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Abstract: InSAR coherence-change detection (CCD) is a promising remote sensing technique that
is able to map areas affected by torrential sediment transport triggered by flash floods in arid
environments. CCD maps the changes in the interferometric coherence between synthetic aperture
radar images (InSAR coherence), a parameter that measures the stability of the radar signal between
two different SAR images, i.e., data acquisitions. In arid environments, such changes are mainly due
to changes in the surface. However, the residual effect of other factors on the InSAR coherence cannot
be completely excluded. Therefore, CCD-based maps contain the uncertainty of whether the detected
changes are actual changes in the observed surface or just errors related to those residual effects. Thus,
in this paper, the results of four CCD mapping methods, with different degrees of complexity and
sensitivity to the different factors affecting the InSAR coherence, are compared in order to evaluate
the existence of the errors and their importance. The obtained CCD maps are also compared with
changes in satellite optical images and a field campaign. The results lead to the conclusion that
CCD maps are reliable in the identification of the zones affected by sediment transport, although the
precision in the delimitation of the affected area remains an open issue. However, highly rugged
relief areas still require a thorough analysis of the results in order to discard the geometric effects
related to the perpendicular baseline.

Keywords: InSAR coherence; coherence-change detection; sediment transport; flash floods; arid
environments; geometric decorrelation; soil moisture decorrelation; MCR-ALS; Salar de Atacama

1. Introduction

In arid environments, the small annual amount of precipitation is typically concen-
trated in a few rare events that often cause flash floods [1–5]. These floods drag a significant
amount of sediment that causes serious damage to the delicate ecosystems of these envi-
ronments and human settlements [2–4,6,7]. In addition, the torrential sediment transport
in arid environments is characterised by a greater proportion of coarse-grained sediments
(gravel, cobbles, and boulders) than in areas with a more humid climate, which makes
flash floods particularly destructive [3,6–8]. One of the most common protective mea-
sures for urban areas against flash floods is the construction of sediment-detention basins.
The sediments carried by water are retained in these structures during the flood, after
which they must be removed by mechanical means to free the storage capacity for future
events [7]. In order to design a sediment-detention basin, it is necessary to know the volume
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of sediments to be retained, which, in turn, requires determining the sediment-contributing
basin. These areas of contribution are often remote and extensive, so their determination
is a difficult task. Fortunately, InSAR coherence-change detection (CCD) is emerging as a
potential solution.

CCD is a promising technique for remotely mapping phenomena that disturb the
ground surface over large and inaccessible areas, with a greater sensitivity than optical
techniques and in an easier and cheaper way than field campaigns [1,4,9–11]. It consists
of tracking the changes in the interferometric coherence between synthetic aperture radar
(SAR) images. The InSAR coherence is a measure of the stability of the radar signal between
two different SAR images, i.e., data acquisitions [12–14]. Several factors determine this
stability: (i) the perpendicular baseline, i.e., the distance between the position of the radar
during the different data acquisitions in the direction perpendicular to the radar line of
sight; (ii) the temporal baseline, i.e., the time lapse between radar images; (iii) changes in
soil moisture; and (iv) changes in the observed surface [1,15–17]. The basis of CCD is that if
one factor prevails under certain conditions, the changes in InSAR coherence reflect the
evolution of this factor.

The main difficulty of CCD is that, in reality, even if changes in the observed surface
may dominate over the other factors, they will never be the only factor affecting the InSAR
coherence. Therefore, because of the residual contributions of these other factors, there is
uncertainty as to whether the detected changes are actual changes in the observed surface
or just errors [1]. The main sources of uncertainty are the perpendicular baseline [15,17] and
changes in soil moisture [18,19]. For instance, when mapping the area affected by torrential
sediment-transport events (erosion and sedimentation) caused by flash floods, the effect
of the perpendicular baseline, which is directly related to the local slope of the surface, is
particularly distorting because it is maximal in rugged areas, which are precisely the areas
that are the most susceptible to sediment transport. Thus, we might wonder whether what
we “see” with InSAR coherence data are the effects caused by the perpendicular baseline or
actual erosion or sedimentation along the gully.

