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Abstract: Parcel-based crop classification using multi-temporal satellite optical images plays a vital
role in precision agriculture. However, optical image sequences may be incomplete due to the
occlusion of clouds and shadows. Thus, exploring inherent time-series features to identify crop
types from incomplete optical image sequences is a significant challenge. This study developed a
contrastive-learning-based framework for time-series feature representation to improve crop clas-
sification using incomplete Sentinel-2 image sequences. Central to this method was the combined
use of inherent time-series feature representation and machine-learning-based classifications. First,
preprocessed multi-temporal Sentinel-2 satellite images were overlaid onto precise farmland parcel
maps to generate raw time-series spectral features (with missing values) for each parcel. Second, an
enhanced contrastive learning model was established to map the raw time-series spectral features to
their inherent feature representation (without missing values). Thirdly, eXtreme Gradient-Boosting-
based and Long Short-Term Memory-based classifiers were applied to feature representation to
produce crop classification maps. The proposed method is further discussed and validated through
parcel-based time-series crop classifications in two study areas (one in Dijon of France and the other
in Zhaosu of China) with multi-temporal Sentinel-2 images in comparison to the existing methods.
The classification results, demonstrating significant improvements greater than 3% in overall ac-
curacy and 0.04 in F1 scores over comparison methods, indicate the effectiveness of the proposed
contrastive-learning-based time-series feature representation for parcel-based crop classification
utilizing incomplete Sentinel-2 image sequences.

Keywords: crop mapping; feature representation; contrastive learning; incomplete time series;
Sentinel-2 image

1. Introduction

Remote sensing techniques have long been an essential method for agricultural mon-
itoring, with their ability to quickly and efficiently collect data on the spatial-temporal
variability of farmlands and crops [1–3]. Remote sensing-based crop-type classifications
could employ a small number of known samples to predict crop types for farmland fields.
Thus, it is a crucial aspect of agricultural monitoring because it is fundamental for numerous
precision agriculture applications (such as crop acreage and yield estimations) [4,5]. Due to
the similarity of crop growth and the limited information from a single Earth observation, it
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can be challenging to distinguish between diverse crop types using a single satellite image,
especially for crops grown during the same season. Exploring and learning time-series
information from multi-temporal satellite images is, therefore, a promising method for
improving crop classification [3,6–8]. Additionally, optical satellite images are easy to
comprehend and interpret, as well as some vegetation indices (such as the normalized
difference vegetation index, NDVI) derived from optical spectral bands, which can indicate
crop growth stages explicitly. Traditionally, agricultural remote sensing applications have
relied heavily on satellite data from optical sensors such as MODIS, Landsat, SPOT, and
the Chinese Gaofen [5,9,10]. However, due to the occlusion of clouds and shadows, for a
special location, optical image observation sequences may be incomplete, as some observa-
tions can be missing. This poses a significant challenge for these methods (especially in
cloudy and rainy regions). On the one hand, the absence of images at essential phenolog-
ical stages could lead to inadequate crop classification performance. On the other hand,
incomplete image sequences increase difficulties when following tasks and severely restrict
the application of time-series crop monitoring [11–13]. Therefore, how to extract inherent
time-series features that can distinguish crop types from these incomplete observation
sequences becomes the key to remote sensing and crop mapping [14,15].

Considerable research and effort have been devoted to constructing time-series fea-
tures (representation) for improving crop classification [16], which can be categorized
into three major groups, (1) important feature-based methods, (2) time-series composition
methods, (3) time-series reconstruction methods, and others. Instead of reconstructing
regular time-series images or features, important feature-based methods attempt to select
prominent images captured during crucial phenological stages for crop identification [17].
For instance, rape and sunflower exhibit distinct yellow spectral features (with greater
spectral reflectance on the red and green bands) during flowering, and paddy fields planted
with rice seedlings are saturated with water, exhibiting higher water index values [3].
In other words, this method is based on an in-depth understanding of crop growth and
phenology and attempts to identify crop types using minor but significant images. Some
studies attempt to apply time-series filtering (such as S-G filtering) on incomplete multi-
temporal images to manually generate phenological dates (such as the start or the end of
the growing season) and then use these dates to identify crop types [18–21]. However, such
methods rely heavily on satellite images during crucial phenological stages, which may
not always be available. In addition, these methods can only differentiate between crops
with significant phenological differences, such as winter wheat and summer corn. It is
challenging to distinguish crops during the same seasons (for example, soy and corn).

Contrary to important feature-based methods, time-series composition methods at-
tempt to use all available satellite images to construct more complete image sequences
for crop classification (but with a longer time interval). In particular, the construction of
satellite constellations significantly shortens their Earth observation (or revisit) periods.
For instance, the revisit periods of the Sentinel-2 constellation with two satellites and the
virtual constellation between Landsat-8 and Landsat-9 are five and eight days, respectively.
Multiple images are captured by these satellites during a particular phenological stage.
Therefore, these images with close acquisition dates can be composited and mosaiced to
produce composited images with lower cloud/shadow coverage [22]. Such approaches
can significantly enhance the completeness of time-series observations. However, such
methods expand the spectral ranges of crop phenological stages, resulting in mixed fea-
ture spaces and overlapping type spaces for crop mapping [23]. Meanwhile, this kind of
method has limited improvement in crop classification. In addition, they cannot completely
eliminate the missing values to construct regular time-series observations in cloudy and
rainy regions.

Time-series reconstruction methods are promising alternatives for dealing with in-
complete time-series observations. By exploring spatial similarity, spectral correlation,
and temporal trends, time-series reconstruction can predict cloud- and shadow-covered
pixels to generate regular time-series images [12,13]. Compared to time-series composi-
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tion methods, these methods produce time-series images with original (or even shorter)
time intervals, which are practical and effective in time-series crop classification. Never-
theless, a few studies [12,24] found that a larger percentage of missing data (including
significant gaps in timestamps and large-area missing) results in greater uncertainty and
over-smoothing, which could mislead subsequent time-series analysis. In addition, time-
series reconstruction methods necessitate additional effort.

