
Citation: Guan, Y.; Quan, J.; Ma, T.;

Cao, S.; Xu, C.; Guo, J. Identifying

Major Diurnal Patterns and Drivers

of Surface Urban Heat Island

Intensities across Local Climate

Zones. Remote Sens. 2023, 15, 5061.

https://doi.org/10.3390/

rs15205061

Academic Editor: Janet Nichol

Received: 6 July 2023

Revised: 19 October 2023

Accepted: 19 October 2023

Published: 21 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Identifying Major Diurnal Patterns and Drivers of Surface
Urban Heat Island Intensities across Local Climate Zones
Yongjuan Guan 1,2, Jinling Quan 1,2,*, Ting Ma 1,2 , Shisong Cao 3 , Chengdong Xu 1,2 and Jiali Guo 1,2

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
guanyongjuan5548@igsnrr.ac.cn (Y.G.); mting@lreis.ac.cn (T.M.); xucd@lreis.ac.cn (C.X.);
gjl1521660chd@gmail.com (J.G.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
3 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,

Beijing 100044, China; caoshisong@bucea.edu.cn
* Correspondence: quanjl@lreis.ac.cn

Abstract: Deepening the understanding of diurnal characteristics and driving mechanisms of surface
urban heat islands (SUHIs) across different local climate zones (LCZs) and time scales is of great
significance for guiding urban surface heat mitigation. However, a comprehensive investigation of
SUHIs from the diurnal, local, multi-seasonal, and interactive perspectives remains a large gap. Here,
we generalized major diurnal patterns of LCZ-based SUHI intensities (SUHIIs) throughout 2020
over the urban area of Beijing, China, based on diurnal temperature cycle modeling, block-level LCZ
mapping, and hierarchical clustering. A geographical detector was then employed to explore the
individual and interactive impacts of 10 morphological, socioeconomic, and meteorological factors
on the multi-temporal spatial differentiations of SUHIIs. Results indicate six prevalent diurnal SUHII
patterns with distinct features among built LCZ types. LCZs 4 and 5 (open high- and mid-rise
buildings) predominantly display patterns one, two, and five, characterized by an afternoon increase
and persistently higher values during the night. Conversely, LCZs 6, 8, and 9 (open, large, and
sparsely built low-rise buildings) mainly exhibit patterns three, four, and six, with a decrease in
SUHII during the afternoon and lower intensities at night. The maximum/minimum SUHIIs occur in
the afternoon–evening/morning for patterns 1–3 but in the morning/afternoon for patterns 5–6. In
all four seasons, the enhanced vegetation index (EVI) and gross domestic product (GDP) have the top
two individual effects for daytime spatial differentiations of SUHIIs, while the air temperature (TEM)
has the largest explanatory power for nighttime differentiations of SUHIIs. All factor interactions are
categorized as two-factor or nonlinear enhancements, where nighttime interactions exhibit notably
greater explanatory powers than daytime ones. The strongest interactions are EVI ∩ GDP (q = 0.80)
during the day and TEM ∩ EVI (q = 0.86) at night. The findings of this study contribute to an
improved interpretation of the diurnal continuous dynamics of local SUHIIs in response to various
environmental conditions.

Keywords: surface urban heat island; land surface temperature; local climate zone; geographical
detection; diurnal dynamics

1. Introduction

Urban heat island (UHI) is a worldwide phenomenon characterized by significantly
higher temperatures in cities compared to the surrounding rural areas [1–3]. It has signifi-
cant impacts on regional climate, energy consumption, air quality, vegetation ecology, and
population health [4,5]. Gaining a deeper understanding of the spatiotemporal variations
and driving mechanisms of UHIs is crucial for guiding urban thermal management.

Previous studies have mainly relied on a fuzzy urban–rural dichotomy to assess
temperature differences [6,7]. However, there is a lack of a consistent standard for urban–
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rural division, which has hampered comparisons and led to contradictions among UHI
studies [8,9]. Moreover, it is difficult to portray complex intra-urban variability in local
thermal environments [10,11]. To describe internal urban structures and properties in a
more objective, standardized, and quantitative way [12], Stewart et al. [10] introduced the
concept of local climate zones (LCZs), consisting of 17 building types and land cover types
with uniform surface covers, structures, materials, and human activities.

LCZ-based UHI studies have been rising in recent years and are divided into two main
categories: canopy UHIs (CUHIs) [13–15] and surface UHIs (SUHIs) [8,16,17]. The former
mainly reveals the near-surface temperature differences among different LCZ types through
station observations [13,18], mobile measurements [14], and numerical simulations [10,15].
However, the spatial representativeness of station observations is usually insufficient, the
financial investment in mobile measurements is substantial, and the model uncertainty for
realistic scenario simulations can be considerable. Alternatively, others utilized remotely
sensed land surface temperature (LST) observations with the advantages of wide coverage
and low cost to characterize SUHIs via inter-LCZ comparative analysis [16,19–22]. SUHIs
are closely related to, yet distinct from, CUHIs, particularly at the diurnal scale, where they
can exhibit contrasting patterns of variation [23,24]. However, due to the limited temporal
frequency of fine-resolution LST observations, previous LCZ-based SUHI studies have
primarily focused on the annual patterns and several discrete moments [8,17,25], posing
challenges in capturing the diurnal continuous dynamics of SUHIs. For instance, Bechtel
et al. [8] used LCZs to conduct a comprehensive comparison of SUHIs among 50 global
cities at four MODIS overpass times, and Chang et al. [25] examined thermal patterns of
each LCZ in Xi’an, China at several moments of ECOSTRESS observations.