There are basically two ways of trying to distinguish actual changes in the observed
surface from other factors affecting the InSAR coherence: (i) modelling the components
of the coherence or (ii) directly correlating the changes in the coherence with other obser-
vations (for example, coincidence in time with meteorological events or correspondence
in space with lithology or land cover, among many others). In the first case, the idea is
that, once each component of the coherence (or, equivalently, of the so-called decorrelation,
which is the loss of coherence) is modelled, all the contributions not related to surface
changes can be removed so that the remaining changes in InSAR coherence reproduce
actual changes in the observed surface. There are two kinds of models: analytical mod-
els [20,21] and empirical models [11,16,19,22–24]. The former are based on the physics of
the measurement, i.e., of InSAR, while the latter are based on empirical, often statistical
correlations. While, in theory, analytical models should provide the most accurate results,
in practice, they require simplifications of reality that make it difficult to find the right
conditions for calibrating the several parameters that they often include. This double
complexity—several parameters to calibrate and the difficulty in finding the right condi-
tions to calibrate them—has limited their development [24]. In contrast, empirical models,
which by their nature already incorporate the “imperfections” of reality, tend to perform
better despite being generally simpler. This is why there are more examples of empirical
models than of analytical models in the literature. Nevertheless, the construction of a
robust empirical model requires time series of both SAR data and the data used for the
correlation to be long enough to be statistically representative, which is a major challenge
when studying the effects of flash floods in arid environments. Finally, the most abundant
case in the literature is still the direct correlation with other data, observations or prior
knowledge [1,4,9,10,15,25,26]. However, although previous studies confirm the ability of
CCD to detect surface changes [27], none of the mentioned approaches have yet resolved
how to map surface changes using CCD with certainty [1].
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Thus, in this paper, we propose several mapping methods for torrential sediment
transport events in arid environments based on CCD, each one with a different degree of
complexity and a different sensitivity to each component of the decorrelation, aiming to
reduce the uncertainty in the CCD mapping by comparing their results and assessing their
degree of coincidence or divergence.

This paper is organised in five sections and two appendices. After this introduction,
Section 2 presents (i) the study area; (ii) the data used in this research; (iii) the methods
used, first, to map the area affected by torrential sediment transport events and, second, to
compare and discuss the results; and (iv) the followed procedure. Section 3 presents the
results, which are analysed and discussed in context with the literature in Section 4. Finally,
Section 5 closes the paper with the conclusions and possible future lines of research.

2. Materials and Methods
2.1. Study Area

The analysis of the reliability of the CCD-based maps of the area affected by torrential
sediment transport events in arid environments was performed in a study area within
the Salar de Atacama Basin, Chile. The Salar de Atacama Basin is an endorheic basin
located in northern Chile between 22.5◦ and 23.5◦ south latitude and 67.5◦ and 68.5◦ west
longitude in the Antofagasta region (Figure 1a). The basin is enclosed by the Western
Central Andean Range to the east, which is oriented N–S and reaches 6100 m.a.s.l. (metres
above sea level); the Domeyko Range to the west, a secondary Andean range that reaches
4000 m.a.s.l. and is oriented NNE–SSW, merging the Western Central Andean Range to
the north and closing the basin; and the Cordón de Lila to the south, a 3200 m.a.s.l. high
mountain range (Figure 1b). In total, the basin extends over some 17,000 km2, and the salt
pan in the nucleus covers some 3000 km2 at an altitude of 2300 m.a.s.l.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 29 
 

 

knowledge [1,4,9,10,15,25,26]. However, although previous studies confirm the ability of 
CCD to detect surface changes [27], none of the mentioned approaches have yet resolved 
how to map surface changes using CCD with certainty [1]. 

