denotes the synthesized reconstructed
image of the target, and h(x, y) is the PSF of the ISAR imaging system. It should be noted
that in this paper, the Gaussian kernel function is chosen as the point-spread function (PSF)
because it reduces the sidelobes of the label image compared to the sinc function [40].

A total of 3000 sets of sample-label pairs are generated as the training set and 1000 sets
as the validation set. The images in the dataset have a size of 256 × 256. Figure 6 shows the
coordinate plot of the point targets in the imaging scene, the low-resolution RID image of
the intermediate frame, and its corresponding ideal image.
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The resolution of ISAR is defined as the width of the half-power point in the target
impact response, that is, the width of the 3 dB main lobe. This resolution measurement
indicates the minimum distance that ISAR can distinguish between two adjacent scattering
points on the target.

Cross-range resolution is determined by the wavelength of the radar’s emitted signal
and the target’s rotation angle relative to the radar. The actual cross-range resolution is
calculated using the formula:

ρa =
λ

2∆θ
(11)

where λ is the signal’s wavelength and ∆θ is the rotation angle of the target relative to the
radar during the imaging time.

In this paper, the simulated point targets have a total rotation angle of 19.44◦ and a
wavelength of 0.0333 m, so the cross-range resolution is about 0.049 m.

The range resolution of the radar is determined by its bandwidth, and the formula is:

ρr =
c

2B
(12)

where B is the bandwidth of the signal transmitted by the radar. From this section, it can
be known that the simulated step size of the stepped-frequency signal is 5 MHz, with a
total of 80 steps. Consequently, its bandwidth is 0.4 GHz, leading to a determined range
resolution of 0.375 m.
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3.4. Design of Non-Equilibrium Loss Function

The loss function plays a pivotal role in machine learning as it quantifies the disparity
between predicted and ground-truth values. A lower loss value signifies greater precision
in the model’s predictions. In deep learning-based radar imaging methods, an end-to-
end training system is employed to minimize the loss function’s value between predicted
images and ground truth, aiming for accurate predictions.

However, the imbalance between the number of pixels occupied by the target and the
number of pixels in the non-target region can lead the network to have a greater inclination
towards regressing to the non-target region, rather than focusing on the target itself during
the training process. The existing loss functions cannot optimize the network parameters
effectively for the specific characteristics of ISAR images, thus hindering the attainment
of improved training results. Therefore, it is imperative to design suitable loss functions
tailored to ISAR images, which can aid the network in learning the relevant features,
facilitating faster convergence and leading to more accurate predictions.

A similar imbalance exists in the field of object detection. To address the issue of
categories’ imbalance in the field of object detection, Focal Loss is proposed in [55] on the
basis of the cross-entropy loss function, aiming to adjust the proportion of positive and
negative samples. The calculation of the cross-entropy loss function is as follows:

Cross−Entropy−Loss =
{

log2 p, y = 1
log2(1− p), y = 0

(13)

The formula of Focal Loss is as follows:

Focal−Loss =
{
−α(1− p)γ log2 p, y = 1

−(1 − α)pγ log2(1− p), y = 0
(14)

where α is the balancing factor for adjusting the proportion of positive and negative samples,
y denotes the truth class, and p ∈ [0, 1] represents the model’s estimated probability for
the class y = 1. γ is used to control the rate of reduction in sample weight. When γ is set
to 0, the Focal Loss function degenerates into the cross-entropy loss function, and when γ
increases, the impact of the adjustment factor becomes more pronounced.

In the field of image regression, MSE is the most commonly used loss function, and its
formula is:

MSE(p, y) =

m
∑

i=0
(p(i) − y(i))

2

m
(15)

where p(i) represents the predicted value, y(i) is the ground-truth value, and m is the total
number of pixels. However, the MSE loss function uniformly weights all pixel points in the
image. Thus, as mentioned above, it cannot resolve the imbalance issue encountered in
ISAR images.

This paper proposes a solution by combining the Focal Loss’s concept with the MSE
loss function. We first normalize the values of the label’s pixels and then weight the
loss function based on these normalized values. Higher weights are assigned to pixels
corresponding to the target, while lower weights are given to pixels at non-target locations.
This approach enables the network to prioritize accurate reconstruction of the target’s
region during training.