Regarding these limitations, researchers have begun to utilize spatiotemporally en-
hanced LSTs for diurnal investigation. For example, Quan [20] generated hourly 100 m
LSTs based on an integrated fusion of Landsat, MODIS, and FengYun-2F LSTs and then
analyzed the multi-temporal thermal differences among LCZ types in Beijing, China. How-
ever, their analysis focused on LSTs rather than SUHIs. Dong et al. [16], on the other
hand, investigated the characteristic parameters of diurnal SUHI intensities (SUHIIs) for
built LCZ types in Nanjing, China, via monthly composite diurnal LSTs of 100 m from
the combination of spatial downscaling and diurnal temperature modeling. Nevertheless,
temporal averaging by month/season/year is somewhat subjective and insufficient to
characterize major patterns from complex diurnal dynamics of SUHIIs across varied LCZs
and times.

In terms of interpretation of the diurnal SUHII variability, previous studies have of-
ten investigated single or multiple drivers through spatial comparative analysis [26] and
linear regression/correlation [27,28]. The former compares the SUHI differences among
surface categories, which is often used in LCZ-based SUHI studies. However, this method
presents challenges in quantifying the contribution of each factor. The latter assumes
linear dependencies between SUHI and drivers, whereas there is no strict standard linear
correspondence between them, and complex interactions exist during SUHI formation and
evolution [29]. Alternatively, the geographical detector (geodetector) measures geographic
attributions and driver interactions based on spatial heterogeneity without linear assump-
tions [30]. The use of geodetector to explore the diurnal SUHII variations would help
improve our understanding of the individual and interactive effects of different factors,
especially at a diurnal scale; however, such exploration is in great lack [31].

Overall, despite the remarkable progress that has been made, there are still gaps in
the generalization of the diurnal continuous variation patterns of SUHIIs across diverse
LCZs and the quantification of interactive driving effects behind the spatial differentiations
of SUHIIs. Consequently, the current understanding of the variety and taxonomy of the
prevalent diurnal SUHII patterns across LCZs remains a large deficiency. To address these
issues, here we identify the major diurnal patterns of SUHIIs across different built LCZ
types and months in Beijing, China, based on diurnal temperature cycle (DTC) modeling,
block-level LCZ mapping, and hierarchical clustering. We then adopt the geodetector to
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quantify the individual and interactive impacts of multiple morphological, socioeconomic,
and meteorological factors on the spatial stratified heterogeneity of SUHIIs during the
day–night and across seasons. The findings of this study contribute to an improved
interpretation of SUHI variability in response to the local environment at a diurnal scale
and provide valuable insights for enhancing urban thermal regulation.

2. Study Area and Data
2.1. Study Area

Beijing (39◦28′N–41◦05′N, 115◦25′E–117◦30′E) covers a total area of 16,410 km2 with
an average altitude of 1000–1500 m in the western and northern mountainous areas and
20–60 m in the southeastern plains. It has a warm, temperate, semi-humid, and semi-
arid monsoon climate, experiencing hot and rainy summers and cold and dry winters.
The annual average temperature and precipitation in the plain areas are 11–13 ◦C and
500–600 mm, respectively. Beijing has a dense population of approximately 21.9 million
and a high urbanization rate of around 87.5% (Beijing Statistical Yearbook, 2020), and has
been exhibiting significant UHI effects for years in the city core area, i.e., around and within
the Fifth Ring Road, which was therefore chosen as our main study area (Figure 1).
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2.2. Data for DTC Modeling

We downloaded MODIS daily 1 km LST products throughout 2020 (Collection 6.1,
https://appeears.eartHD_Batacloud.nasa.gov/, accessed on 16 April 2022), including
MOD11A1, acquired at ~10:30 and ~22:30, and MYD11A1, acquired at ~13:30 and ~01:30
local time. These products were retrieved by a generalized split-window algorithm [32]
with an overall accuracy within 2 K [33]. Pixels affected by clouds and aerosols were
excluded based on the associated QA file. For the DTC modeling over the study area, we
selected four consecutive MODIS images with the clearest LST observations per month,
i.e., on 30 January, 22 February, 4 March, 30 April, 18 May, 12 June, 23 July, 2 August, 18
September, 18 October, 9 November, and 20 December 2020.

2.3. Data for LCZ Mapping

We obtained a vector-based city street map (CSM, Figure 1d, http://www.navinfo.
com/en/aboutus/index.aspx, accessed on 10 March 2022) that contains key attribute infor-
mation to characterize the urban morphology, including blocks, buildings (height), roads,
green spaces, and water. It was converted to 30 m × 30 m grids to match the other two
auxiliary data: Landsat 8 and land cover map (LCM). The Landsat 8 data, downloaded from
the USGS (http://earthexplorer.usgs.gov/, accessed on 10 March 2022), contain red and
near-infrared (VNIR) bands for calculating vegetation fractions. The LCM (Figure 1c) was
collected from the Peng Cheng Laboratory (http://data.starcloud.pcl.ac.cn/zh, accessed
on 11 March 2022). It was retrieved from the Landsat series through supervised classifi-
cation, consisting of forest, cropland, grassland, shrubland, water, wetland, impervious
land, and bare land. The LCM was mainly used here as a reference for distinguishing
vegetation types.

2.4. Driving Factors

A total of 10 morphological [34–36], socioeconomic [27,37], and meteorological [37]
factors were selected for the geodetector-based attribution analysis. For the sake of brevity,
their details are listed in Table 1, and spatial distributions are shown in Figure 2. The
collection of these drivers followed four main criteria: (1) they have demonstrated influ-
ences on SUHIs in previous studies; (2) they are easily quantifiable in space and time;
(3) they encompass various dimensions and perspectives; and (4) they avoid information
redundancy as much as possible. The hourly atmospheric pressure (PRS), relative humidity
(RHU), and air temperature (TEM) data were measured at 800 ground stations, interpolated
to 1 km grid cell using the spline strategy, and then composed into eight (2 × 4) datasets to
facilitate daytime (08:00–16:00) and nighttime (20:00–04:00) analysis across four seasons.
The monthly enhanced vegetation index (EVI) data were also aggregated to a seasonal scale
but served as a common independent variable for both day and night. The yearly data,
including modified normalized difference water index (MNDWI), building surface fraction
(BSF), mean building height (BH), gross domestic product (GDP), population density (PD),
and road density (RD), were used as constants throughout days and seasons.