To address the issue of incomplete time-series data, another idea is to design algo-
rithms that are capable of utilizing incomplete time series directly. Recent developments
in machine learning have also begun to address the issue of an incomplete time-series
analysis. For instance, by default, the eXtreme Gradient-Boosting (XGBoost) algorithm can
handle missing values. Whenever a missing value is encountered during XGBoost-based
prediction, a default (right) direction is created at each tree node [25,26]. In addition, mask-
ing layers can be used to identify the missing position in time-series data and then feed
them directly into Long Short-Term Memory (LSTM)-based networks.

Despite this encouraging improvement in time-series feature representation for crop
classification using incomplete image sequences achieved using the aforementioned meth-
ods, these approaches have a number of limitations: (1) Existing techniques have not
established a general framework for constructing or learning inherent time-series feature
representations from incomplete image sequences. Moreover, manually crafted features
are limited in their ability to identify specific crop types or phenological periods. (2) Su-
pervised LSTM-based methods typically require a large number of labeled samples for
training. It is, thus, difficult to directly apply them in remote sensing applications with
limitations in labeling [3]. (3) From the standpoint of implementation, algorithms like
XGBoost use a default or assumed trick to handle missing values in time-series data, as
opposed to producing regular feature representation. Therefore, can a general framework
be developed to represent inherent time-series features from incomplete image sequences
in crop classification?

Recent research has focused more on self-supervised learning to extract effective rep-
resentations from unlabeled data. Self-supervised pre-trained models with limited labeled
data can achieve comparable performance to supervised models trained on complete and
labeled data. Particularly, contrastive learning has recently demonstrated its strength for
self-supervised representation learning in the computer vision domain due to its capacity to
learn invariant representations from augmented data [27,28]. Contrastive learning explores
numerous views of input images through the utilization of data augmentation techniques.
It subsequently learns inherent representations by maximizing the similarity between views
originating from the same sample while minimizing the similarity between views from
distinct samples. This technique is widely employed in healthcare data analysis, visual
comprehension, and natural language processing [24,29,30], but it has been underexplored
for remote sensing time-series analysis [31].

This research aims to develop a general framework for inherent time-series feature
representation from incomplete satellite image sequences to improve crop classification.
This method was implemented by combining contrastive-learning-based feature represen-
tation with machine-learning-based classifications. Compared to previous approaches, this
study combines three principal contributions. The first contribution involves a contrastive-
learning-based framework for time-series feature representation from incomplete satellite
image sequences. The second is developing a type-wise consistency augmentation and
type-wise contrastive loss to enhance contrastive learning for supervised time-series clas-
sification. The third is an in-depth analysis of the effect of contrastive-learning-based
feature representation. The proposed method is further discussed and validated through
parcel-based time-series crop classifications in two study areas (one in Dijon of France
and the other in Zhaosu of China) with Sentinel-2 image sequences in comparison to
existing methods.
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2. Study Area and Datasets
2.1. The Dijon Study Area

The first study area is Dijon, located in the Côte-d’Or department (with the Dijon
prefecture) in the Bourgogne-Franche-Comté region of northeastern France at 05◦01′E
and 47◦17′N in geographical coordinates (latitude/longitude) on the WGS-84 ellipsoid
(Figure 1). The study area, covering a total area of approximately 5000 km2, features an
oceanic climate with a continental influence under the Köppen climate classification, with
average temperatures between 6.8 ◦C and 16.1 ◦C and an annual average precipitation level
of 740 mm. These climatic conditions are ideal for growing wheat, rape, grape, and grass.
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Under the Common Agricultural Policy of the European Union, the National Institute
of Forest and Geography Information (IGN) of France is responsible for gathering geo-
graphical information on the geometry of cultivated crops. The IGN institute has released
anonymized parcel geometries and types of cultivated crops under an open license policy.
This study used data collected in 2019 to validate the proposed model. In the raw crop
type categories, there were 328 distinct crop labels organized into 23 groups. ‘Winter wheat’
(WWT), ‘winter barley’ (WBR), ‘winter rapeseed’ (WRP), ‘winter triticale’ (WTT), ‘spring barley’
(SBR), ‘corn’ (CON), ‘soy’ (SOY), ‘sunflower’ (SFL), ‘grape’ (GRA), ‘alfalfa’ (AFF), ‘grass’ (GRS),
and ‘fallow’ (FLW) were selected and summarized for the Dijon study area. The two minor-
ity classes (‘sunflower’ and ‘winter triticale’) were also retained to challenge classification
methods. This further reflects the significant class imbalance in real-world crop-type-
mapping datasets [32]. This study area encompassed approximately 53,400 parcels, of
which 20% were selected randomly to serve as labeled samples.

In addition, Sentinel-2 time-series images (with a Path/Row of T32TFN) captured
between February 2019 and September 2019 were used to record crop growth, as the growth
stages of winter crops are also concentrated in the subsequent year. The Sentinel-2 satellite
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image contained four (visible and near-infrared) bands with a spatial resolution of 10 m and
six (red edge and shortwave infrared) bands at a 20 m resolution. All 48 images, captured
every 5 days, were obtained from the Copernicus Open Access Hub at Level 1C, and 38
of them contained cloud and shadow contamination. Meanwhile, images captured on the
days of the year (DOY) 48, 58, 88, 133, 143, 168, 178, 233, 238, 258, and 263 were free from
clouds and shadows.