The formula for the improved loss function is as follows:

IMSE(p, y) =
1
m

m

∑
i=1

[(p(i) − y(i))
2
(1 +

y(i)
m
∑

j=1
y(j)

)] (16)
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3.5. Evaluation Indices
3.5.1. Mean Squared Error (MSE)

MSE calculates the average squared difference between the values of pixels in the
ideal image and the predicted image. This operation allows us to measure the disparity
between the two images and is the primary method for objectively assessing image quality.
The following formula gives it:

MSE =
1

m× n

m

∑
i=0

n

∑
j=0
||P(i, j)− I(i, j)||2 (17)

where I denotes the ideal radar image of size m× n and P represents the image predicted
by the network. m and n represent the number of pixel points in the horizontal and vertical
directions of the image, respectively. A smaller MSE value indicates a better regression
effect of the network on the image.

3.5.2. Peak Signal-to-Noise Ratio (PSNR)

PSNR is a ratio of the maximum pixel value to the intensity of noise, primarily used to
gauge the algorithm’s noise-removal capability. A higher PSNR value indicates the superior
noise-suppression performance of the algorithm [56]. The formula for PSNR is as follows:

PSNR = 10log10(
max(I)2

MSE )

= 10log10(
max(I)2

1
m×n

m
∑

i=0

n
∑

j=0
||P(i,j)−I(i,j)||2

) (18)

3.5.3. Image Entropy

For an ISAR image with a size of M× N, its image entropy can be defined as:

H = −
M

∑
m=1

N

∑
n=1

Pmn ln Pmn (19)

where

Pmn =
K(m, n)

M
∑

m=1

N
∑

n=1
K(m, n)

(20)

where K(m, n) represents the value of the pixel at position (m, n) in the image, and Pmn
represents the probability of K(m, n) in the image. The lower the entropy of an ISAR image,
the more information it contains, indicating better focusing performance. Conversely, if the
image has poor focus, it will have higher entropy and appear less clear.

3.5.4. Contrast

Contrast reflects the variation in pixel intensity in an image. A higher contrast indicates
a more pronounced distinction in intensity, suggesting a greater probability of the presence
of strong scattering points. Conversely, a lower contrast suggests a lower likelihood of the
presence of strong scattering points. Its definition is as follows:

C =

√
E
{
[K2(m, n)− E{K2(m, n)}]2

}
E{K2(m, n)} (21)

4. Experimental Results
4.1. Predicted Results of Point Targets

The trained network is initially validated using point targets described in Section 3.3.
Figure 7a–c depict low-resolution point targets’ RID images of three consecutive frames,
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respectively. Figure 7d displays the ideal image of the intermediate frame, while Figure 7e
shows the predicted result obtained from a network trained using the method proposed in
this paper.
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Figure 7. ISAR images obtained by different methods. (a) Low-resolution point targets’ RID image of
the first frame; (b) low-resolution point targets’ RID image of the second frame; (c) low-resolution
point targets’ RID image of the third frame; (d) ideal image of the second frame; (e) the predicted
result obtained by the method proposed in this paper.

Figure 7 shows that the predicted results of the proposed method closely resemble the
ideal image. Subsequently, the aircraft scattering-point model, comprising 68 point targets,
was employed to further validate the effectiveness of the proposed method. In addition
to comparing the IMSE loss function proposed in this paper with the traditional MSE loss
function, we also conducted a comparative experiment using the method described in [50].
This method employs an improved U-Net network for the super-resolution processing
of defocused ISAR images. Since it tackles the same problem we aim to address in this
paper, namely defocusing in wide-angle ISAR imaging, we chose to utilize this method for
a comparative experiment.

