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Abstract: Scatterometers are dedicated to monitoring sea surface wind vectors, but they also provide
valuable data for polar applications. As a new type of scatterometer, the rotating fan beam scatterom-
eter delivers a higher diversity of incidence angles and more azimuth sampling. The paper takes
the first rotating fan beam scatterometer, the China France Oceanography Satellite scatterometer
(CSCAT), as an example to explore the effectiveness of this new type of scatterometer in polar sea ice
detection. In this paper, a Bayesian method with consideration of geometric characteristics of CSCAT
is developed for sea ice detection. The implementation of this method includes the definition of
CSCAT backscatter space, an estimation of the sea ice Physical Model Function (GMF), a calculation of
the sea ice backscatter distance to the sea ice GMF, a probability distribution function (PDF) estimation
of the square distance to the GMF (sea ice GMF and wind GMF), and a calculation of the sea ice
Bayesian posterior probability. This algorithm was used to generate a daily CSCAT polar sea ice mask
during the CSCAT mission period (2019–2022) (by setting a 55% threshold on the Bayesian posterior
probability). The sea ice masks were validated against passive microwaves by quantitatively compar-
ing the sea ice edges and extents. The validation suggests that the CSCAT sea ice edge and extent
show good agreement with the sea ice concentration distribution (i.e., sea ice concentration ≥ 15%)
of the Advanced Microwave Scanning Radiometer 2 (AMSR2). The average Euclidean distance of the
sea ice edges was basically less than 12.5 km, and the deviation of the sea ice extents was less than
0.3 × 106 km2.

Keywords: scatterometer; CSCAT; sea ice detection; Bayesian algorithm

1. Introduction

Sea ice is not only a critical input variable for the global climate models but also a
relevant ancillary parameter for the accurate retrieval of ocean surface wind data [1]. The
polar ocean region is mainly composed of sea ice and open water. Polar sea ice accounts for
a large proportion of the global sea ice. Therefore, the study of the spatial and temporal
properties of polar sea ice is of great significance. In the past and in the present, numerous
spaceborne instruments have been employed for research and the monitoring of polar
ocean regions, among which satellite scatterometers have proven to be extremely valuable
in observing polar regions with the advantages of rapid repeat coverage, a relatively high
spatial resolution, and a low sensitivity to the complex atmospheric effects [2].

Scatterometers are active microwave systems that are commonly used for ocean appli-
cations, such as ocean surface wind retrieval and sea ice monitoring. The radar backscatter-
ing principle over the open water is defined by Bragg scattering, as such scatterometers take
advantage of the relationship between the radar backscattering signal and the sea surface
winds to determine ocean surface wind speed and direction. However, the microwave
backscattering from sea ice is a combination of both volume and surface scattering, which
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depends on the observing geometry, the electrical properties, and the physical characteris-
tics of sea ice [3]. The remarkable difference between the sea ice backscattering signal and
the open water backscattering signal is the basis for sea ice and open water discrimination.

Continuous monitoring of the sea ice in polar regions has been done using many
scatterometers, such as the C-band scatterometers on the Europe Remote Sensing (ERS)
satellites, the Advanced scatterometer (ASCAT) onboard MetOp satellite series, and the Ku-
band pencil beam scatterometers like QuikSCAT and OSCAT [1]. The C-band scatterometers
are with fixed fan beams, such that measurements are collected over a wide range of
incidence angles (typically ~20◦ to 60◦), and a fixed number of azimuthal looks are acquired.
Moreover, only one single polarization (i.e., vertical polarization (VV)) is available for the
past C-band scatterometers. The Ku-band pencil beam scatterometers generally employ
a rotating antenna to collect measurements at two different incidence angles and two
diverse azimuth angles via VV and horizontal polarization (HH) beams. Both types
of radar scatterometers have their advantages and disadvantages in terms of polar sea
ice monitoring.

Since 2018, a third type of scatterometer, namely a rotating fan beam scatterometer,
has been operated in space. Compared with the existing fixed fan beam and rotating
pencil beam scatterometers, the rotating fan beam scatterometer presents several new
characteristics. That is, compared to a fixed fan beam scatterometer, it does not have a
nadir gap, and compared to a rotating pencil beam scatterometer, it has more individual
backscatter observations in a wind vector cell (WVC) [4]. Therefore, a higher diversity of
incidence angles and more azimuth sampling are available from the rotating fan beam
scatterometers than the prior systems, which enables better research on sea ice scattering
mechanisms. This opens up opportunities for improving sea ice monitoring and expanding
polar sea ice monitoring records using this new scatterometer. In the past few years,
the Royal Netherlands Institute of Meteorology (KNMI) and Ocean and Sea Ice Satellite
Application Facility (OSI SAF) have provided consistent long-term records of sea ice
monitoring from satellite scatterometry (ERS, QuikSCAT, ASCAT, and OSCAT) dating back
from 1992 to 2017 [5]. The investigation of sea ice detection with the rotating fan beam
scatterometer will contribute to the long-time series of scatterometer sea ice monitoring,
providing a valuable baseline for the studies of polar regions.