Table 1. Details on the driving factors.

Indicator Description Temporal
Resolution

Spatial
Resolution Source Calculation

Morphological Factors

EVI Enhanced vegetation index Monthly 500→1000 m MOD13A3 1

MNDWI 2 Modified normalized
difference water index Yearly 10→1000 m Sentinel 2 (Green–MIR)/(Green+MIR)

BSF Building surface fraction Yearly 10→1000 m CSM Total building area/grid area 3

BH Mean building height Yearly 10→1000 m CSM Total building height/total
building numbers

https://appeears.eartHD_Batacloud.nasa.gov/
http://www.navinfo.com/en/aboutus/index.aspx
http://www.navinfo.com/en/aboutus/index.aspx
http://earthexplorer.usgs.gov/
http://data.starcloud.pcl.ac.cn/zh
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Table 1. Cont.

Indicator Description Temporal
Resolution

Spatial
Resolution Source Calculation

Socioeconomic Factors

GDP Gross domestic product Yearly 1000 m RESDC 4

PD Population density Yearly 1000 m RESDC
RD Road density Yearly 1000 m CSM Total road area/grid area

Meteorological Factors

PRS Atmospheric pressure Hourly Site→1000 m CMDC 5 Spline interpolation
RHU Relative humidity Hourly Site→1000 m CMDC Spline interpolation
TEM Air temperature Hourly Site→1000 m CMDC Spline interpolation

1 downloaded from https://appeears.earthdatacloud.nasa.gov/, accessed on 4 June 2022. 2 calculated from
all clear-sky Sentinel 2 data in 2020 and averaged to a yearly dataset. 3 grid area = 1 km × 1 km. 4 Resource
and Environment Science and Data Center (http://www.resdc.cn, accessed on 19 September 2022). 5 China
Meteorological Data Service Center (https://data.cma.cn/en, accessed on 10 October 2022).
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Figure 2. Spatial distributions of the driving factors at a yearly scale. (a) Enhanced vegetation
index (EVI); (b) Modified normalized difference water index (MNDWI); (c) Building surface fraction
(BSF); (d) Mean building height (BH); (e) Gross domestic product (GDP); (f) Population density (PD);
(g) Road density (RD); (h) Atmospheric pressure (PRS); (i) Relative humidity (RHU); and (j) Air
temperature (TEM).

3. Methodology

The research framework of this study consists of four main steps (Figure 3):
(1) reconstruction of diurnal LSTs based on the selected MODIS LSTs and a modified
four-parameter DTC model; (2) classification of LCZs by a GIS-based block-level mapping

https://appeears.earthdatacloud.nasa.gov/
http://www.resdc.cn
https://data.cma.cn/en
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approach [38] for built-up and land-cover types; (3) identification of major diurnal patterns
of SUHIIs across different LCZs and months; and (4) geographical detection of SUHII
differentiations with 10 driving factors at multiple time scales.
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Figure 3. Flowchart of this study.

3.1. Reconstruction of Diurnal LSTs

Many DTC models have been proposed to reconstruct diurnal continuous LSTs from
sporadic thermal observations with four or more parameters [39–44]. There is usually a
trade-off between applicability and accuracy [45,46]. Given the maximum of four MODIS
observations per day and the focus of this study on major patterns across seasons, the model
proposed by Inamdar et al. [43] was adopted with a zero assumption on the temperature
difference between adjacent sunrise times [39]. Specifically, the diurnal temperature varia-
tion with time (T(t)) is described as a combination of harmonic and hyperbolic functions
based on thermal diffusion and Newton’s cooling law:

T(t) =

 Tday(t) = T0 + Ta cos
[(

π
ω

)
(t− tm)

]
, t < ts

Tnight(t) = T0 +
[
Ta cos

(
π
ω (ts − tm)

)] k
(k+t−ts)

, t ≥ ts
(1)
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with 
k = ω

π tan−1( π
ω (ts − tm)

)
ω = 2

15 arccos(− tan φ tan δ)

δ = 23.45 sin
( 360

365 (284 + DOY)
)

where T0 is the lowest early morning temperature; Ta is the diurnal temperature ampli-
tude; tm is the time when the temperature reaches its maximum; ts is the time when the
temperature begins to decay freely; ω represents the half period of the cosine term; k is the
attenuation constant; φ is the latitude; δ is the solar declination; and DOY is the day of year.

T0, Ta, tm and ts are the four unknown parameters, which were solved pixel-by-pixel
with the nonlinear least square fitting method in MATLAB using the four MODIS LST
images selected per month (Section 2.2). Subsequently, diurnally continuous LSTs were
reconstructed for the specified day each month by substituting the solved parameters into
Equation (1).

3.2. Classification of LCZs

The study area was classified into 15 LCZ types using a simple GIS-based block-level
mapping method we proposed previously [38]. The basic idea of this approach is to calculate
five key morphological and coverage indicators for each block, based on which blocks are
hierarchically assigned with the most appropriate LCZ types regarding their typical ranges
defined in the LCZ scheme. The five indicators include BSF, BH, pervious surface fraction
(PSF), impervious surface fraction (ISF), and sky view factor (SVF). They were calculated
from the CSM attributes, Landsat VNIR bands, and LCM and averaged for each block. The
hierarchical classification principle is illustrated in Figure 4: LCZs 1, 2, 4, 5, and 9 were first
distinguished based on BSF and BH; LCZs 3, 6, 7, and 8 were then classified by combining
BSF, BH, and one of the remaining indicators; and finally blocks with BH < 10 m and BSF
< 10% were classified as LCZs A–G according to the natural land surface types provided in
CSM and LCM. More details on the approach can be found in Quan [38].