Figure 8a–c illustrate the relative rotation of RID images across different frames, with
these images possessing relatively low resolution. Figure 8d depicts the defocused RDA
result. Figure 8f illustrates the remarkable enhancement effect of U-Net on the target points,
where pixel values even exceed those in the ideal RID image. Nevertheless, the image
suffers from an excessive amount of clutter interference. Figure 8g,h demonstrate that a
network trained with IMSE produces a prediction with higher resolution compared to the
one obtained using the MSE loss function. Especially at the three green markers, it can be
seen that the point targets in Figure 8h has fewer sidelobes and are closer to the ideal image.
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Figure 8. ISAR images obtained by different methods. (a) Low-resolution RID image of the first
frame; (b) low-resolution RID image of the second frame; (c) low-resolution RID image of the third
frame; (d) RDA image; (e) ideal RID image of the second frame; (f) predicted RID image of the U-Net;
(g) predicted RID image with MSE as the loss function; (h) predicted RID image with IMSE as the
loss function.
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Since the comparison between Figure 8g,h is not particularly pronounced, to better
validate the superiority of the loss function proposed in this paper, we list the evaluation
metrics values for the images predicted by three methods in Table 2. Since we normalized
the image matrices before computing the MSE evaluation metric, the calculated results
are relatively small, and the differences between the results are also relatively minor.
Furthermore, since PSNR is computed based on MSE, the variations in PSNR are also
relatively small.

Table 2. Evaluation metrics of the predicted images obtained by different methods.

Loss Function MSE PSNR Entropy Contrast Runtime

MSE 0.0035 24.3612 36.5252 3.7185 0.4738
IMSE (proposed) 0.0019 27.1167 25.3929 6.7649 0.4799

U-Net 0.0049 23.0684 11.5343 11.4111 0.1940

Clearly, compared to the MSE loss function, the proposed IMSE outperforms in the first
four evaluation metrics, indicating its better suitability for the ISAR image-enhancement
task. However, it comes with the trade-off of a relatively longer computation time. Nev-
ertheless, the U-Net’s predicted image exhibits the best performance among the three
methods in terms of the evaluation metrics: entropy, contrast, and runtime.

4.2. Input Data Settings

The positional encoding and the number of input RID images are critical parameters
within our input samples. To validate the effectiveness of the proposed positional encoding,
we utilized MSE as the loss function and separately trained the network illustrated in
Figure 4, alongside its corresponding network that lacks positional encoding. As depicted
in Figure 9, the network with positional encoding converges more rapidly during the
training process. Furthermore, after the network training stabilizes, its training loss values
are lower, indicating that its predicted images are closer to the ideal images. The validation
losses also confirm this point, suggesting that it still holds on untrained datasets and
has a good generalization ability. This indicates that the proposed positional encoding is
beneficial for our task.
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Subsequently, to validate the effectiveness of the proposed three-frame input method,
we conducted experiments utilizing the single-frame, three-frame, and five-frame input
methods, respectively. In Figure 10a, these three methods demonstrate a comparable con-
vergence rate throughout the network-training process. As the network training stabilizes,
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the three-frame input method exhibits a slightly lower training loss than the other two
methods. In comparison, the loss value of the single-frame input method is slightly higher.
In Figure 10b, the five-frame input method converges first, but its curve stabilizes with the
highest loss value. The convergence speed of the single-frame and three-frame input meth-
ods is similar. After the curve stabilizes, the loss value of the three-frame input method is
lower. This indicates that the three-frame input method performs well on both the training
and validation sets and is suitable for this paper’s ISAR image-regression task.
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Figure 10. The training losses and validation losses of single-frame, three-frame and five-frame input
methods. (a) The training losses; (b) the validation losses.

We observe an insignificant disparity in loss values between the three-frame input
method and the single-frame input method. As mentioned, the loss values are computed
after normalizing the image matrix. This leads to a relatively small numerical value for the
MSE and a relatively small difference in loss values between different methods.

4.3. Robustness Verification against Noise

To evaluate the robustness of the proposed method against noise, we introduced noise
into the test data. It is important to emphasize that the training data remained pristine,
without any artificially added noise, throughout the experiments conducted in this paper.

In research, the amplitude-probability distribution model and clutter correlation
spectrum are commonly used to characterize clutter. However, solely studying the single-
point amplitude characteristics of clutter is generally insufficient, and it is crucial also to
consider the correlation properties between pulses. The correlation between clutter-echo
signals is generally described by correlation models, including time-correlated models and
spatially correlated models.