The rotating fan beam scatterometer is unique in terms of antenna mechanisms among
currently operating scatterometers, but it also poses challenges to sea ice detection al-
gorithms. To date, there are two rotating fan beam scatterometers, namely the China
French Ocean Satellite (CFOSAT) scatterometer (CSCAT) and the Fengyun-3E Wind Radar
(WindRad) [4,6]. Both the CSCAT and WindRad adopt dual polarization (HH and VV), but
they have some different characteristics. The CSCAT is a dual antenna system operating in
the Ku band, while the WindRad has four fan beams, two of which operate in the C band
and the other two in the Ku band. This article takes CSCAT as an example to explore the
effectiveness of this new scatterometer in polar sea ice detection.

At present, the sea ice detection (or sea ice and open water discrimination) meth-
ods for satellite scatterometers are mainly classified into two different types, i.e., the
physics-based methods and the machine-learning-based methods [7,8]. Both are based
on the contrasting scattering properties between sea ice and open water. Given that the
CSCAT is unique among the current operational scatterometers in terms of its observa-
tion geometry, we focus on the physical method in this paper. There are two kinds of
physics-based sea ice detection algorithms. The first one is the BYU algorithm proposed by
Long et al. [9,10]. This algorithm is based on a maximum likelihood discriminant scheme,
using sea ice/open water clustering centroids and covariance matrices as inputs. The
centroid of sea ice/open water star clusters is determined in the transformation space
of the pseudo polarization, average backscattering, and azimuth changes. Although the
BYU algorithm is expected to perform well under calm and winter conditions, its seasonal
performance has not been fully validated [11]. The second one is the KNMI algorithm
proposed by Belmonte Rivas et al. [12–14]. The KNMI algorithm is based on the maximum
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posterior (Bayesian) framework, which uses prior information from sea ice and open water,
as well as the conditional probability of the square distances (i.e., residual) between the
radar measurements and sea ice or open water Geophysical Model Functions (GMFs).
Overall, the KNMI algorithm is able to reach the theoretical capability of sea ice discrimi-
nation by accounting for the scatterometer noises. We have applied the KNMI algorithm
of QuikSCAT to the CSCAT by only using the data at an incidence angle of 40◦ for sea
ice detection [15,16]. Li et al. adapt the Bayesian method for the CSCAT following their
previous implementations of the KNMI algorithm for ERS and ASCAT [17]. In this paper,
the KNMI algorithm is further adjusted for the CSCAT sea ice detection by taking the
characteristics (diverse incidence angles and azimuth sampling) of the rotating fan beam
scatterometer system into account.

Section 2 introduces the observational geometry and scientific products of the CSCAT.
Section 3 presents the details of the sea ice detection algorithm of the CSCAT. Section 4
presents the results and discussion, including the sea ice mapping and quantitative com-
parison of passive microwave sea ice concentrations on the sea ice edge and sea ice extent.
Section 5 summarizes our results.

2. CSCAT on CFOSAT

The CSCAT is operated at the Ku-band microwave frequency with a central frequency
of 13.256 GHz. It has two antenna beams, i.e., one vertically (V) polarized fan beam and
one horizontally (H) polarized fan beam. The conical scanning mechanism of the CSCAT
allows for a continuous observation swath of 1000 km, such that it is able to provide a
global coverage of the Earth’s surface in three days.

2.1. Geometry of Observation

The CSCAT uses two 1.2 m slotted waveguide antennas to generate two fan beams
(i.e., VV and HH) that sweep the Earth’s surface conically at intermediate incidence angles
(28◦–51◦). Given the orbital altitude of about 520 km, the footprint size of each beam is
about 260 km × 10 km. In scatterometry, the radar transmits linear frequency modulated
pulses and then receives the backscattered signals using a dechirp module and a Fast
Fourier Transformer to provide sub-footprint range gates (namely slices). The CSCAT
generates 40 slices with a range resolution of 10 km, among which about 26 slices are valid
for wind inversion and sea ice monitoring [18].

Due to the geometry of the rotating fan beam, the CSCAT generates a large overlap
within the swath and provides a large amount of backscatter (i.e., σ0) acquisition for a single
surface resolution cell (or WVC). For each orbital pass, the CSCAT wind processor generates
42 WVCs on a resolution of 25 km × 25 km in the 1000 km swath. Correspondingly, the
WVC is numbered according to the position of the subsatellite cross track, where WVC 1 is
located in the leftmost swath and WVC 42 is located in the rightmost swath. Each WVC
registers 2–8 views for both VV and HH beams. The observation geometry of the CSCAT is
shown in Figure 1.
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2.2. Scientific Product Specification of CSCAT

The operation ground processor of the CSCAT is developed by the National Satellite
Ocean Application Service Center (NSOAS) of China. The following data products are
generated by the processing chain and are accessible to users [19].

(1) L1B data include the time ordered slices σ0 and slice geolocations.
(2) L2A data include the average backscatter value of each WVC (usually with a resolution

of 25 km), and each WVC obtains 2–8 views of each antenna beam.
(3) L2B data include the sea surface wind information.

In our study, L2A and L2B data are used for the sea ice detection. The data files are all
in NetCDF format. The data structure within the L2A/2B package is formed on the basis of
the row number (along track) and the WVC number (across track).

3. Sea Ice Detection Algorithm of CSCAT

The KNMI sea ice detection algorithm is based on the Bayesian framework. In this sec-
tion, a Bayesian method considering multiple incidence angles and the dual polarizations of
the CSCAT is derived. The implementation of this method includes the CSCAT backscatter
space definition, the sea ice GMF estimation, the calculation of the sea ice backscatter
distance to the sea ice GMF, the probability distribution function (PDF) estimation of the
square distances to GMFs (sea ice GMF and wind GMF), and the sea ice Bayesian posterior
probability calculation.