Thus, in this paper, we propose several mapping methods for torrential sediment 
transport events in arid environments based on CCD, each one with a different degree of 
complexity and a different sensitivity to each component of the decorrelation, aiming to 
reduce the uncertainty in the CCD mapping by comparing their results and assessing their 
degree of coincidence or divergence. 

This paper is organised in five sections and two appendices. After this introduction, 
Section 2 presents (i) the study area; (ii) the data used in this research; (iii) the methods 
used, first, to map the area affected by torrential sediment transport events and, second, 
to compare and discuss the results; and (iv) the followed procedure. Section 3 presents the 
results, which are analysed and discussed in context with the literature in Section 4. Fi-
nally, Section 5 closes the paper with the conclusions and possible future lines of research. 

2. Materials and Methods 
2.1. Study Area 

The analysis of the reliability of the CCD-based maps of the area affected by torrential 
sediment transport events in arid environments was performed in a study area within the 
Salar de Atacama Basin, Chile. The Salar de Atacama Basin is an endorheic basin located 
in northern Chile between 22.5° and 23.5° south latitude and 67.5° and 68.5° west longi-
tude in the Antofagasta region (Figure 1a). The basin is enclosed by the Western Central 
Andean Range to the east, which is oriented N–S and reaches 6100 m.a.s.l. (metres above 
sea level); the Domeyko Range to the west, a secondary Andean range that reaches 4000 
m.a.s.l. and is oriented NNE–SSW, merging the Western Central Andean Range to the 
north and closing the basin; and the Cordón de Lila to the south, a 3200 m.a.s.l. high moun-
tain range (Figure 1b). In total, the basin extends over some 17,000 km2, and the salt pan 
in the nucleus covers some 3000 km2 at an altitude of 2300 m.a.s.l. 

 
Figure 1. Study area: sub-basins of Talabre and Socaire (c) of the Salar de Atacama Basin (b), north-
ern Chile (a). The surficial geology is shown in (d), together with the main hydrographic network; 
the topographic slope is shown in (e). 

Figure 1. Study area: sub-basins of Talabre and Socaire (c) of the Salar de Atacama Basin (b), northern
Chile (a). The surficial geology is shown in (d), together with the main hydrographic network; the
topographic slope is shown in (e).

In its nucleus, Salar de Atacama hosts 40% of the world’s reserves of lithium and large
amounts of boron and potassium, among several other salts [28], as well as numerous
lagoons and wetlands along its eastern marginal zone, several of which are classified as
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UNESCO-Ramsar sites that represent precious and highly sensitive ecological habitats for
several migratory and endemic species of flora and fauna [29].

Most of the annual precipitation in the Salar de Atacama Basin (87%) is brought by
the humid air masses dragged by the easterly winds from the Atlantic Ocean through the
Amazonia and the Gran Chaco to the Andean Range during the austral summer (December–
March), when these winds are stronger [28]. During the austral winter, minor, frontal and
highly geographically irregular precipitation, often snowfall, reaches the basin pushed by
the westerly humid cold winds from the Pacific Ocean [28]. In total, the annual precipitation
ranges from 20 mm/year in the nucleus to 160 mm/year in the eastern summits, and since
most of it occurs during the summer and is, therefore, controlled by the geographical
barrier of the Andean Range, it presents a negative gradient from north to south and from
east to west [30]. Thus, according to the Köppen–Geiger classification, the climate in the
centre and west of the Salar de Atacama Basin is arid desert, and in the east, as altitude
increases, the climate becomes semi-arid [30].

Because of the geographical gradients of the annual precipitation, the hydrographic
network is much more developed in the northern and eastern slopes than in the western
and southern ones. Indeed, the hydrographic network of the Salar de Atacama basin can
be summarised in terms of the two main rivers (the San Pedro and Vilama rivers) in the
northern slopes that discharge in the north of the nucleus and many ephemeral streams in
the eastern slopes that follow sharp gullies from the summits until disappearing through
infiltration in the alluvial fans [31]. As a consequence, torrential sediment transport is more
significant in the eastern slopes, which is the reason for this study to focus on them: the
study area comprises the sub-basins of Talabre and Socaire, which cover most of the eastern
slopes of Salar de Atacama, from the volcanic 6100 m.a.s.l. summits to the alluvial fans
along the eastern marginal zone of the nucleus (Figure 1c).