3.3. Identification of Major Diurnal Patterns of SUHIIs

As one of the most representative indicators for SUHI, the SUHII was calculated
hour-by-hour for different LCZs based on the diurnal LST data and LCZ map generated
earlier. Specifically, the LCZ-based SUHII is defined as the average LST difference between
a specific built LCZ type and a land cover type (typically LCZ D) [16,19]:

SUHII(t)LCZX =
∑m

i=1T(i, t)LCZX

m
−

∑n
j=1T(j, t)LCZD

n
(2)

where SUHII(t)LCZX represents the SUHII of LCZ X at time t; T(i, t)LCZX and T(j, t)LCZD
denote the LSTs of pixel i in LCZ X and pixel j in LCZ D at t, respectively; m and n are the
total numbers of i and j, respectively. Herein, X = 4, 5, 6, 8, and 9, while other built LCZ
types were excluded from this calculation owing to their insufficient samples in the study
area in comparison to those of LCZ D.

To identify the major diurnal patterns of SUHIIs across different LCZs and months,
a hierarchical clustering analysis was performed on the 60 groups (12 months × 5 main
built LCZ types) of diurnal SUHII curves. Specifically, each of the samples was initially
assigned to a separate class, and those with the smallest distance were merged iteratively
to form a comprehensive class. There are several methods to measure the distance between
classes. In this study, the longest distance was adopted according to the practical clustering
performance, and the sum of distances and a similarity of 40 were employed as the criteria
for clustering centroids and divisions. Five characteristic parameters were then calculated
for each clustered diurnal pattern, including the maximum SUHII (Imax), minimum SUHII
(Imin), nocturnal (20:00–04:00) average SUHII (Inight), time of Imax (tmax), and time of
Imin (tmin).
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3.4. Geographical Detection of SUHII Differentiations

The geodetector q statistic was applied to analyze the spatial stratified heterogeneity of
SUHIIs and their driving mechanisms across different seasons and day–night periods [47].
The basic concept is that if independent variables significantly affect the dependent variable,
they would have consistent spatial distribution characteristics and stratified heterogene-
ity [48]. The q statistic can be expressed as follows:

q(X) = 1− ∑L
h=1Nhσ2

h
Nσ2 (3)

where h is the layer Y based on X stratification; L is the total number of layers; N and Nh
are the numbers of pixels in the entire region and layer h, respectively; σ2 and σ2

h are the
variances of Y in the entire region and layer h, respectively. The calculation software and
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tutorial can be found on the Geodetector Learning website at http://www.geodetector.cn/,
accessed on 30 September 2023.

Herein, the Y variable represents the seasonal daytime (08:00–16:00) and nighttime
(20:00–04:00) average SUHIIs at the pixel level, with respect to the average LST in LCZ D.
The X variable is one of the 10 driving factors (Table 1). Each X was stratified into 9 layers
using a quantile classification method. The resultant q ranges from 0 to 1, indicating the
individual explanatory power of a given factor X on the spatial stratified heterogeneity of
SUHIIs, expressed as q × 100%. By further calculating and comparing q(X1), q(X2), and
q(X1 ∩ X2), the interaction effect of any two factors can be determined, as shown in Table 2.

Table 2. Types of interactions between two variables.

Creterion Interaction Type

q(X1 ∩ X2) < Min(q(X1), q(X2)) Nonlinear weakening
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Single-factor nonlinear weakening

q(X1 ∩ X2) > Max(q(X1), q(X2)) Two-factor enhancement
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement

4. Results
4.1. A general View of the LCZs and Corresponding LSTs

The four DTC parameters (T0, Ta, tm and ts) derived for the 12 months are illustrated
in Figure 5. T0 reaches its peak in summer (close to 300 K) and slump in winter (<275 K).
The overall trend accords with the annual temperature cycle driven by solar radiation in
Beijing. Ta mostly ranges from 15 K to 20 K, while dropping by 1–3 K in August, December,
and January, i.e., the hottest and coldest months. tm (11:00–14:00) and ts (15:00–18:00)
have similar monthly variations, indicating that an earlier temperature peak is usually
accompanied by an earlier temperature decay and vice versa. The absolute fitting error in
comparison to the MODIS input is 0.76 K. The resulting hourly LSTs were further compared
to the hourly seamless LST product (0.02◦) generated by Cheng et al. [49], yielding a mean
absolute difference of 2.52 K.
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maximum; and (d) ts is the local time when the temperature begins to decay freely.
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Figure 6 shows the LCZ map generated over the study area. Previous validation
against field samples reveals an agreement of ~90% [38]. The dominant built LCZ types
are open high-rise (LCZ 4), open mid-rise (LCZ 5), open low-rise (LCZ 6), large low-rise
(LCZ 8), and sparsely built (LCZ 9), each accounting for more than 5% of the total. Among
them, LCZ 5 is the most widely distributed (28.8%), followed by LCZ 6 (12.9%). These five
built LCZ types were selected for subsequent LCZ-based SUHII calculations considering
the sufficient samples that are comparable to those of LCZ D (low plants, 4.7%). In terms of
spatial distributions, Figure 6 shows a general progression from low-rise to mid-rise and
then to low-rise again, moving from the center to the outskirts. Specifically, the central
area consists mainly of open low-rise buildings (LCZ 6), encompassing landmarks like
the Forbidden City and Hutongs. Extending towards the Third and Fourth Ring Roads,
open mid-rise buildings (LCZ 5) become more prevalent, interspersed with open high-rise
buildings (LCZ 4). Continuing towards the Fifth Ring Road, a mixed distribution of open
low-rise buildings (LCZ 6) and sparse buildings (LCZ 9) is observed. Vegetation types
(LCZs A–D) mainly comprise parks and farmlands scattered in the surroundings.
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Combining the LCZ map and diurnal LSTs, Figure 7 exhibits distinct thermal char-
acteristics of various LCZs during the day and night. The LST differences among LCZs
are relatively small and generally stable during the daytime (except for spring), while the
nighttime shows significant variability. At night, the LSTs of both compact (LCZs 1–3) and
open buildings (LCZs 4–6) decline with decreasing building height, with compact buildings
being more affected in summer and winter. During the daytime, the thermal impact of
building height on compact buildings is generally negative in spring and summer and less
significant in autumn and winter. This is consistent with previous findings that growing
building height decreases daytime LSTs and increases nighttime LSTs [25,34]. Furthermore,
for high-rise buildings, compact ones tend to have higher LSTs than open ones. From an
average perspective, vegetation types (LCZs A/B and D) generally have lower LSTs than
built LCZ types for all seasons and day–night periods (except for spring), suggesting that a
SUHI phenomenon constantly controls the study area.
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Figure 7. Thermal characteristics of different LCZs during the daytime (08:00–16:00) and nighttime
(20:00–04:00) in four seasons.