The KNMI algorithm projects the scatterometer measurements onto the polar stereo
projection map of the National Snow and Ice Data Center (NSIDC) [20]. For the sake of
validation, the CSCAT L2 data are resampled onto the polar ice maps with a grid resolution
of 12.5 km × 12.5 km. The dimension of the sea ice map is 896 × 608 and 664 × 632 for
the North and South polar regions, respectively. Figure 2 shows the coverage maps of the
NSIDC Polar Stereographic Projection. The overlying black boxes are the sea ice mapping
areas. In the following study, the backscatter data on the NSIDC polar stereographic
projection maps are used for sea ice detection.
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3.1. CSCAT Backscatter Space

The first part of this section defines the CSCAT backscatter space for the sake of
analysis. According to the observed geometry of the CSCAT, a set of 4–16 backscatter views
is obtained for each WVC. Usually, each WVC registers 2–8 VV/HH measurements (i.e.,
[σ0

VV , σ0
HH ] ) with different incidence and azimuth angles. The measurements of [σ0

VV , σ0
HH ]

share similar azimuth angles [4]. Therefore, the CSCAT backscatter space can be defined
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by several two-dimensional (2D) plots consisting of polarization measurement pairs. Each
[σ0

VV , σ0
HH ] is separated by different incidence angles, and the range of incidence angles (or

number of pairs) for each WVC depends on its position. The backscatter distribution of the
sea ice and open water is investigated in the defined CSCAT backscatter space.

Figure 3 shows the backscatter distribution of the sea ice and open water measured
in WVC 15 for the North and South Poles on 15 January 2019. Here, the land flags in the
L2A dataset are used to exclude land points. The ice flags from the L2 dataset are used to
determine ice observations. If the backscatter observations are linked to negative ice flags
and the number of wind ambiguity solutions in the corresponding WVC is greater than
zero, the WVC is judged as ocean water. It is noted that sea ice and open water occupy
significantly different areas. For the same incident angle, open water is generally has a
characteristic of σ0

VV > σ0
HH , but the sea ice results in a depolarized measurement, i.e.,

σ0
VV ≈ σ0

HH , and stronger echoes in the measurements. This is due to the fact that open
water backscattering is dominated by the short capillary gravity waves, which normally
result in a substantial polarization ratio (σ0

VV/σ0
HH). In addition, for open waters, the

azimuthal response of backscattering is anisotropic, but for sea ice, it is isotropic [12].
Therefore, the distinct incidence, polarization, and azimuthal properties of sea ice allow for
its effective identification against open water.
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3.2. GMF for Sea Ice

The GMF is an empirically derived function that relates surface conditions to the
backscatters observed from various incident angles, azimuth angles, and polarizations.
As such, the GMF describes backscatter data as a function of physical and observational
parameters, which in turn are used for wind retrieval in open water. Specifically, the GMF
of wind is naturally dominated by two physical parameters (wind speed and direction)
and three observational parameters (incidence angle, azimuth angle, and polarization). For
the CSCAT, the NSCAT-4 GMF is adopted for ocean wind retrieval [19]. Though there is
not a mature sea ice GMF for the Ku-band fan beam scatterometer, it can be developed
similarly to the wind GMF and then applied to sea ice retrieval.

There are various types of sea ice, such as sea ice containing a certain amount of
saline water, sea ice covered by snow, and sea ice formed in different layers due to the
melting and refreezing processes [3]. Different types of sea ice have different backscattering
characteristics. Therefore, it remains unknown how many physical parameters can be
used to define the sea ice backscattering. However, the examination of the backscatter
distribution of the sea ice with the CSCAT backscatter space (as shown in Figure 3) indi-
cates that all sea ice samples with similar incidence angles lie along a straight line in the
2D σ0 (dB) space. This is consistent with the depolarization characteristic of the sea ice.
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In this case, we can describe the GMF of sea ice using a 1D linear model, which has two
parameters (slope and intercept) for each incident angle of the CSCAT.

σ0
HH = Slope× σ0

VV + Intercept (1)

Using this assumption, the GMF of sea ice can be derived from the observed sea ice
backscatter of the CSCAT. The GMF parameters (slope and intercept) of the sea ice are
obtained daily for a year. Figures 4 and 5 show the CSCAT sea ice GMF parameters for
different WVCs in the North and South Poles in 2019.