The temporal correlation of clutter is commonly depicted through the clutter power
spectrum, representing the correlation among clutter echo signals originating from the
same region. In other words, it signifies the correlation between various echo pulses within
the same clutter-distance resolution unit. This concept is typically encompassed by models
such as the Gaussian spectral model, the Cauchy spectral model, and the Allpole spectral
model, among others. However, there have been relatively few studies focusing on spatial
correlation. In many studies, the spectrum of radar clutter is represented by a Gaussian
spectrum [40,41,43,47]:

S( f ) = exp(
−( f − fd)

2

2σf
2 ) (22)

where σf represents the standard deviation of the clutter’s distribution (σf = 2σv
λ , σv is

the root mean square of the clutter velocity, and λ is the wavelength of the radar), and fd
represents the average Doppler frequency of the clutter.
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Given that the Gaussian spectrum characterizes noise in the frequency domain, we
incorporate Gaussian noise with SNRs of −10 dB, −20 dB, −30 dB, and −40 dB the one-
dimensional range profile separately. The results obtained by RDA, RID, and the proposed
method under different SNR conditions are shown in Figure 11.
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It is evident that, as the SNR decreases, image clutter becomes increasingly pronounced.
Under conditions with SNRs of −10 dB and −20 dB, both RDA and RID images are
significantly impacted by noise. Nevertheless, the neural network generates superior
predictions. At an SNR of −30 dB, while there are numerous fake points in the predicted
image, the outline of the aircraft remains clear and distinguishable. However, as the SNR
drops further to −40 dB, the clutter in the prediction becomes more pronounced, ultimately
obscuring the aircraft’s contour. This indicates that the proposed method has a certain
degree of robustness against noise.

Table 3 presents the MSE and PSNR values obtained through the proposed method at
various SNRs. The data in the table consistently demonstrates a gradual increase in MSE
and a decrease in PSNR as the SNR decreases. This observation aligns with the trends
depicted in Figure 11. This further substantiates the method’s ability to exhibit a certain
degree of robustness in the presence of noise.

Table 3. MSE and PSNR of the predicted result under different SNRs.

SNR (dB) MSE PSNR (dB)

No noise 0.0019 27.1167
−10 0.0019 27.1167
−20 0.0022 26.5856
−30 0.0025 26.1045
−40 0.0032 24.9574

4.4. Predicted Results of Full-Wave Simulated Data

In this section, we perform experiments using full-wave data simulated with FEKO
(https://www.tiaozhanbei.net/, accessed on 19 October 2023) [57], provided by the Lab-
oratory of Pinghu, to evaluate the effectiveness of the proposed method. Furthermore,
considering the challenge associated with incomplete signals encountered in practical
ISAR target imaging, we randomly down-sample the echo data of the training samples to
obtain incomplete signals. Subsequently, we perform validation experiments to assess the
robustness of the proposed method against incomplete signals.

4.4.1. Full Data Validation

The experimental results are depicted in Figures 12 and 13. Consistent with the
training samples, in this experiment, the observation angle corresponding to the RID image
of each frame is set to 6 degrees, and the observation angles between adjacent frames are
rotated by 3 degrees relative to one another.

Figure 12e is unable to fully reconstruct the target’s image. Compared to Figure 12b,
both Figure 12f,g display a clearer target outline and higher resolution. Moreover, Figure 12g
recovers more information of the target compared to Figure 12f. Nevertheless, it is worth
noting that Figure 12g also contains slightly more noise in non-target areas than Figure 12f.

Figure 13e recovers fewer target details and displays noticeable interference around
the target area compared to Figure 13f,g. Figure 13f, in contrast to Figure 13g, exhibits
slight interference noise around the target.

4.4.2. Down-Sampled Data Validation

In this section, we down-sample the full-wave data at a down-sampling rate of 5%
to train the network. Additionally, the full-wave data are down-sampled at rates of 10%,
20%, 30%, and 40%, respectively, to assess the robustness of the method proposed in this
paper when dealing with incomplete data. Figure 14 presents the RID imaging results of
the intermediate frame under various down-sampling conditions, the enhanced results
achieved by the network trained on complete data, and the improved results obtained by
the network trained on down-sampled data.

https://www.tiaozhanbei.net/
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Figure 12. ISAR images obtained by different methods. (a) Low-resolution RID image of the first
frame; (b) low-resolution RID image of the second frame; (c) low-resolution RID image of the third
frame; (d) RDA image; (e) predicted RID image by the U-Net; (f) predicted RID image with MSE as
the loss function; (g) predicted RID image with IMSE as the loss function.