4.2. Diurnal Patterns of SUHIIs across Different LCZs and Months

Figure 8 shows the diurnal variations of SUHIIs of five main built LCZ types (LCZs 4,
5, 6, 8, and 9) in 12 months and four seasons. It illustrates a similar diurnal pattern between
LCZs 4 (open high-rise) and 5 (open mid-rise), which is characterized by a rapid decrease
in the morning, followed by a sharp increase in the afternoon, peaking around 18:00, and
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then exhibiting slow changes during the night. However, there are differences between the
seasons. Specifically, for LCZs 4 and 5, the diurnal SUHII amplitudes in autumn and winter
are larger than those in spring and summer, and an overall increasing/decreasing trend
in SUHII after ~18:00 is presented in summer/autumn. As for SUHIIs of LCZs 6 (open
low-rise), 8 (large low-rise), and 9 (sparsely built), the variations after ~15:00 are consistent
throughout the seasons, i.e., SUHIIs decrease from ~15:00 to ~19:00 and remain low at
night; however, the patterns from ~9:00 to ~15:00 are rather different, with a predominant
decrease in spring and summer but an increase in autumn and winter. Meanwhile, the
diurnal variations of LCZ-based SUHIIs significantly differ within seasons [16]. Specifically,
in March and April, the SUHII variation in each LCZ accords closely with its average in
spring; however, in May, the patterns are opposite to its seasonal average. For the months
of June–August, the diurnal SUHII patterns are similar to the summer average, but LCZs 6,
8, and 9 exhibit peak values around 15:00 in August, while the peak values occur between
8:00 and 12:00 in June and July. In autumn, there are substantial differences in SUHIIs
among various built LCZ types across months, but both LCZs 4 and 5 show sharp peaks
around 18:00 throughout the season. The winter months experience the most stable and
consistent diurnal SUHII patterns for a given LCZ type. Notably, LCZ 4 exhibits a cold
island phenomenon between 10:00 and 14:00 in December and January, which may be
partially attributed to shading effects from high-rise buildings [50,51].
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It can be seen that the seasonally averaged diurnal curve, a common approach in
previous studies, still has some insufficiency and complexity in expressing major diurnal
patterns of SUHIIs across different LCZs and months. In order to promote a more general
understanding of these variation characteristics, a hierarchical clustering analysis was
conducted (Section 3.3), and six primary diurnal patterns with distinct features were
identified (Figures 9–11). In general, LCZs 4 and 5 predominantly display patterns one,
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two, and five, characterized by an afternoon increase in SUHII, which then sustains at
higher values at night (Inight > 1.2 K). Conversely, LCZs 6, 8, and 9 mainly exhibit patterns
three, four, and six, showing a decrease in SUHII during the afternoon hours and lower
intensities at night (Inight ≤ 1.2 K), except that during November–January, pattern two
dominates instead probably due to increased LSTs in these low-rise buildings caused by
extensive winter heating. Moreover, opposite trends in the timing of extreme SUHIIs are
observed between patterns 1–3 and patterns 5–6: tmax and tmin for patterns 1–3 occur in the
afternoon/evening and morning, respectively, whereas for patterns 5–6, they appear in the
morning and afternoon, respectively.
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Figure 10. Six major diurnal SUHII patterns of various LCZs and their associated LST cycles in-built
LCZ types (LCZ b) and LCZ D. For each pattern, the boxplot includes the contemporaneous SUHIIs
in all LCZs and months classified into that pattern in Figure 9, and the mean value is adopted to form
the major pattern. Similarly, the associated LSTs are averages among these LCZs and months.
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Figure 11. Characteristic parameters of the major diurnal SUHII patterns in Figure 10 (p is an
abbreviation for “pattern”). (a) shows the maximum SUHII (Imax), minimum SUHII (Imin) and
nocturnal (20:00–04:00) average SUHII (Inight), and (b) shows the time of Imax (tmax) and time of
Imin (tmin).

The specific features of the six major diurnal patterns are described as follows.
Pattern one (Figure 10a): SUHII decreases rapidly after sunrise, reaching its lowest

value around noon, followed by a sharp increase, exhibiting the highest rate of change
during the day among these patterns. After 18:00, SUHII remains consistent at ~2 K,
stronger than that during the day. It has the largest Imax and Inight, and the lowest Imin
(close to zero), indicating the strongest diurnal variations in SUHII. The LST curves also
demonstrate a close resemblance between the built LCZ types and LCZ D around noon,
with the most significant differences during the night. This pattern is common in open
high- and mid-rise buildings (LCZs 4 and 5), covering most months in winter, spring,
and autumn.