2.2. The Zhaosu Study Area

The second study area is Zhaosu, situated southwest of Yining City, Xinjiang Au-
tonomous Region, China (latitude range: 43◦09′N to 43◦15′N and longitude range: 80◦08′E
to 81◦30′E in geographical coordinates) (Figure 2). It is a highland basin surrounded by
mountains in the Central Asian hinterland, with an elevation ranging from 1323 m to
6995 m. It is dominated by a continental temperate semi-arid semi-humid cool climate,
with an annual average temperature of 2.9 ◦C and 512 mm of annual precipitation. The
majority of Zhaosu is covered by calcium-rich black soil with a thick humus layer and
a high organic matter content. These natural geographical and climatic conditions are
optimal for the growth of spring rapeseed (from April to September), making Zhaosu the
largest producer of spring rapeseed in Xinjiang.
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Official farmland parcel maps are unavailable for this study. Consequently, Chinese
Gaofen-1 (GF-1) satellite images were used to delineate the precise geometries of farmland
parcels. The GF-1 images included one panchromatic band with a 2 m spatial resolution
and four multi-spectral bands (blue, green, red, and near-infrared) with an 8 m spatial
resolution. Using the Gram–Schmidt spectral sharpening algorithm, the panchromatic and
multi-spectral bands were combined to produce a multi-spectral pan-sharpened image
with a 2 m spatial resolution. Two GF-1 images acquired in July 2020 with 60 km-wide
swaths were registered and mosaicked to cover the study area. In this study, approximately
11,400 parcels were obtained.

In July 2020, field surveys for supervised crop classification and accuracy assessments
were conducted. To facilitate the field surveys, sample sites were distributed along the
roads. In surveys, a handheld GPS device (with a precise point positioning precision level
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of 3.0 m) was utilized to record geographic location (in the WGS84 geographic coordinate
system). Approximately 1000 parcel samples were collected (200 rapeseed parcels and
800 parcels with other crops, proportional to the percentage of rapeseed-planted area).
Therefore, this study designed a binary classification schema containing rapeseed and
other types.

Two Sentinel-2 images (with P/R of T44TMN and T44TNN) captured on the same day
were mosaiced to cover the Zhaosu study area. And 36 observations between April and
September 2020 were used to identify rapeseed. Also, images acquired on DOY 115, 145,
165, 185, 190, 195, 220, 235, 255, 260, and 265 in 2020 were totally clean.

The datasets and crop growth periods are summarized in Table 1. The two study
areas were distinguished by distinct climatic and topographical conditions. In addition, the
cultivation status of crops varied considerably based on crop type and farming technique.
These circumstances were sufficient for validating the proposed model.

Table 1. Datasets and crop growth periods in the Dijon and Zhaosu study areas.

Area
Dataset Crop

Name Usage Number Time Growth Period

Dijon
CAP data Parcel maps and

crop-type samples / 2019 Winter crops: September to July (next)
Spring crops: March to August

Summer crops: April to SeptemberSentinel-2 Time-series features 48 images February to
September in 2019

Zhaosu

GF-1 Parcel maps 2 July 2020

Rapeseed: May to SeptemberSentinel-2 Time-series features 72 images April to September
in 2020

Field samples Crop type samples / July 2020

3. Methodology

Time-series feature representations using contrastive learning were employed to im-
prove parcel-based crop mapping using multi-temporal Sentinel-2 images, as illustrated
in Figure 3. This procedure consisted of four major steps: (1) pixel-wise spectral features,
(2) parcel-based spectral features, (3) time-series feature representation, and (4) time-series
crop classification.
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Before the main process, data preprocessing was performed, including atmosphere
calibration, the cloud/shadow-based masking of Sentinel-2 images, the geographic reg-
istration of experimental data (including Sentinel-2 images, farmland parcel maps, and
survey samples), and the generation of farmland parcel maps. First, at the pixel scale,
time-series composition and band calculation were applied to Sentinel-2 images to generate
spectral features and vegetation indices. Second, cloud/shadow-masked Sentinel-2 feature
images (including spectral bands and indices) were overlaid onto parcel maps to generate
parcel-based incomplete time-series spectral features (with missing values). Third, at the
parcel scale, a contrastive learning framework was enhanced to map time-series spectral
features into their inherent feature representation (without missing values). Finally, using
the feature representation and time-series classifiers, parcel-based crop classification maps
were generated.

3.1. Data Preprocessing
3.1.1. Farmland Parcel Maps

Parcel-based crop mapping requires known farmland parcel geometries that are ac-
cessible in most regions of Europe [32] (including the Dijon study area). In the absence
of geometry data (as in the Zhaosu study area), farmland parcel maps were generated
from high-spatial-resolution images (the GF-1 images used for Zhaosu) using the method
detailed in our previous study [33]. First, roads, waterlines, and terrain lines derived
from DEMs were used to spatially split the GF-1 images of study areas into multiple
subareas. Then, in each subarea, the trained (by manually labeled samples of parcel bound-
aries) boundary-semantic-fusion convolutional neural network (BSNet) [33] was utilized
to automatically generate binary raster maps of parcel boundaries. Finally, automatic
postprocessing (including the vectorization of binary parcel boundaries, topology checks
on parcel geometries, and the removal of small polygons) and the manual correction of
parcel polygons were applied to generate precise farmland parcel maps.

3.1.2. Sentinel-2 Images

On Sentinel-2 L1C images, the Sen2Cor algorithm was first applied for atmosphere
calibration to generate bottom-of-atmosphere data where images acquired over time and
space shared the same reflectance scale, thereby enhancing crop mapping when monitoring
large-scale areas over time [34]. Four spectral bands (bands 2, 3, 4, and 8) with a spatial
resolution of 10 m and six spectral bands (bands 5, 6, 8A, 11, and 12) with a spatial resolution
of 20 m were produced for each Sentinel-2 image.

A quality scene classification (SLC) band, which labels pixels obscured by clouds and
shadows, was created using the Sen2Cor algorithm in the meantime. Misclassification in
the SLC band was further corrected through expert visual interpretation, particularly at the
cloud and shadow edges. Then, the SLC band was reclassified into a binary classification to
generate a final masking band, one indicating clean pixels and the other for contaminated
pixels (including cloudy and shadowy regions and no data value regions). Finally, masked
images were generated by overlaying the masking band on Sentinel-2 images and setting
the spectral reflectance values of pixels in masked regions to a default masking value (0 in
our experiments).