The topography of the study area is characterised by the great altitudinal gradient, the
hydrographic network, and the surficial geology (Figure 1d). The latter can be summarised
as pre-Quaternary outcrops between the Quaternary volcanic outcrops of the eastern
summits and the alluvial fans at the western bottom, with several Quaternary pyroclastic
and colluvial deposits on top that are more frequent in the sub-basin of Talabre. Thus, the
topographic slope progresses from extremely steep slopes at the eastern summits (>30◦)
to the flat alluvial fans at the bottom (0–5◦) and the nucleus to the west (0◦). In between,
moderate slopes of 0–10◦ are found, except in the most prominent outcrops (10–30◦) and
the steep banks of the gullies (>30◦) (Figure 1e).

2.2. Data

The methods and the procedure explained in the next sections are applied to events
that were already detected and located in time in a previous study [27]. In short, the events
were detected based on the analysis of the histograms of the rasters of coherence between
consecutive SAR images. The disturbances that the events cause in the InSAR coherence
are clearly reflected on the histograms, so the analysis of the time series of histograms
allows us to identify both the occurrence of the events and the duration of the temporal
effects on the InSAR coherence. Thus, the dates of the torrential sediment transport events
in the study area and the duration of the temporal effects on the InSAR coherence caused
by each event constitute the first input dataset for this study. In addition, the validation of
this information included a comparison with meteorological data that have been partially
included in the figures of the results as complementary information. A detailed description
of the meteorological data is available in Appendix B.

Nevertheless, the main data used in this study are 74 coherence rasters (maps) cal-
culated between consecutive SAR images (Table A1) and 5 coherence rasters calculated
between non-consecutive images (Table A2). The rasters are georeferenced in WGS84
coordinates and have a resolution of 0.0003◦ for the first group and 0.0006◦ for the second
group (0.0006◦ in the study area is approximately equivalent to 61 m in longitude and
66 m in latitude). A raw SAR (radar) image contains, in each pixel, a complex number
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s that includes the amplitude and the phase of the backscattered radar signal. InSAR
coherence measures the stability of the radar signal between different data acquisitions
and is mathematically defined as the linear correlation between two co-registered (i.e.,
geometrically matched) SAR images. In practice, the coherence of a pixel is calculated as
the average within a window around the pixel. For a window of size a × b pixels,

γ̂ =
∑a∑b(s1·s2

∗)√
∑a∑b

(
|s1|2

)
·∑a∑b

(
|s2|2

) (1)

where γ̂ is the (averaged) coherence of a pixel, s∗ is the conjugated value of the pixel, |s| is
its module, and subscripts 1 and 2 number the two images between which the coherence is
calculated. In this case, the coherence was calculated over a 2 × 10-pixel multilook window
using 75 Sentinel-1A and B SAR images covering the period from 2 April 2015 to 3 July
2018. The images were downloaded as Single-Look Complex (SLC) images acquired in
Interferometric Wide Swath (IWS) mode in a descending trajectory along the orbit 156.
The temporal baseline, i.e., the frequency of the images, evolves from 24 days in 2015 to
6 days in 2018, with few isolated exceptions with a maximum of 48 days. The perpendicular
baseline is 47 m on average and ranges from 1 to 119 m. According to Equation (1), InSAR
coherence ranges between 0 and 1, but in this study, it is normalised to the range of [0, 254].