Pattern two (Figure 10b): SUHII shows a minor decrease followed by an increase
during the day, with a peak around 18:00, and then slightly decreases to around 1.2 K
during the night. Its primary difference from pattern one lies in the morning evolution of
SUHII and the weaker magnitude of change throughout the day. The short-term decrease
in SUHII after sunrise may be attributed to a shadow effect at the low solar altitude that
alleviates the heating rate of building types [52]. Nevertheless, the shadow effect will soon
be overpowered by the contrasting thermal inertia difference between buildings and low
plants as the solar altitude increases with time, leading to a subsequent rise in SUHII. This
rationalizes why this pattern occurs mostly in low-rise buildings (LCZs 6, 8, and 9) in
winter and high-/mid-rise buildings (LCZs 4 and 5) in April–May and September–October.

Pattern three (Figure 10c): SUHII continues to increase until a prominent peak appears
around 15:00, followed by a decrease until ~19:00 and constancy at ~1 K throughout the
night. This pattern is present in low-rise buildings (LCZs 6, 8, and 9) in May, August,
and September. It differs from all the other patterns in the continuous rise of SUHII from
morning to early afternoon, which is probably related to the dominant cooling effect of
abundant vegetation coverage in LCZ D in growing seasons.

Pattern four (Figure 10d): SUHII exhibits a peak around 15:00 and two valleys around
11:00 and 19:00, with a gradual increase during the night. The overall SUHII and diurnal
variations are weak, mostly ranging from 0.5 K to 1 K. This pattern occurs less frequently
than others, appearing only in LCZs 6, 8, and 9 in February and LCZ 5 in August.

Pattern five (Figure 10e): SUHII decreases until ~14:00 and then rises slowly to around
1.5 K for the rest of the day. This pattern maintains a relatively high level of SUHII (>1 K)
throughout the day in comparison to others. It primarily occurs in LCZs 4 and 5 during
June–August.
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Pattern six (Figure 10f): SUHII rises just before 9:00, drops from about 2 K to 0.5 K by
~16:00, and then slowly rises to around 1 K. This pattern is often observed in LCZs 6, 8, and
9 and from April to October.

4.3. Individual and Interactive Effects of Driving Factors

Table 3 shows that the explanatory power of each driving factor exhibits significant
seasonal and day–night differences, where all q-values pass the significance test (p < 0.01),
except for those of MNDWI, BH, and PRS during the spring daytime. In general, the
explanatory power is lower in spring than in other seasons, which may be attributed to
the significant reduction in human activities during the COVID-19 lockdown in Beijing
and the associated substantial weakening of SUHII and spatial variations [53]. For daytime
spatial differentiations of SUHIIs, EVI, and GDP have the top two impact degrees in all four
seasons, while BSF, PD, RD, and RHU rank third from spring to winter, respectively. TEM
has the largest explanatory power for nighttime spatial differentiations of SUHIIs across
seasons, which is followed by PD and RD in spring and by EVI and RHU in summer–winter.
In terms of mean q-value, the top three factors are EVI > TEM > GDP = RHU, while MNDWI
exhibits the least explanatory power.

Table 3. The geodetector q statistic of each driving factor on the spatial stratified heterogeneity of
SUHIIs across four seasons and day–night periods.

Factors
Spring Summer Autumn Winter

Average
Day Night Day Night Day Night Day Night

Morphological Factors
EVI 0.21 0.32 0.60 0.66 0.58 0.63 0.23 0.54 0.47

MNDWI 0.04 * 0.14 0.19 0.22 0.14 0.23 0.06 0.19 0.15
BSF 0.19 0.15 0.26 0.21 0.30 0.18 0.19 0.17 0.21
BH 0.02 * 0.22 0.12 0.37 0.08 0.20 0.03 0.34 0.17

Socioeconomic Factors
GDP 0.21 0.45 0.37 0.41 0.43 0.46 0.32 0.45 0.39
PD 0.08 0.52 0.28 0.46 0.34 0.44 0.22 0.46 0.35
RD 0.08 0.47 0.19 0.41 0.42 0.52 0.20 0.45 0.34

Meteorological Factors
PRS 0.02 * 0.27 0.27 0.36 0.16 0.28 0.13 0.26 0.22
RHU 0.15 0.44 0.28 0.57 0.26 0.53 0.26 0.64 0.39
TEM 0.11 0.61 0.16 0.73 0.15 0.73 0.10 0.71 0.41

Ranking of the 10 factors for each column
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nology and solar insolation, reaching the lowest value during the daytime of cold (leaf-
off) seasons [34]. EVI also presents significant controls (q ≥ 0.54) on the spatial differentia-
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Among the morphological factors, EVI exhibits the strongest average explanatory
power. Particularly during the summer daytime, a q-value of up to 0.60 is obtained. This is
mainly due to the well-known cooling effect via vegetation evapotranspiration and canopy
shading [54]. Accordingly, the q-value of EVI gradually changes with vegetation phenol-
ogy and solar insolation, reaching the lowest value during the daytime of cold (leaf-off)
seasons [34]. EVI also presents significant controls (q ≥ 0.54) on the spatial differentiations
of summer, autumn, and winter nighttime SUHIIs, which is most likely related to the
albedo-induced radiative warming effect of plant canopies [55]. This is consistent with the
pronounced nocturnal variation characteristics of LSTs/SUHIIs among LCZs (Figures 7–11).
Meanwhile, as many studies have noted, BSF is a key factor influencing the local-scale
thermal differentiation [56], especially during the daytime when building canyons and ma-
terials demonstrate strong heat storage capacities and eventually substantial contributions
to increased SUHIIs [57]. In contrast to BSF, BH exhibits a higher explanatory power for
the nighttime SUHIIs (0.20 ≤ q ≤ 0.37) than for the daytime SUHIIs (0.02 ≤ q ≤ 0.12). This
supports to some extent the general dichotomy between high-/mid-rise buildings (LCZs 4
and 5) and low-rise buildings (LCZs 6, 8, and 9) in terms of major diurnal SUHII patterns
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with significant Inight differences in each month (Figures 9 and 11). The overall explanatory
power of BH is slightly lower than that of BSF.