3.2. Pixel-Wise Spectral Features
3.2.1. Time-Series Composition

Multi-temporal value composition is a common technique for suppressing atmospheric
and cloud effects and reconstructing time-series observations when processing time-series
optical images [35]. This technology was employed to generate time-series images with
lower cloud and shadow contamination. It was also noted that time-series composition
could increase observation intervals, resulting in sparser time-series sequences.

Greater vegetation index values indicated a much more robust vegetation growth.
Alternatively, this assumption may not hold true for spectral reflection. For instance,
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cloudy pixels with higher spectral values and shadowy pixels with lower values are
contaminated. Consequently, a mean value composition algorithm was utilized in this study.
Following a similar procedure of maximum value composition, mean value composition
was applied to multi-temporal Sentinel-2 images to generate a composited image using the
following equation.

mvc(i, j) =
1

N(i, j)

N(i,j)

∑
t=1

v(i, j)t

where N(i,j) is the number of clean observations (not covered by clouds and shadows) at a
geographical location (i,j), v(i,j)t is the pixel-wise spectral value of time step t at location (i,j)
and mvc(i,j) is the composited value at location (i,j).

3.2.2. Vegetation Indices

Typically, the vegetation index is derived from optical red and near-infrared (NIR)
reflectance via linear or non-linear combination operations. They are simple but effective
parameters for characterizing vegetation cover and growth status in agricultural remote
sensing applications. Additionally, compared to other multi-spectral images (such as Land-
sat images), Sentinel-2 images contain three additional red-edge bands that are sensitive to
vegetation growth [36]. To expand spectral features for Sentinel-2 images, eight vegetation
indices, including NDVI, EVI, MTCI (terrestrial chlorophyll index), NDRE (normalized
difference red edge index), MCARI2 modified chlorophyll absorption ratio index), REP (red
edge position), IRECI (novel inverted red-edge chlorophyll index), and CIred-edge (red-edge
chlorophyll index) were calculated [37,38]. Also, to maintain an exact spatial resolution
of 10 m, the 20 m spectral bands were resampled into 10 m using the nearest neighbor
sampling algorithm when calculating vegetation indices.

3.3. Parcel-Based Time-Series Features

Multi-temporal processed Sentinel-2 images (including spectral bands and derived
vegetation indices) were overlaid onto parcel maps of farmland to generate parcel-based
time series. Spectral values were averaged over the bounds of parcel geometry. In Sentinel-2
bands, pixels within a parcel polygon were first searched. Then, the average spectral value
of these pixels was taken as the feature value of this parcel. When parcels were entirely
covered by clouds and shadows, their features were assigned the default masking value of
0. When parcels were partially covered, the spectral values of clean pixels were averaged.
Finally, for each parcel, a feature vector X ∈ RD×T was generated, where D is the number
of spectral bands, and T is the number of satellite observations.

3.4. Time-Series Feature Representation

This study employed contrastive learning to transform spectral features into time-
series feature representations. There are three advantages to this. First, feature representa-
tion contributes to learning the inherent time-series feature for classification. Second, it can
generate complete and regular time-series features (without missing values). Thirdly, it
can decrease the demand for a larger number of labeled samples in deep-learning-based
applications. A general framework (known as TS2Vec) was proposed for learning the
representation of time series [39]. It consists of three main components: a representation
framework, consistency augmentation, and loss functions. Feature representation was per-
formed using the representation framework. Using consistency augmentation, augmented
sample pairs were generated to train the framework. Loss functions ensured the discovery
of consistent features from multiple augmented samples.

This study attempted to improve the TS2Vec model for supervised time-series crop
classifications (named type-wise TS2Vec) by incorporating prior-type information from
labeled samples into contrastive learning. In general, we followed the architecture of
the TS2Vec model [39]. Further, the consistency augmentation and contrastive loss were
enhanced. (1) When conducting consistency augmentation, we discarded original random
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cropping and developed novel type-wise random selection and random band-masking
techniques. (2) When calculating multi-scale contrastive loss, type-wise contrastive loss
was devised to replace instance-wise loss.

3.4.1. Consistency Augmentation

The establishment of positive sample pairs is fundamental in contrastive learning.
Various augmentation strategies for general time-series tasks have been proposed in previ-
ous studies [39–41]. For supervised time-series crop classification tasks, it is essential to
ensure the following characteristics: (1) preserving the magnitude of time-series values,
(2) retaining the length and timestamp of the time series when exploring phenological
characteristics of crop growth, (3) exploring correlations between bands given that these
correlations are higher; and (4) introducing crop-type information to enhance consistency
augmentation.

Based on these assumptions, the random cropping technique in the TS2Vec model was
eliminated due to its inconsistency with the assumption (2). Then, inspired by assumptions
(3), and (4) a random band masking technique and a type-wise random selection technique
were implemented, respectively. Incorporating the random timestamp masking proposed
by [39], we generated consistency augmentation, in which feature representations at the
same timestamp in two augmented contexts with the same crop types were considered
positive pairs.

• Type-wise random selection

Available type labels are high-quality-supervised information for constructing aug-
mented contexts in contrastive learning for time-series crop classification. As shown in
Figure 4, this study proposed a type-wise random selection algorithm to construct aug-
mented contexts in batch training.
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Figure 4. Type-wise random selection to construct augmented contexts in batch training. Background
colors indicate different crop types.

A sample consists of a parcel-based feature vector and a crop-type label. First, in a
sample batch, crop type labels (L) of each instance sample were recorded in order, and
feature vectors (FV) of instance samples with the same type labels were compiled into a
subset. Then, the recorded crop-type labels were replicated as augmented crop-type labels.
In addition, for each crop-type label, a feature vector (FV) was randomly selected from
the feature vector subset with the same crop-type labels as the augmented feature vectors.
Finally, the selected feature vector was combined with the crop-type label to produce a
type-wise augmented sample. Multiple instances of the same crop type labels are required
for type-wise random sampling. Therefore, a batch size greater than the total number of
crop-type labels was set.
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• Spectral band masking

Spectral band masking can also be adapted to generate new contexts. For each time-
series input, one spectral band was randomly selected and masked (setting their values
to 0) to generate an augmented context view. Furthermore, in two context reviews, their
contextual representations should be consistent. The contrastive learning framework could
capture band-to-band correlations through spectral band random masking to establish
inherent feature spaces for crop classification.