In these figures, ‘W’, ‘Sp’, ‘Su’, and ‘F’ represent winter, spring, summer, and fall
throughout the year. The four seasons refer to the local seasons in the polar regions, where
summer in the southern hemisphere is winter in the northern hemisphere, and so on. In the
North Pole, the sea ice GMF parameters of the CSCAT for all WVCs are very stable during
the winter, except for incidence angles of 28◦ and 51◦. In contrast, there are significant
fluctuations associated with the sea ice GMF parameters in the summer months. This is
because the melting of sea ice, especially in the first year, changes rapidly with increasing
temperatures. In addition, the obvious fluctuations appear in late spring and early fall as
well, since the sea ice starts to melt in late spring and the temperature in early fall is still
high enough to prevent the sea ice from freezing. In early to middle spring and middle
to late fall, the sea ice GMF parameters are relatively stable for all incidence angles except
for 28◦ and 51◦. In the South Pole, there are noticeable fluctuations of the sea ice GMF
parameters in summer, early fall, and late spring periods, as well as in the North Pole.
Moreover, similar to the North Pole, the sea ice GMF parameters for the incidence angles
from 29◦ to 50◦ present smaller fluctuations than the other incidence angles, notably during
the winter period.
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Based on the above analysis, we note that the variation in the sea ice GMF parameters
at different WVCs is small for the same incident angle (except for 28◦ and 51◦). Therefore,
the statistical knowledge about the CSCAT sea ice GMF can be obtained by using the sea
ice backscatter points of all WVCs for the same incident angle. Since the sea ice GMF
parameters at 28◦ and 51◦ are unstable, the range of incidence angles from 29◦ to 50◦ are
applied for sea ice detection of the CSCAT. Figure 6 shows the sea ice GMF parameters of
the CSCAT for different incidence angles in 2019.
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It is noted that, in the North Pole, except for in June, July, and August, the GMF
parameters of the sea ice at each incident angle usually do not change significantly in
different seasons. The parameters of the three months show a negative bias with respect
to the other months due to the presence of a mixed ice–water sea state. Besides, the slope
and intercept for incident angles of 29◦ and 50◦ have the greatest variation. While in the
South Pole, the GMF parameters of the sea ice at various incident angles vary relatively
little throughout the year, and the parameters corresponding to incident angles of 29◦ and
50◦ have the greatest deviation from the other incident angles. In addition, the slopes of
the sea ice GMF in the South Pole are generally smaller than those in the North Pole. This
is because the largest backscatter of the South Pole arises from the ice shelves rather than
multiyear sea ice, with the former generally corresponding to a large polarization ratio of
σ0

HH/σ0
VV . In general, the parameters of sea ice GMF are more stable for the South Pole.

The reason for this is that most of the floating sea ice disappears in the summer, such that
the backscatter from the ice shelves and mixed ice–water pixels dominates the distribution
of sea ice points in the South Pole. Considering the parameter changes for incidence angles
of 29◦ and 50◦, a range of incidence angles of 30◦–49◦ is ultimately selected to detect sea ice
in the CSCAT.

To ensure the uniformity of the CSCAT sea ice GMF, we take the mean winter distri-
bution in the North Pole as the most representative pure ice backscatter throughout the
year, and then use it for the CSCAT sea ice GMF. The incidence angle range is 30◦–49◦,
which is suitable for the sea ice detection by the CSCAT. The CSCAT sea ice GMF with an
incidence angle of 30◦–49◦ from 2019 to 2022 is shown in Figure 7. It is obvious that the
slope curves for 2019, 2020, and 2022 basically overlap, especially when the incidence angle
is between 32◦ and 47◦, with a slope value close to 1. However, the results for 2021, with a
mean slope value of about 0.9, slightly deviate from the other three years. This may be due
to the calibration problem during the operational period of the CSCAT.
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The intercept parameters for 2019 and 2020 are basically the same between incidence
angles of 32◦ to 41◦, and the values are approximately equal to 0. As the incident angle
increases, the difference between the two curves also increases, typically to a value within
0 to 1. However, the intercept parameter for 2021 has the largest absolute value (around 3),
followed by the result in 2022 (about 2).
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3.3. Backscatter Distances to Sea Ice GMF

Due to the KNMI algorithm requiring the distance from the sea ice measurement
to its GMF, the backscatter distance from the sea ice to the linear ice GMF model is first
analyzed. Taking the North Pole on 15 January 2019 as an example, the histograms of
sea ice backscatter distances from four selected incident angles (30◦, 36◦, 42◦, 49◦) to the
sea ice GMF are shown in Figure 8. Due to the distribution being close to Gaussian, the
histogram is fitted by a Gaussian function with specific deviations and standard deviations
(i.e., std). In this way, the Gaussian curve (red line) and its histogram contour (black line)
are superimposed. And the corresponding Gaussian bias and std values are explicated
in the figure. Generally, the Gaussian fitting is effective. However, there are some non-
overlapping pixels caused by mixed ice–water pixels.
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Figure 8. The distribution of sea ice backscatter distances to the sea ice GMF (North Pole, 15
January 2019).

The Gaussian curves of the distance between the sea ice backscatter and its GMF
backscatter for different incident angles of the CSCAT are shown in Figure 9. We note that
the bias and standard deviation values are different for these curves. For most incident
angles, the Gaussian curves corresponding to the South Pole are similar to those of the
North Pole. However, for the incident angles less than 32◦ (or larger than 47◦), the bias
and std values increase as the incident angle decreases (or increases). The reason for this
phenomenon is that the average sea ice GMF parameters in the North Pole are used as the
sea ice model for the CSCAT, which may not be able to represent the case of the South Pole
exactly. Nonetheless, since the GMF difference between the North Pole and South Pole is
small, we use the same model for both for the sake of implementation.

Figure 10 summarizes the seasonal correlation of Gaussian fit parameters for the sea
ice GMF data in 2019. The increased variation in non-winter months is mainly related to
the presence of mixed ice–water pixels, especially in the North Pole. Then, we averaged
the Gaussian fit parameters for the North Pole from January to March, and we use the
averaged values to represent the distance of the sea ice backscatter to the sea ice GMF for
the CSCAT. The results corresponding to the CSCAT operational period (2019–2022) are
given in Table 1.
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Table 1. Statistical distribution (Gaussian) parameters of sea ice backscatter distances to sea ice GMF.