Among the socioeconomic factors, GDP has the strongest power to explain the daytime
SUHII variations (0.21≤ q≤ 0.43), which could be attributed to its comprehensiveness with
respect to PD and RD regarding human activity, surface morphology, and zonal function.
For nighttime SUHII variations, GDP, PD, and RD show close contribution magnitudes
(0.41–0.52), mainly revealing the impact of anthropogenic heat emissions [58]. Among
them, PD and RD are the second- and third-ranked explanatory variables during the spring
nighttime. One possible reason for this is the strict COVID-19 lockdown in Beijing in the
spring of 2020, which has led to reduced human mobility and increased transportation of
goods, thus maybe increasing the explanatory powers of the annual PD and RD datasets
at night.

Among the meteorological factors, TEM plays a dominant role in determining the
spatial variation in nighttime SUHIIs, with an explanatory power ranging from 61% to 73%.
This is consistent with previous studies, indicating a strong correlation between nighttime
atmospheric and surface temperatures [59]. Research has also suggested that nighttime
humidity can control surface cooling [60], which may explain the higher explanatory power
of RHU (44% to 64%) at night. On the other hand, the daytime q-values of TEM and RHU
are notably lower. This could be attributed to the fact that the daytime SUHII mechanism
is more complex [61] and influenced more by surface morphology and human activities.
Compared to RHU and TEM, the influence of PRS on the spatial variation in SUHIIs
is limited.

Furthermore, interactive effects among 10 driving factors are shown in Figure 12. The
interaction types are either two-factor enhancement or nonlinear enhancement, indicating
that the driving effects on SUHII are not independent but rather interdependent, and the
interaction between any two factors can enhance the impact on SUHIIs. The nonlinear
enhancement interaction primarily occurs during the daytime, while nighttime interactions
are mostly categorized as two-factor enhancement, implying that the daytime driving
mechanism may be more complex than the nighttime counterpart.

During the spring daytime, all the interactions are nonlinear enhancement. The
largest individual effect is 0.21 (q(EVI) and q(GDP)), while the interactive effect can reach
0.53 (q(TEM ∩GDP)) and 0.51 (q(RHU ∩GDP)). This may suggest that the urban thermal en-
vironment in the spring of 2020 is more dependent on the response of local socioeconomics
to variable meteorological conditions. The winter daytime has the second largest number
of factor pairs with nonlinear enhancement. Particularly, MNDWI, BH, PRS, and TEM
have extremely low individual effects; nonetheless, their explanatory powers are highly
strengthened by nonlinear interactions with any other factor. In summer and autumn, the
strongest interaction factors for daytime SUHIIs are EVI ∩ GDP, EVI ∩ PD, EVI ∩ RHU, and
EVI ∩ TEM (q ≥ 0.69). They are also the factors with the highest individual effects (Table 3).
During the nighttime, the top three interactive effects always involve TEM, regardless of
the season. This further confirms the substantial part played by TEM in characterizing the
nighttime thermal patterns, whether as a single factor or interacting with other factors.
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5. Discussion

This study focused on the combined use of a series of methods (i.e., DTC modeling,
LCZ mapping, hierarchical clustering, and geodetector analysis) to identify the major diur-
nal patterns of SUHIIs of built LCZ types and the driving factors for spatial differentiations
of SUHIIs that have not been fully understood before. It mainly innovated in three aspects.
First, SUHIIs based on an LCZ scheme were comprehensively examined at a continuous
diurnal scale and over 12 months. Second, six major diurnal patterns of SUHIIs were
generalized and elucidated in detail across different built LCZ types and months based on
hierarchical clustering analysis. Third, the spatial stratified heterogeneity of SUHIIs during
four seasons and day–night periods was explored from both individual and interactive
perspectives using the geodetector.

The results contribute to expanding our understanding of the diurnal variations in
the local thermal environment associated with different types of urban buildings and
the complex driving effects of urban morphological, socioeconomic, and meteorological
conditions. For example, the major pattern one and pattern two identified in this study
accord well with the “weak-spoon” pattern and “quasi-spoon” pattern defined by Lai
et al. [52], respectively; nevertheless, the major patterns 3–6 are not recognized as the
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typical diurnal patterns of SUHIIs in their study. This is mainly because they focused on
nationwide cities with higher levels of urbanization based on the urban–rural dichotomy
and thus may have difficulties capturing the diurnal variations primarily associated with
low-rise buildings (LCZs 6, 8, and 9). Pattern one was found common in open high-
and mid-rise buildings (LCZs 4 and 5) in winter, spring, and autumn. This rationalizes
the diurnal SUHII change during this period in Beijing characterized by an urban–rural
delineation in the study of Zhou et al. [62], as LCZs 4 and 5 have larger numbers and
greater variations than other built LCZ types and exert a higher impact on the urban-
averaged SUHII. This pattern also supports Dong et al. [16] on the transition of SUHII
around sunset for high-rise built LCZ types in winter. Moreover, unlike many previous
studies [63,64], this study obtained a high q-value (≥0.54) of EVI for explaining the spatial
SUHII differentiations during the summer, autumn, and winter nighttime. This difference
may be due to the fact that the geodetector here measures the zonal heterogeneity affected
by drivers, while previous studies primarily evaluate the pixel-by-pixel linear relationship,
further indicating that the vegetation albedo-based radiative effect on the nighttime SUHII
is likely to be nonlinear and/or hierarchical [52]. Meanwhile, EVI presents the strongest
interaction effects with GDP, PD, RHU and TEM during the summer and autumn daytime,
implying that it is important to reasonably configure the spatial distribution of vegetation
with locally specific socioeconomic and climatological conditions for further surface heat
mitigation in warm/hot seasons.