3.4.2. Type-Wise Contrastive Loss

Multi-scale contrastive loss was employed to force the encoder to learn feature repre-
sentations at multiple scales [39]. At each scale, the TS2Vec model jointly leverages both
instance-wise and temporal contrastive losses to capture a contextual representation of
time series. In the instance-wise loss, representations of other instances at timestamp t were
taken as negative samples to capture fine-grained representations for general time-series
tasks. For time-series classification tasks, this restriction was too strict for different instances
with the same class types (categories). Thus, we attempted to utilize a supervised type of
information for labeled samples to lift this restriction by taking representations with the
same class type c and at timestamp t as positive samples. The type-wise contrastive loss
indexed with (i, t) can be formulated as follows:

l(i,t)type = −log
exp

(
ri,t·r′i,t

)
∑B

j=1

(
exp

(
ri,t·r′j,t

)
+ 1ci 6=cj exp

(
ri,t·rj,t

))
where i is the index of the input sample, B denotes the batch size, and ri,t and r′i,t denote
representations for the same timestamp t and from two augmentations of one sample.

3.5. Time-Series Classification

Based on the time-series feature representation, a traditional machine-learning-based
(XGBoost-based) classifier and an LSTM-based classifier were applied to generate crop
classification maps.

3.5.1. XGBoost-Based Classifier

XGBoost is a highly efficient and widely used implementation of the gradient-boosted
trees algorithm [25]. It is a supervised learning algorithm for regression, classification,
and ranking problems, which uses sequentially built shallow decision trees to provide
accurate results. In this study, the XGBoost algorithm with a “gbtree” booster and a “softmax”
objective was utilized to build XGBoost-based classifiers. In addition, the GridSearchCV
technique was used to conduct hyperparameter tuning to determine the optimal parameter
values for crop classification.

3.5.2. LSTM-Based Classifier

In recent years, the recurrent neural network (RNN) and its variants (such as LSTM)
have been utilized extensively in time-series analysis, such as time-series prediction [12,13]
and time-series classification [3,8]. This study employed stacked LSTM models for crop
classification [3]. In LSTM-based classification models, four LSTM layers with h (where
h equals the dimension of input features) hidden neurons were first stacked to transform
input time-series features into high-level features. Then, a dense layer fully connected
high-level features to crop categories. A SoftMax activation function then outputs crop-
type probabilities to generate crop classification maps. Furthermore, a cross-entropy loss
function and an Adam (Adaptive Moment Estimation) optimizer with default parameters
were employed to train LSTM-based classifiers.
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3.6. Performance Evaluation and Comparison
3.6.1. Comparative Methods

To validate the effectiveness of contrastive-learning-based feature representation,
several classification comparisons utilizing different time-series feature representations
were performed. The baseline classification is an XGBoost-based classifier only using
completely Clean Sentinel-2 images (referred to as XGB-Clean). Using all available Sentinel-
2 time-series (TS) images, an LSTM-based time-series classifier and an XGBoost-based
time-series classifier (referred to as LSTM-TS and XGB-TS, respectively) were constructed.
Using time-series Feature Representation (FR) generated from the proposed contrastive
learning framework, an LSTM-based classifier and an XGBoost-based classifier (referred
to as LSTM-FR and XGB-FR, respectively) were also built. In addition, GridSearchCV
was used to conduct hyperparameter tuning for the XGB-Clean, XGB-TS, and XGB-FR
classifiers.

For classifiers, sample sets were randomly divided into training, validation, and
testing sets in a ratio of 6:2:2, for both the proposed type-wise TS2Vec model and
time-series classifiers.

3.6.2. Evaluation Metrics

Based on the confusion matrix [42], which was created by comparing classification
results to test samples parcel by parcel, overall accuracy (OA), precision (P), recall (R), and
F1 scores were extracted to evaluate crop classification accuracy. The OA was determined
by dividing all correctly classified parcels by the whole validation dataset. Precision and
recall were calculated using Precision = TP/(TP + FP), Recall = TP/(TP + FN), where TP, TN,
FP, FN represent the number of true positive, true negative, false positive, and false negative
parcels, respectively, in the confusion matrix. In addition, F1 = 2 × UA × PA/(UA + PA),
the harmonic mean of the PA and UA, was more meaningful than OA for a special crop
type. Greater OA, P, R, and F1 scores indicated superior results, and vice versa.

4. Results and Discussion
4.1. Results
4.1.1. Results in Dijon

Crop classification maps and local details generated using the proposed XGB-FR
method and comparison approaches are presented in Figure 5. Limits to the manual inter-
pretation of multi-temporal images make it difficult to evaluate classification performance
through visual interpretations qualitatively. Nonetheless, overall performance can be eval-
uated in local regions. ‘Grass’ is mainly distributed along the riverbanks of the Vingeanne
(local region A in Figure 5) and to the southwest of the study area (Figure 5). ‘Grape’ is
mainly cultivated in the narrow valley from Chenôve to Beaune (local region B in Figure 5).
The flatlands in the east-central region were covered by ‘winter wheat’, ‘winter barley’, ‘corn’,
and so on.

Table 2 provides a summary of the classification accuracies (OA, Precision, Recall, and
F1 for the Dijon study area) generated from five comparison approaches.

Table 2. Comparison of classification accuracies in the Dijon study area (underline indicates the
best scores).