Incidence
2019 2020 2021 2022

Bias Std Bias Std Bias Std Bias Std

30◦ 0.11 1.46 0.10 1.59 0.17 1.86 0.14 1.91
31◦ 0.12 1.40 0.09 1.49 0.04 1.72 0.21 1.79
32◦ −0.06 1.34 −0.02 1.56 −0.10 1.86 0.11 1.84
33◦ −0.05 1.32 0.01 1.57 −0.05 1.97 0.06 1.78
34◦ 0.06 1.32 0.11 1.60 0.25 2.02 0.24 1.84
35◦ 0.07 1.25 0.09 1.55 0.20 1.97 0.19 1.8
36◦ 0.04 1.20 0.02 1.59 −0.09 1.98 0.03 1.77
37◦ −0.02 1.12 −0.12 1.42 −0.16 1.68 −0.07 1.58
38◦ −0.03 0.99 −0.13 1.17 −0.21 1.34 −0.19 1.34
39◦ 0.16 0.98 −0.05 1.05 −0.16 1.23 −0.07 1.24
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Table 1. Cont.

Incidence
2019 2020 2021 2022

Bias Std Bias Std Bias Std Bias Std

40◦ −0.02 0.95 −0.17 0.99 −0.28 1.15 −0.15 1.21
41◦ −0.07 0.96 −0.06 1.07 −0.20 1.26 −0.02 1.24
42◦ 0.03 0.99 −0.06 1.10 0.06 1.33 0.12 1.23
43◦ −0.03 0.97 −0.14 0.99 −0.09 1.20 0.01 1.17
44◦ −0.19 1.02 −0.28 0.92 −0.19 1.17 −0.16 1.19
45◦ −0.14 1.03 −0.23 0.77 −0.32 1.02 −0.27 1.1
46◦ 0.04 1.02 0.04 0.71 −0.04 0.90 −0.16 1.03
47◦ −0.06 1.10 0.01 0.68 −0.08 0.83 0.16 0.97
48◦ 0.08 1.17 0.02 0.74 0.04 0.89 0.16 1.07
49◦ 0.22 1.21 −0.01 0.75 0.14 0.93 0.20 1.04

3.4. Squared Distances to GMFs

The Bayesian algorithm calculates the minimum square distance (or MLE, from the
maximum likelihood estimator) between the measured backscatters and the sea ice or wind
GMF, denoted by MLEice and MLEwind, respectively. The probability distribution functions
(PDFs) of these two kinds of MLE are estimated below.

3.4.1. MLEice

So far, we have proven that the distance between the sea ice backscatter and its GMF
backscatter for each incident angle can be described as a Gaussian function. Then, the MLE
for sea ice, MLEice, can be calculated using

MLEice = ∑
i
[
(

σ0
m,i − σ0

ice,i − µ(σ0
ice,i)

)
/std(σ0

ice,i)]
2
, i = 1, . . . , N (2)

where i is an index corresponding to a specific incident angle, N (e.g., 2–8) is the number
of polarization pairs per WVC, and σ0

m,i − σ0
ice,i is the distance between the measured

backscatter to the sea ice GMF, which can be described by a set of Gaussian variables, i.e.,
bias µ(σ0

ice,i) and standard deviation std(σ0
ice,i).

Due to
(

σ0
m,i − σ0

ice,i − µ(σ0
ice,i)

)
/std(σ0

ice,i) representing the normalized distance be-
tween the sea ice backscatter and its GMF backscatter, Equation (2) can be written as

MLEice = ∑
i

D2
i , i = 1, . . . , N (3)

where Di =
(

σ0
m,i − σ0

ice,i − µ(σ0
ice,i)

)
/std(σ0

ice,i) is the normalized gaussian variable to
satisfy the standard normal distribution with a zero mean and a variance of 1.

Therefore, the sum of squares of N independent variables is subject to a standard
normal distribution, MLEice, which can be modeled using a chi-square distribution with
N degrees of freedom. Then, the conditional probability p(σ0|ice) can be expressed as

p(σ0|ice) =
1

2N/2Γ(N/2)
MLEice

N/2−1e−MLEice/2 (4)

As aforementioned, the value of N depends on the across-track WVC number. Figure 11
gives the statical results for N versus the WVC number on 25 January 2019. It can be seen
that the distribution of N follows an ‘M’ shape, and each WVC contains at most two differ-
ent pairs of measurements. There are four observation pairs (N = 4) for the nadir swath
WVCs (i.e., WVCs 19–26), fewer observation pairs (N < 4) for the outer swath, and more
observation pairs (N > 5) for the middle areas on both sides of the swath.
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Figure 11. The statical results for N per WVC of sea ice for North Pole on 25 January 2019.