Despite these progresses, this study has certain limitations and future aspects as
follows.

(1) In terms of the LST reconstruction and LCZ classification

The DTC model describes clear-sky LST evolutions and requires at least four observa-
tions per day; therefore, the diurnal LSTs were reconstructed under the assumption of 24 h
of cloudlessness with a resolution of 1 km on a monthly basis. This could lead to slightly
reduced magnitudes of spatiotemporal variations in LCZ-based SUHIIs [11], difficulties in
characterizing practical diurnal thermal patterns under all-weather/overcast/rainy condi-
tions [65], and the lack of appropriateness in tropical and high-latitude regions [66]. The
use of microwave and/or reanalysis data associated with sophisticated spatiotemporal
reconstruction models to generate all-weather diurnal high-resolution LSTs [67] would im-
prove the stability and comprehensiveness of the research results. However, such products
are not currently accessible, and advanced data modeling is not the focus of the current
study. Considering that this study mainly concentrated on the major building LCZ types
that have certain aggregation features with sufficient sizes, it is inferred that the overall
patterns of diurnal variations are less affected during the clustering analysis and most
likely still hold at a higher spatial resolution. Another caveat of the DTC model is that
it does not incorporate the directionality of thermal radiation with urban 3D structures
and multi-angle satellite observations. This may disturb the diurnal curves of SUHIIs in
vertical buildings, reduce their comparability over space and time, and lower the explana-
tory powers of 3D morphological factors [68]. Additionally, the GIS-based LCZ mapping
approach heavily depends on high-resolution 3D building and plant information, which
are often unavailable, particularly in under-developed countries and cities. Therefore, it is
desirable to adopt/develop a more widely applicable yet highly accurate LCZ classification
framework to further explore the diurnal SUHII patterns of different LCZ types across
multiple cities or even globally.

(2) In terms of the geographical detection

The geodetector is susceptible to a partitioning effect, meaning that different methods
of discretizing and classifying independent variables would affect the attribution results to
some extent [69]. Therefore, following previous research [37,69], we classified all indepen-
dent variables into the same number of classes using the quantile classification method and
made analyses based on the relative importance or ranks among driving factors. Further
improvements in the reclassification of drivers may consider the regional characteristics
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of each independent variable. Also, incorporating a sufficient number of driving factors
helps avoid fortuitous outcomes of geographical detection. Here, we combined 10 factors
covering distinct perspectives of urban morphology, socioeconomics, and meteorology.
However, due to the limited access to frequent records of socioeconomic conditions, yearly
data were used for seasonal and day–night attribution analysis. This may introduce biases
in assessing the multi-temporal impacts of socioeconomic activities [70], which could be
mitigated by utilizing real-time data on crowd statistics and behaviors (e.g., mobile phone
and microblogging) as well as anthropogenic heat emissions. In addition, while the geode-
tector enables analysis of both single-factor and interaction-factor effects, it is still limited
in capturing the collective interactions among multiple driving factors, which are crucial
for gaining a comprehensive understanding of complex geographic phenomena.

6. Conclusions

In this study, we first reconstructed diurnal LSTs of Beijing in 2020 using MODIS
LST data and a DTC model. Combined with the LCZ classification, we then analyzed the
multi-temporal thermal characteristics of different LCZs. On this basis, diurnal SUHII
patterns were clustered across different built LCZ types and months, and their characteristic
parameters were identified. The geodetector q statistic was further employed to investigate
the driving mechanisms behind multi-temporal spatial differentiations in SUHIIs in associ-
ation with the urban morphological, socioeconomic, and meteorological factors. The main
conclusions are as follows:

(1) There exist six primary diurnal SUHII patterns among five main built types and
12 months. LCZs 4 and 5 (open high- and mid-rise) predominantly exhibit patterns one,
two, and five, with an increase in SUHII in the afternoon, which is maintained at higher
values (Inight > 1.2 K) at night. LCZs 6, 8, and 9 (open, large, and sparsely-built low-rise)
mainly display patterns three, four, and six, with a decrease in SUHII during the afternoon
and lower intensities at night (Inight ≤ 1.2 K). tmax and tmin for patterns 1–3 are in the
afternoon–evening, and morning, respectively, whereas those for patterns 5–6 are in the
morning and afternoon, respectively.

(2) EVI and GDP have the top two explanatory powers for daytime spatial differentia-
tions of SUHIIs in all four seasons, while BSF, PD, RD, and RHU rank third from spring
to winter. TEM has the strongest individual effect for nighttime spatial differentiations of
SUHIIs, followed by PD and RD in spring and EVI and RHU in summer–winter.

(3) Factor interaction types are two-factor and nonlinear enhancement across four sea-
sons. The former/latter mainly exists during the nighttime/daytime, where the nighttime
explanatory powers are greater than the daytime ones. The strongest interactions are EVI
∩ GDP (q = 0.80) during the day and TEM ∩ EVI (q = 0.86) at night.

Future works may incorporate sophisticated models for diurnal all-weather LST
reconstruction with a high spatial resolution covering 3D facets, examine diurnal LCZ-based
SUHIIs for varied cities and climates by combining widely applicable yet highly accurate
LCZ classification frameworks, and explore collective interactions among dynamic driving
factors for a further comprehensive understanding of the complex SUHI phenomena.
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