As the down-sampling rate increases, the imaging quality of RID deteriorates. It can
be observed that the network trained with down-sampled data produces more explicit
predictions with less noise compared to those obtained by the neural network trained with
complete data. Particularly, when the down-sampling rate is set to 10%, the prediction
from the network trained with down-sampled data exhibits extremely low noise levels and
sharper target outlines.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 26 
 

 

   
(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 13. ISAR images obtained by different methods. (a) Low-resolution RID image of the first 

frame; (b) low-resolution RID image of the second frame; (c) low-resolution RID image of the third 

frame; (d) RDA image; (e) predicted RID image by the U-Net; (f) predicted RID image with MSE as 

the loss function; (g) predicted RID image with IMSE as the loss function. 

4.4.2. Down-Sampled Data Validation 

In this section, we down-sample the full-wave data at a down-sampling rate of 5% to 

train the network. Additionally, the full-wave data are down-sampled at rates of 10%, 

20%, 30%, and 40%, respectively, to assess the robustness of the method proposed in this 

paper when dealing with incomplete data. Figure 14 presents the RID imaging results of 

the intermediate frame under various down-sampling conditions, the enhanced results 

achieved by the network trained on complete data, and the improved results obtained by 

the network trained on down-sampled data. 

  

Figure 13. Cont.



Remote Sens. 2023, 15, 5166 19 of 24

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 26 
 

 

   
(a) (b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 13. ISAR images obtained by different methods. (a) Low-resolution RID image of the first 

frame; (b) low-resolution RID image of the second frame; (c) low-resolution RID image of the third 

frame; (d) RDA image; (e) predicted RID image by the U-Net; (f) predicted RID image with MSE as 

the loss function; (g) predicted RID image with IMSE as the loss function. 

4.4.2. Down-Sampled Data Validation 

In this section, we down-sample the full-wave data at a down-sampling rate of 5% to 

train the network. Additionally, the full-wave data are down-sampled at rates of 10%, 

20%, 30%, and 40%, respectively, to assess the robustness of the method proposed in this 

paper when dealing with incomplete data. Figure 14 presents the RID imaging results of 

the intermediate frame under various down-sampling conditions, the enhanced results 

achieved by the network trained on complete data, and the improved results obtained by 

the network trained on down-sampled data. 

  

Figure 13. ISAR images obtained by different methods. (a) Low-resolution RID image of the first
frame; (b) low-resolution RID image of the second frame; (c) low-resolution RID image of the third
frame; (d) RDA image; (e) predicted RID image by the U-Net; (f) predicted RID image with MSE as
the loss function; (g) predicted RID image with IMSE as the loss function.
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5. Discussion

In this section, we conduct an in-depth discussion of the above experimental results.

• The results shown in Figure 9 demonstrate the effectiveness of the positional encoding
we proposed in our study. We independently train networks with and without posi-
tional encoding in Section 4.2, producing training and validation loss curves. During
training, the network with positional encoding converges more quickly. The network
displays lower loss values when its training stabilizes, and the validation set shows
the same trend. This experimental finding suggests that positional encoding can be
designed for the ISAR image-enhancement task in a way that effectively identifies
the position of pixels based on the variable degrees of defocusing at various locations
in ISAR images. This discovery significantly impacts our following study on the
defocusing of ISAR;

• Figure 10 demonstrates the benefits of using the three-frame input method suggested in
this paper for our ISAR-RID image-enhancement task. This is explained by the fact that
the multi-frame input approach, as opposed to the single-frame input method, gives
the network more information about the target, allowing the network to understand
the features of the target better. On the other hand, the five-frame input method
introduces excessive redundant information relative to the three-frame input method,
leading to the network’s inability to precisely learn the target’s features. Therefore, the
three-frame input method is better suited to our task;

• The experimental results clearly show that the approach provided in this research
works better than the one in [50]. Figure 8f exhibits significant noise interference
and excessive enhancement of the target points, surpassing the pixel values in the
ideal image. It is precisely because of the excessive enhancement of strong scattering
points that U-NET performs the best in terms of entropy and contrast in Table 2. In
Figure 12e, the target is incompletely recovered, while in Figure 13e, although the target
is recovered, it lacks fine details. Moreover, noticeable noise interference is present
around the target in Figure 13e. These three experiments collectively demonstrate
that the proposed method, regardless of whether MSE or IMSE is used as the loss
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function during network training, achieves superior results in terms of target recovery
and noise elimination compared to [50]. Thus, this also validates the effectiveness
of the proposed three-frame RID image input method and position encoding. It is
crucial to highlight that the U-Net exhibits the fastest runtime, more than twice as
speedy as the other two methods. Furthermore, the MSE loss function is marginally
quicker compared to the IMSE. This underscores that the proposed method comes
at the expense of processing time, which is a challenge we must tackle in our future
research endeavors;