Based on the number of measurement pairs for each WVC, the probability distribution
of the sea ice backscatter with respect to its GMF under different N is investigated, as shown
in Figure 12. Here, the histograms of MLEice for all WVCs with the same observation pairs N
are evaluated using one day’s data. Then, the expected distributions of MLEice are verified
against the actual measurement distributions. That is, the fitted chi-square distribution
curves (red) with N degrees of freedom are superimposed as well as the histogram contours
(black). It shows that the majority of the observed MLEice distributions are in line with the
expected chi-square functions.
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3.4.2. MLEwind

The CSCAT wind data processor carries all the necessary information about the ocean
wind GMF and its expected error variance. This information is included in the processor’s
normalized maximum likelihood estimator (MLEwind). In order to maintain consistency
with the MLEice analysis, the number of measurement pairs N versus the WVC number is
calculated for the open water areas of the NSIDC polar stereographic projection maps, as
shown in Figure 13. Note that the distribution of N over the open water also satisfies an ‘M’
shape. The values of N in the outer and nadir regions of the CSCAT swath are relatively
small, with N approximately equal to 4–6. However, the values of N in the middle regions
on both sides of the swath are relatively large, with N = 7–8.
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Figure 13. The statical results for N per WVC of open water for North Pole on 25 January 2019.

Figure 14 shows the corresponding probability distributions of MLEwind for different
N over the North Pole. We note that these PDFs follow a Gamma distribution. Then,
the conditional probability p(σ0|wind) can be expressed by a Gamma distribution with
parameters of a and b.

p(σ0|wind) =
1

baΓ(a)
MLEwind

a−1e−MLEwind/b (5)

where a = N/2, and the values of parameter b are given in Table 2.

Table 2. The values of parameter b.

N 4 5 6 7 8

2019 0.45 0.35 0.30 0.25 0.23
2020 0.36 0.28 0.24 0.20 0.18
2021 0.45 0.35 0.30 0.27 0.25
2022 0.99 0.77 0.66 0.55 0.51
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3.5. Bayesian Posterior Probabilities of Sea Ice 
Figure 14. The probability distributions of MLEwind for different N (North Pole, 25 January 2019).

The corresponding Gamma curves for the WVCs with the same N are displayed by
red curves in the figure. It is obvious that the majority of the distributions of MLEwind (see
the histograms) show a good agreement with the gamma functions.
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3.5. Bayesian Posterior Probabilities of Sea Ice

The KNMI sea ice detection algorithm is based on Bayesian decision rules and needs to
calculate a posterior probability of the sea ice. The Bayesian posterior probability formula
for the CSCAT sea ice is as follows:

p
(

ice|σ0
)
=

p
(
σ0|ice

)
p0(ice)

p(σ0|ice)p0(ice) + p(σ0|wind)p0(wind)
(6)

where
p(σ0|ice) =

1
2N/2Γ(N/2)

MLEice
N/2−1e−MLEice/2 (7)

p(σ0|wind) =
1

baΓ(a)
MLEwind

a−1e−MLEwind/b, a = N/2 (8)

and
MLEice = ∑

i
[
(

σ0
m,i − σ0

ice,i − µ(σ0
ice,i)

)
/std(σ0

ice,i)]
2
, i = 1, . . . , N (9)

The local prior probabilities for the sea ice and wind are initially set to p0(ice) =
p0(wind) = 0.50, and then, they are updated daily based on the posteriors of the previous
day as follows:

p0(ice) =
{

0.5, if p(ice|σ0) > 0.30
0.15, if p(ice|σ0) < 0.30

(10)

p0(wind) = 1− p0(ice) (11)

4. Results and Discussion

The above sea ice detection algorithm is employed to produce daily polar sea ice
posterior probability maps and sea ice masks for the CSCAT mission period (2019–2022).
To validate the CSCAT sea ice detection results, quantitative comparisons with passive
microwave sea ice concentration are performed in this section.

4.1. Sea Ice Mapping

In this study, the Bayesian posterior probabilities of sea ice derived from the CSCAT
data are firstly projected onto the NSIDC Polar Stereographic Projection maps [20]. The
top panels of Figures 15 and 16 illustrate the daily sea ice probability maps for six different
months, in which the posterior probability ranges from 0% to 100%.

In order to determine the sea ice mask, a threshold must be set for the Bayesian
posterior probability to discriminate the sea ice from the open water. Here, a Bayesian
posterior probability above 55% is considered as sea ice, and a lower probability is regarded
as open water. Then, the resulting sea ice masks are presented in the bottom panels of
Figures 15 and 16, respectively. Though only the sea ice mask of one day is shown for each
month, the figures clearly illustrate the seasonal variations of sea ice. As expected, the
sea ice in the South Pole persists in an opposite variation phase with respect to that of the
North Pole.
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4.2. Validation
4.2.1. Validation Sources

The sea ice concentration data derived from passive microwave sensors have more
than four decades of data records [21]. Consequently, we use the daily gridded sea ice
concentration product as the primary validation reference. Specifically, the sea ice concen-
tration data of the current Special Sensor Microwave Imager (SSMIS) and the Advanced
Microwave Scanning Radiometer 2 (AMSR2) are used. These data are generated using the
Enhanced NASA Team (NT2) algorithm [22,23]. More relevant information about the sea
ice concentration data in the polar stereographic projection is presented in Table 3.
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Table 3. Sea ice concentration dataset in Polar Stereographic projection.