XGB-Clean LSTM-TS XGB-TS LSTM-FR XGB-FR

OA 76.92% 80.95% 79.81% 83.94% 84.52%
Precision 56.14% 65.61% 63.33% 72.23% 73.39%

Recall 65.93% 75.94% 72.07% 77.16% 77.81%
F1 0.6064 0.7040 0.6741 0.7461 0.7553
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Overall, XGB-FR and LSTM-FR classifications employing feature representation per-
formed significantly better than other classifications, with OA scores above 83.00%, pre-
cision scores exceeding 72.00%, recall scores exceeding 77.00%, and F1 scores exceeding
0.74, respectively. The XGB-TS and LSTM-TS classifications using raw time-series spectral
features were followed, with OA scores of about 80.00%, precision scores of approximately
64.00%, recall scores of approximately 74.00%, and F1 scores of approximately 0.68, respec-
tively. This indicates that the proposed contrastive learning framework could explore the
inherent time-series features of crop growth to increase classification accuracy. With an OA
of 76.92%, a precision of 56.14%, a recall of 65.93%, and an F1 score of 0.61, the XGB-Clean
classification utilizing only clean images produced the worst results. This was expected
given that these clean images are time-series spare. It is difficult to capture the essential
phenological characteristics for classification, especially in July when crops grow rapidly.
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The LSTM-TS classification performed marginally better than the XGB-TS classifica-
tion when employing raw time-series spectral data. The possible reasons behind this are
that LSTM models capture the long- and short-term dependence in the raw time-series
observation, which is essential for crop identification. While using time-series feature
representation, the XGB-FR classification surpassed the LSTM-FR classification. On the
one hand, the proposed contrastive learning framework can explore the multi-scale depen-
dencies from raw spectral features and express them in generated feature representation.
On the other hand, XGBoost classifiers applied boost tree rules to feature representation
and improve crop classification further. In other words, the best crop classification was
made possible by the combined advantages of contrastive-learning-based representation
and XGBoost-based classifiers.

To analyze the benefit of feature representation, the confusion matrix (normalized
with range [0, 10,000]) retrieved from the XGB-FR classification is presented in Figure 6.
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‘Winter rape’, ‘grape’, and ‘grass’ achieved precision scores greater than 0.90, followed
by ‘winter wheat’ and ‘winter barley’ with precision scores greater than 0.80. With precision
scores less than 0.60, ‘winter triticale’, ‘corn’, and ‘soy’ obtained the worst results. This
relates to the a priori distribution of crops in the study area. To improve overall accuracy,
statistical classifiers tend to classify samples into larger categories when these categories are
unbalanced. In addition, ‘grass’ and ‘grape’ achieved the highest precision and recall scores.

When examining the confusion matrix in detail, it was found that it could be divided
into a number of sub-regions (as depicted in different colors in Figure 6), including winter
crops (‘winter wheat’, ‘winter barley’, ‘winter rape’, and ‘winter triticale’, indicated by light
orange color), summer crops (‘corn’, ‘soy’, and ‘sunflower’, indicated by light green color),
spring crop (‘spring barley’ indicated by light yellow color), and other crops (indicated by
light blue color). On the one hand, heterogeneity between subregions is relatively high.
For example, the planting, growth, and harvesting schedules for autumn crops are entirely
distinct from those of summer crops. Thus, they are less likely to be misclassified relative
to one another. By contrast, there are numerous misclassifications within this subregion
due to their similar phenology (such as pairs of ‘corn’ and ‘soy’, ‘wheat’ and ‘barley’, ‘grass’
and ‘alfalfa’). In addition, it was found that ‘winter rapeseed’ has a higher precision score in
the winter-crop sub-region. Its unique yellow flowers contribute to this.

4.1.2. Results in Zhaosu

The crop classification map resulting from the proposed method and local comparative
details from the five methods are displayed in Figure 7. In general, ‘spring rapeseed’ was
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widely distributed in the study area, with the exception of the eastern river valley. ‘Spring
rapeseed’ was planted on larger parcels in the western and northern regions and on tiny
parcels in the southern region where residents reside.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 

 

 
(a) The crop classification map derived from the proposed XGB-FR method. Two red boxes indicate local 

regions for detailed comparisons. 

 

(b) Local details in area A for comparison 

Figure 7. Cont.



Remote Sens. 2023, 15, 5009 16 of 22Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

 
(c) Local details in area B for comparison 

Figure 7. Results of parcel-based crop mapping in the Zhaosu study area. (a) presents the whole 

crop classification using XGB-FR method, (b) and (c) present the local details of crop classification 

from five comparison methods. 

Also, the classification accuracies derived from the five comparative methods were 

summarized, as illustrated in Table 3. 

Table 3. Comparison of classification accuracies in the Zhaosu study area (W: overall, R: rapeseed, 

O: other; the underline indicates the best scores). 

 XGB-Clear LSTM-TS XGB-TS LSTM-FR XGB-FR 

OA 92.42% 95.01% 94.96% 96.74% 96.92% 

F1 0.8984 0.9307 0.9306 0.9544 0.9570 

Precision 

(W/R/O) 

88.79% 93.10% 92.81% 95.57% 96.16% 

81.35% 89.50% 88.67% 94.26% 94.74% 

96.22% 96.71% 96.95% 97.48% 97.57% 

Recall 

(W/R/O) 

90.92% 93.05% 93.31% 95.02% 95.25% 

88.07% 89.33% 90.19% 91.78% 92.07% 

93.76% 96.76% 96.44% 98.27% 98.42% 

As in the first experiment, classifications based on time-series feature representation 

yielded the highest accuracy, while classifications based solely on clean image sequences 

yielded the worst results. When comparing the precision and recall scores of ‘rapeseed’ and 

‘other’ types, it was discovered that the ‘other’ type (the major category in the binary 

schema) had a higher score than ‘rapeseed’ (minor category). Moreover, for ‘rapeseed’, there 

was a more remarkable improvement in precision scores (approximately 5.00%) than in 

recall scores (approximately 2.00%) over classification using raw time series. 

4.1.3. Results on Type-Wise Contrastive Learning 

The enhanced TS2Vec model (the type-wise contrastive learning model) was 

employed to learn type-specific time-series features. Here, we evaluated its advantage 

over instance-wise contrastive learning [39] for crop classification. The classification 

Figure 7. Results of parcel-based crop mapping in the Zhaosu study area. (a) presents the whole crop
classification using XGB-FR method, (b) and (c) present the local details of crop classification from
five comparison methods.