• To address the characteristics of ISAR images, this paper proposes an improved loss
function. By emphasizing the regression of pixel intensities within the target region
during the training process, it overcomes the inherent limitations of the MSE loss
function, which treats all pixels equally. This improvement ensures that the network
focuses more effectively on the target itself rather than non-target areas. The resolution
of the target in Figure 8h surpasses that in Figure 8g. Figure 12g recovers more
target information compared to Figure 12f. There is slight clutter noise around the
target in Figure 13f, resulting in a slightly inferior predictive performance compared
to Figure 13g. These three experiments collectively highlight the significance of the
proposed loss function in this paper, as it encourages the neural network to concentrate
more on accurately estimating the target area within ISAR images. Certainly, as
depicted in Table 2, the predictions produced by the proposed IMSE consistently
outperform MSE in the initial four evaluation metrics: MSE, PSNR, Entropy, and
Contrast. This further strengthens the evidence of its effectiveness as a loss function.
However, it is worth noting that the use of IMSE does come with the trade-off of
increased computational time. This is indeed a limitation of the method and is an issue
that we need to address in our future work;

• The proposed method demonstrates a certain level of robustness to noise and incom-
plete data. As demonstrated in Figures 11 and 14, within a certain range of noise and
down-sampling conditions, the trained network is still capable of accurately predict-
ing ISAR images. Specifically, in the robustness test against noise, our network is
trained on samples without noise. However, it achieved accurate and high-resolution
predictions at SNRs of −10 dB and −20 dB. Even at −30 dB, although the predicted
image contains noise, the target’s contour is still clearly discernible. For the robustness
experiment against incomplete data, we separately use the network trained on the
full dataset and the network trained on the dataset down-sampled at 5% to predict
data down-sampled at different rates. It can be observed that both networks exhibit
a certain level of robustness. However, the network trained on the down-sampled
data yields slightly better-predicted results. This finding suggests that using training
data specific to different scenarios or imaging conditions can improve the network’s
prediction performance and make it more practical.

6. Conclusions

This research presents an improved ISAR-RID imaging method based on deep learn-
ing to increase resolution while addressing the defocusing issues in wide-angle ISAR
imaging. We introduce a multi-frame RID input method to allow the network to obtain
more information about the targets. We propose positional encoding to denote pixel lo-
cations, since ISAR images exhibit differing degrees of defocusing at various positions.
To tackle the challenge of imbalanced pixel counts between target and non-target areas
in ISAR images, we have improved the loss function by incorporating Focal Loss. This
modification focuses the network’s attention during training more on target regression.
Experimental results demonstrate the effectiveness of our proposed approach in addressing
defocusing issues and enhancing resolution in ISAR imaging under wide-angle conditions.
In practical applications, when we know the approximate imaging distance and radar
parameters, we can use this method to simulate point targets within the corresponding
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distance range for training the network. Subsequently, we can apply this trained network
to actual observed targets.

Notwithstanding the efficacy of the suggested approach, we concede the existence of
certain constraints. While the three-frame input method and position encoding enhance
the network’s performance in ISAR image enhancement, they do so at the expense of
increased processing time. Moreover, while IMSE improves the network’s capacity to
focus on enhancing target regions, its effects are not very pronounced. Our experiments
were conducted on uniformly rotating targets after motion compensation, whereas most
real-world scenarios involve non-uniformly moving targets.

In future work, we plan to do away with the need to mosaic position encoding after
each convolutional layer by directly integrating position encoding into the neural network
design. To further improve the loss function’s performance, we also intend to refine it.
Building upon these enhancements, we will explore solutions for the challenging task of en-
hancing large-angle imaging for non-uniformly moving targets, thus making our approach
more suitable for practical applications. Summing up, despite certain limitations in our study,
it provides a novel perspective for the future of ISAR large-angle imaging. Furthermore, it
establishes a foundational basis for subsequent target detection and recognition.
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