Data Source Sensor Temporal Coverage Temporal Sampling Spatial Coverage Spatial Sampling

NOAA
NSIDC

SSMIS January 2015 to present 1 per day Global 25 km
AMSRE June 2002 to October 2011 1 per day Global 12.5 km
AMSR2 July 2012 to present 1 per day Global 12.5 km

EUMETSAT
OSI SAF

SSMIS March 2005 to present 1 per day Global 10 km
AMSR2 September 2016 to present 1 per day Global 10 km

To validate the CSCAT sea ice detection, comparisons were made with two reference
datasets. The first reference dataset is the AMSR2sea ice concentration records provided by
the National Oceanic and Atmospheric Administration/National Snow and Ice Data Center
(NOAA/NIDC) [24]. Note that this dataset is provided as a polar stereographic projection
with a grid size of 12.5 km × 12.5 km, the same as that of the CSCAT sea ice mapping. The
second sea ice concentration dataset was provided by the European Meteorological Satellite
Organization (EUMETSAT) OSI SAF [25,26]. Both the OSI SAF SSMIS and AMSR2 sea ice
concentration datasets have a grid size of 10 km × 10 km.

4.2.2. Sea Ice Edge Comparison

Since both the CSCAT sea ice data and the NSIDC AMSR2 sea ice concentration data
were performed on 12.5 km × 12.5 km polar stereographic projection grids, these two types
of data were firstly compared with each other. The NSIDC AMSR2 sea ice masks were
derived using a specific threshold on their sea ice concentrations.

Firstly, the edge of the CSCAT sea ice mask was carefully validated against the NSIDC
AMSR2 sea ice concentration isoline, as shown in Figure 17. In the figure, the sea ice edges
of the CSCAT are denoted by red lines, and those of the NSIDC AMSR2 (defined by the sea
ice concentration of 15%) are denoted by blue lines. It is obvious that the CSCAT sea ice
edges are in a good agreement with the NSIDC AMSR2 sea ice edges.
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Secondly, we quantitatively evaluated the difference between the two edges by cal-
culating their statistical distance. The distance from edge to edge was calculated using
the Euclidean distance (ED) transformation [27]. Figure 18 shows the mean ED of the sea
ice edges between the CSCAT and NSIDC AMSR2 for a set of different sea ice concentra-
tion thresholds. Note that the average ED of the sea ice edge between the CSCAT and



Remote Sens. 2023, 15, 5063 20 of 24

NSIDC AMSR2 is the smallest for both the North and South Poles in the case that a sea ice
concentration threshold of 15% is used to identify the AMSR2 ice edge.
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Figure 18. The mean ED of sea ice edges between the CSCAT and NSIDC AMSR2 sea ice concentration
at different thresholds: (a) North Pole; (b) South Pole.

By comparing the CSCAT and the NSIDC AMSR2 (i.e., sea ice concentration threshold
of 15%) ice edges, the average ED value is basically within 1 pixel in the North Pole. That is,
the average ED value is less than 12.5 km. Note that the ED value slightly increases during
September (late summer) and October (early autumn), which is larger than 1 pixel but
less than 1.5 pixels. This is because of the different capability of the scatterometer and the
radiometer in detecting sea ice over the complex sea states. During the ice melting period,
the scatterometer-estimated sea ice extent is generally greater than that of the radiometer,
while during the ice growing phase the radiometer sea ice extent is generally greater than
the CSCAT. In the South Pole, the average ED values are also basically less than 1 pixel.

Overall, the CSCAT sea ice edges estimated by the proposed Bayesian algorithm are
closest to the results of the NSIDC AMSR2 with a sea ice concentration threshold of 15%,
and the average ED of the sea ice edges is less than 12.5 km.

4.2.3. Sea Ice Extent Comparison

The horizontal dimension of the sea ice cover is usually described by the extent of the
sea ice, which can be simply derived by calculating the total area of the sea ice pixels. For
the passive microwave sensors, the sea ice range is measured by counting each pixel with a
sea ice concentration greater than a certain threshold. The results of the polar ice area of the
CSCAT during the mission period (2019–2022) are shown in Figure 19. The NSIDC AMSR2,
OSI SAF SSMIS, and OSI SAF AMSR2 sea ice extents are also shown for the comparison.

The plots illustrate the overall variability in the sea ice extent over the four-year
period. It is obvious that the sea ice extent of the CSCAT is mostly consistent with the
NSIDC AMSR2, followed by the OSI SAF AMSR2, and finally by the OSISAF SSMIS in
both hemispheres. This is because the projection of the sea ice maps of the CSCAT and the
NSIDC AMSR2 are consistent, such that the pixel-based statistical areas have the smallest
deviation. The different grid size results in some uncertainty in the area statistical results
for the NSIDC AMSR2 and the OSI SAF AMSR2. In addition, the daily sea ice extent of the
South Pole looks smoother than that of the North Pole. This indicates that the sea ice in the
North Pole is more sensitive to climate change than the one nearby the South Pole.
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Some quantitative scores of the sea ice extent comparison are given in Table 4. In the
table, the absolute mean and standard deviation of the difference between the CSCAT-
derived sea ice extent and the radiometer-derived sea ice extent at various thresholds
are calculated. Again, the results show that the sea ice extent difference between the
CSCAT and the radiometer is smallest for both the North and South Poles when a sea
ice concentration threshold of 15% is used. Moreover, the absolute mean and standard
deviation of the CSCAT versus NSIDC AMSR2 are smallest. This is due to the fact that the
CSCAT and NSIDC AMSR2 ice extents are both mapped on the same grids.

Table 4. Statistics of the sea ice extent comparisons between CSCAT and passive microwave.