Also, the classification accuracies derived from the five comparative methods were
summarized, as illustrated in Table 3.

Table 3. Comparison of classification accuracies in the Zhaosu study area (W: overall, R: rapeseed, O:
other; the underline indicates the best scores).

XGB-Clear LSTM-TS XGB-TS LSTM-FR XGB-FR

OA 92.42% 95.01% 94.96% 96.74% 96.92%
F1 0.8984 0.9307 0.9306 0.9544 0.9570

Precision
(W/R/O)

88.79% 93.10% 92.81% 95.57% 96.16%
81.35% 89.50% 88.67% 94.26% 94.74%
96.22% 96.71% 96.95% 97.48% 97.57%

Recall
(W/R/O)

90.92% 93.05% 93.31% 95.02% 95.25%
88.07% 89.33% 90.19% 91.78% 92.07%
93.76% 96.76% 96.44% 98.27% 98.42%

As in the first experiment, classifications based on time-series feature representation
yielded the highest accuracy, while classifications based solely on clean image sequences
yielded the worst results. When comparing the precision and recall scores of ‘rapeseed’ and
‘other’ types, it was discovered that the ‘other’ type (the major category in the binary schema)
had a higher score than ‘rapeseed’ (minor category). Moreover, for ‘rapeseed’, there was a
more remarkable improvement in precision scores (approximately 5.00%) than in recall
scores (approximately 2.00%) over classification using raw time series.



Remote Sens. 2023, 15, 5009 17 of 22

4.1.3. Results on Type-Wise Contrastive Learning

The enhanced TS2Vec model (the type-wise contrastive learning model) was employed
to learn type-specific time-series features. Here, we evaluated its advantage over instance-
wise contrastive learning [39] for crop classification. The classification accuracies using
type-wise and instance-wise contrastive learning are presented in Table 4.

Table 4. Accuracy evaluation using instance-wise and type-wise contrastive learning. Inst and Type
indicate instance-wise and type-wise contrastive learning, respectively.

Crop WWT WBR WRP WTT SBR CON OA

F1
Inst 0.8368 0.7389 0.8667 0.4481 0.5946 0.5904 0.8225
Type 0.8470 0.7718 0.9154 0.6633 0.6766 0.6258 0.8467

Crop SOY SFL GRA AFF GRS FLW F1 (all)

F1
Inst 0.5249 0.5088 0.9610 0.6447 0.9406 0.5692 0.6943
Type 0.5811 0.7130 0.9710 0.6645 0.9407 0.7405 0.7624

4.1.4. Results on Time-Series Composition

Time-series composition is an efficient method when dealing with cloud and shadow
contamination. Also, contrastive learning was used in this study to extract inherent time-
series features from incomplete time-series observations. This experiment aimed to deter-
mine if time-series composition is essential for contrastive learning. In the Dijon research
region, 5-day raw time-series features and n-day (n = 10, 20, 30, 40, and 60) composited
spectral features were, respectively, supplied into the proposed contrastive-learning-based
feature representation framework. Table 5 presents their classification accuracy using
feature representation with different composition periods.

Table 5. Accuracy comparison for time-series composition with different periods.

5-Day 10-Day 20-Day 30-Day 40-Day 60-Day

Cloud/shadow 53.83% 29.10% 9.24% 5.53% 0.03% 0.00%
OA 84.21% 82.03% 81.17% 77.68% 77.44% 74.81%
F1 0.7553 0.7089 0.6986 0.6401 0.6392 0.5834

4.1.5. Results on the Dimension of Feature Representation

In time-series feature representation, the dimension of generated features is an im-
portant hyperparameter. If dimensions are too small, they cannot adequately convey the
inherent characteristics of crop growth, whereas too-high dimensions could increase the
amount of computation required for classification. In the Dijon study area, the contrastive
learning framework produced features with dimensions of T/8, T/4, T/2, T, 2T, 3T, 4T,
5T, 6T, 7T, 8T, 9T, 10T, 15T, and 20T (T is the number of timestamps of raw time-series
features, which is 48 in the Dijon study area). These features were used for time-series crop
classification. Figure 8 illustrates classification accuracies (in OA and F1 scores) utilizing
feature representations of varying dimensions.

4.1.6. Results on Vegetation Indices

Eight vegetation indices were derived to enhance crop mapping. Here, their con-
tribution to crop classification was studied. In the Dijon study area, five comparative
experiments were conducted, using (1) the 4-band image, (2) the vegetation index image
(VI), (3) both the 4-band and 6-band images (10-band), (4) both the 4-band and vegetation
index images (4 + VI), and (5) both the 10-band and VI images (10 + VI), respectively. The
classification accuracies of various combinations of features are shown in Table 6.
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Table 6. Accuracy comparison for different combinations of features.

4-Band VI 10-Band 4 + VI 10 + VI

OA 0.7318 0.7586 0.8449 0.8413 0.8521
F1 0.5212 0.5903 0.7553 0.7460 0.7654

4.2. Discussion

The time-series feature representation based on contrastive learning was used to
improve parcel-based crop mapping. First, classification performance in two study areas
was compared and analyzed. Then, based on the parcel-based crop maps resulting from the
XGB-FR classification, accuracy evaluations and comparisons were conducted to discuss
the number of training samples, the benefit of type-wise contrastive learning, the sensitivity
of dimensions in feature representation, and assistance from multitemporal composition
and vegetation indices.

4.2.1. Performance Analysis

In two study areas, classification using time-series feature representation performed
better than classification using raw time-series features. This indicated that the proposed
contrastive learning framework could learn the inherent time-series characteristics of crop
growth. In the meantime, it was observed that this proposed method performed better on
the Zhaosu dataset than on the Dijon dataset. There are two reasons for this difference. One
is that the crop category system in Zhaosu was more straightforward than its counterpart
in Dijon. In addition, the sample category was more evenly distributed in the Zhaosu
study area.

4.2.2. Number of Training Samples

Deep learning models typically require more labeled samples for training. Therefore,
it is difficult to implement their applications in remote sensing fields when only a few
samples are available. The proposed method (XGB-FR) is comprised two major steps. The
first utilizes contrastive learning for the inherent representation of time-series spectral
features. Although labeled crop types were used in the proposed type-wise contrastive
learning, we could generate many augmented samples for training through type-wise
random selection, random channel masking, and random timestamp masking. This step is
not dependent on the number of labeled samples and does not need a massive quantity
of samples. The second step is classification using XGBoost. It is a traditional machine-
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learning technique that only requires a small number of samples. However, LSTM-based
classifiers contain a greater number of parameters, which requires more samples to train
LSTM networks. Sample augmentation was, therefore, utilized in our experiments. Thus,
the proposed XGB-FR method could learn and exploit the inherent time-series features of
crop classification with a small number of training samples.

4.2.3. Type-Wise Contrastive Learning

In general, the accuracy scores in the last column in Table 4 indicate that classification
using type-wise contrastive learning produced higher scores than those using instance-wise
learning, with improvements in OA and F1 scores of 2.5% and 6.8%, respectively. This is
evident since type-wise learning requires that samples with identical types share the same
feature representation. This presumption necessitates contrastive learning to investigate
the inherent characteristics of distinguishing crop types.

Let us examine the improvements made to various crops in further detail. We discov-
ered a more substantial improvement in minor categories, specifically for ‘winter triticale’
(0.22), ‘sunflower’ (0.21), and ‘fallow’ (0.18), as measured using F1 scores. Possible causes
include the fact that a loss function applied to positive sample pairs from two instances
with the same crop types might reduce the inherent feature space of crops. Furthermore,
the compression of space is more severe for major crop types than for minor types. These
compressions would promote crop classification by balancing the distribution of the sample.

4.2.4. Need for Time-Series Composition

In Table 5, as the time intervals for time-series composition increased, the cloud/shadow
coverage percentages decreased dramatically. Similarly, classification accuracies declined
from 84.21% for OA and 0.76 for F1 scores when using 5-day raw data to 74.81% for OA
and 0.58 for F1 scores when using 60-day composited data. This was somewhat surprising
and contradictory to previous studies, which showed that the time-series monitoring of
vegetation can be most effective when the composition period is near the length of pheno-
logical stages [43,44]. Since vegetation is usually assumed to be stable over 10 days [44],
the best results should have been obtained utilizing a 10-day composition.

When investigating the causes, it was found that the time-series composition operation
used satellite images captured on different days to produce one image. This could lead
to the temporal confusion of crop growth in the composited image sequences, which is
not favorable to crop classification. In addition, contrastive learning can fully explore
the inherent time-series properties of raw data with a greater cloud/shadow percentage.
In light of this, we may deduce that time-series composition is neither necessary nor
detrimental in contrastive-learning-based feature representation.

4.2.5. Sensitive of the Dimension of Feature Representation

In Figure 8, the accuracy change curve can be separated into three phases as a whole.
In the first stage (T/8 to 2T), classification accuracies improved as dimensions rose. This
demonstrated that higher dimensions might capture more complete temporal changes in
crop growth. In the second stage, from 2T to 9T, classification accuracy increased gradually.
In the third stage (from 9T to 20T), classification accuracy remained consistent at the highest
level, with an OA score of 84.78% and an F1 score of 0.7624. Thus, the 480-dimensional
feature representation space may completely describe inherent crop characteristics. Here,
we argue that the number of raw timestamps is an excellent candidate for determining the
dimensions of represented features in crop classification.

4.2.6. Contributions of Vegetation Indices

In Table 6, it was found that classifications utilizing 10, 4 + VI, and 10 + VI character-
istics yielded more accurate results than those using just 4 and VI features. The increase
exceeded 9.0% for OA scores and 0.15 for F1 scores. This was expected, given that the 10,
4 + VI and 10 + VI features had more spectral information. In comparison to the 4-band
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feature, the VI feature demonstrated superior classification results. This is consistent with
previous studies [45,46], demonstrating that red-edge spectral bands are sensitive to crop
status. Comparing the 10-band classification to the 10 + VI classification, it was found that
the contribution of VI features was minimal. This was because VI consists of non-linear
combinations of the 10 spectral bands and is theoretically unnecessary. In addition, the con-
trastive learning framework could explore this information to improve classification. Thus,
we recommend that raw spectral features be fed into the contrastive learning framework.

5. Conclusions

Fundamental to remote sensing crop mapping is extracting and learning inherent
time-series features that can distinguish crop types from incomplete satellite observation
sequences. This study developed a contrastive-learning-based framework for time-series
feature representation to improve crop classification using incomplete Sentinel-2 image
sequences. The proposed method is further discussed and validated through parcel-based
time-series crop classifications in two study areas (one in Dijon of France and the other
in Zhaosu of China) with multi-temporal Sentinel-2 images. The classification results,
with significant improvements greater than 3% in their overall accuracy and 0.04 in F1
scores over comparison methods, revealed the effectiveness of the proposed method in
learning time-series features for parcel-based crop classification using incomplete Sentinel-2
image sequences.

In addition, evaluations of accuracy and comparisons were performed on parcel-based
classification results to discuss the number of training samples, the benefit of type-wise
contrastive learning, the sensitivity of dimensions in feature representation, and assistance
from time-series composition and vegetation indices. We concluded that (1) the combi-
nation of feature representation and traditional machine-learning-based classifications
could improve parcel-based crop mapping with limited labeled samples. (2) Type-wise
contrastive learning is more effective than instance-wise in time-series classification tasks.
(3) Preprocessing time-series composition and vegetation indices is not necessary for
contrastive-learning-based feature representation.

These experiments and their conclusion can provide insights and ideas for time-series
classification in agricultural remote sensing applications. In addition, the proposed method
is adaptable to other satellite images and applications in future works.
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