Region Comparisons Sea Ice Concentration
Threshold

Absolute Mean (106 km2) Standard Deviation (106 km2)

2019 2020 2021 2022 2019 2020 2021 2022

North
Pole

CSCAT vs.
NSIDC AMSR2

15% 0.02 0.06 0.16 0.17 0.68 0.22 0.24 0.31
20% 0.03 0.11 0.21 0.11 0.68 0.22 0.25 0.30
25% 0.08 0.16 0.27 0.06 0.68 0.22 0.25 0.30
30% 0.12 0.21 0.31 0.01 0.68 0.22 0.25 0.30

CSCAT vs. OSI
SAF AMSR2

15% 0.02 0.04 0.18 0.11 0.68 0.21 0.22 0.21
20% 0.08 0.15 0.29 0.00 0.68 0.21 0.24 0.21
25% 0.19 0.25 0.39 0.09 0.68 0.22 0.26 0.22
30% 0.29 0.35 0.50 0.19 0.68 0.24 0.28 0.24

CSCAT vs. OSI
SAF SSMIS

15% 0.85 0.88 1.02 0.82 0.87 0.44 0.44 0.34
20% 0.85 0.88 1.02 0.83 0.87 0.44 0.44 0.34
25% 0.94 0.98 1.12 0.92 0.86 0.43 0.43 0.33
30% 1.06 1.11 1.26 1.05 0.86 0.44 0.43 0.33

South
Pole

CSCAT vs.
NSIDC AMSR2

15% 0.19 0.14 0.29 0.03 0.20 0.23 0.27 0.18
20% 0.26 0.21 0.36 0.09 0.21 0.25 0.28 0.19
25% 0.31 0.28 0.43 0.15 0.22 0.27 0.30 0.20
30% 0.37 0.34 0.50 0.21 0.23 0.29 0.31 0.21

CSCAT vs. OSI
SAF AMSR2

15% 0.46 0.42 0.57 0.34 0.18 0.22 0.30 0.16
20% 0.63 0.61 0.78 0.51 0.23 0.29 0.34 0.18
25% 0.78 0.78 0.97 0.66 0.28 0.37 0.40 0.23
30% 0.93 0.95 1.17 0.81 0.34 0.46 0.48 0.28

CSCAT vs. OSI
SAF SSMIS

15% 0.93 0.66 0.82 0.60 0.35 0.21 0.27 0.16
20% 0.93 0.67 0.82 0.60 0.35 0.21 0.27 0.16
25% 1.08 0.85 1.01 0.75 0.39 0.28 0.32 0.20
30% 1.27 1.08 1.26 0.95 0.44 0.36 0.38 0.26
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In a word, the distributions of the daily sea ice extent from the CSCAT and NSIDC
AMSR2 are basically consistent for both the North and South Poles. The overall standard
deviation difference between both is less than 0.3 × 106 km2.

5. Conclusions

Scatterometers are active microwave sensors used for oceanic applications (including
ocean surface wind and sea ice). This paper takes the first spaceborne Ku-band rotating
fan beam scatterometer, the CSCAT, as an example to explore the effectiveness of this
new scatterometer in polar sea ice detection. A Bayesian approach with consideration
of the characteristics of multiple incidence angles and dual polarization of the CSCAT is
established. Note that the algorithm is different from our previous work, which only uses
the data at an incidence angle of 40◦ for sea ice detection [15,16]. Based on the observation
geometry of the CSCAT, the CSCAT backscatter space is defined firstly. The GMF of sea
ice is derived from the observed sea ice backscatter, and it is described in the CSCAT
backscatter space. Then, the Bayesian algorithm is implemented by using the squared
distances between the measured backscatter and the GMFs of sea ice and ocean surface
wind. With the developed algorithm, the daily sea ice posterior probabilities and the
sea ice masks (by setting a threshold of 55% for the Bayesian posterior probability) are
produced for the mission period (2019–2022). To validate the CSCAT sea ice detection
results, comparisons with three reference data sets, namely the NSIDC AMSR2 sea ice
concentration, the OSI SAF SSMIS sea ice concentration, and the OSI SAF AMSR2 sea ice
concentration, are performed from 2019 to 2022. Firstly, the edge of the CSCAT sea ice mask
has been carefully validated against the NSIDC AMSR2 sea ice concentration isoline, and
the results show that the CSCAT sea ice edges are in a good agreement with the NSIDC
AMSR2 sea ice edges. The difference between the two edges is evaluated quantitatively
using the ED. It is found that the CSCAT sea ice edges are closest to the results of the NSIDC
AMSR2 with a sea ice concentration threshold of 15%, and the average ED of sea ice edges
is less than 12.5 km. Secondly, the sea ice extents derived from the CSCAT are compared
with that of the NSIDC AMSR2, OSI SAF SSMIS, and OSI SAF AMSR2 with different sea ice
concentration thresholds. The results show that the sea ice extent of the CSCAT is mostly
consistent with that of the NSIDC AMSR2, followed by the OSI SAF AMSR2, and finally by
the OSISAF SSMIS. The reason for this is that the sea ice maps of the CSCAT and NSIDC
AMSR2 share the same projection, thus the pixel-based statistical extent has the smallest
deviation. The overall difference of the sea ice extent between the CSCAT and NSIDC
AMSR2 is less than 0.3 × 106 km2. The validation demonstrates the effectiveness of the
established sea ice detection approach for the CSCAT and proves that the rotating fan beam
scatterometer is an effective sensor for polar monitoring.
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