Finally, the analysis of the results also includes a field campaign and optical images.
The field campaign was carried out by geomorphologists who mapped the sediments
deposited by the torrential sediment transport event that occurred in the study area in
February 2018. Their itinerary was previously planned based on the analysis of Sentinel-2
satellite images before and after the event and covered the alluvial fan of one of the several
gullies that exist in the study area (see the figures of the results). Regarding the optical
images, ten Sentinel-2 true-colour images (Table A3) were downloaded from the Copernicus
Open Access Hub [32], one pair for each torrential sediment transport event composed of
the last image before the event and the first one after the event, provided that the cloud
cover did not completely obstruct the view.

2.3. Methods

The main hypothesis of any CCD method is that significant changes in InSAR
coherence—in general, a reduction or loss of coherence, the so-called decorrelation—are
uniquely related to the phenomenon under analysis, which, in this case, is torrential sedi-
ment transport. Based on this hypothesis, we propose four CCD mapping methods, three of
which are based on the coherence between consecutive SAR images, which are tested in the
study area and whose results are then compared with each other. In addition, in order to
be able to detect features of the CCD results related to the SAR data themselves rather than
to the CCD mapping method, the results are also compared with two mapping methods
of a different nature: a field campaign and, since few field data are available, changes in
satellite optical images as another alternative that is not dependent on the SAR data.

However, as discussed in the Introduction, in addition to real changes in the surface
caused by torrential sediment transport, there are other phenomena that may also introduce
changes in the InSAR coherence, mainly geometric effects related to the perpendicular
baseline—the so-called geometric decorrelation—and effects related to changes in soil
moisture—soil moisture decorrelation. It is therefore convenient to briefly analyse their
behaviour in space and time. The geometric decorrelation depends on the perpendic-
ular baseline and the local slope of the surface, so it is not correlated with time but its
distribution in space is constant. On the other hand, the soil moisture decorrelation, in
arid environments, is relevant only during and after rain- and snowfall events (for a few
months at most), so it can be located in time [4,19,27]. Regarding the spatial dimension,
it has been found that the quantity of precipitation only affects the duration of the soil
moisture decorrelation, not its magnitude [16]. Therefore, the spatial distribution of the soil
moisture decorrelation is probably similar from one rain- or snowfall event to another and
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is probably related to: (i) the topographic relief because the increase in soil moisture caused
by rain- or snowfall lasts longer in areas that are protected from the action of the wind; (ii)
the lithology because the more porous the soil is, the more water from rain- or snowfall
penetrates into the soil, so the evaporation of soil moisture lasts longer; and (iii) the geo-
graphical distribution of the precipitation as the cause of the increased soil moisture. Thus,
in summary, in arid environments, the decorrelation—i.e., the loss of coherence—includes
three components: changes in the surface—which are the target; geometric effects; and
soil moisture changes. In general, the former prevails over the other two components;
the geometric decorrelation presents a constant spatial distribution, but its magnitude
or intensity is “aleatory” in time (i.e., uncorrelated), and the soil moisture decorrelation
presents a spatial distribution that may experience small variations but is clearly located
in time.

With these characteristics in mind, the goal is to assess the importance of the geometric
decorrelation and the soil moisture decorrelation in the CCD-based maps by comparing
the maps produced with different methods that present a different sensitivity to each
component of the decorrelation. Once the occurrence of a torrential sediment transport
event is detected and the duration of the temporal effects on the coherence caused by
changes in soil moisture is determined (see next section), the methods to map the area
affected by the event are as follows.

• Patterns. The CCD method based on the coherence between consecutive SAR images.
Changes in the average spatial distribution of the coherence (Figure 2a).

Since the soil moisture decorrelation only affects the coherence during and shortly after
rain- and snowfall events, the idea is to avoid these temporal effects and compare the spatial
distribution—or pattern—of the InSAR coherence before the event and after the temporal
effects of the changes in soil moisture. However, there is still geometric decorrelation. Since
its magnitude is aleatory in time, the idea is to minimise it by approximating the spatial
patterns of the coherence before and after the event to the average coherence between
consecutive SAR images not disturbed by the soil moisture decorrelation. Thus, the CCD
map is calculated as

chgpatterns(x, y, v) =
avv,2 − avv,1

av(avv,1 + avv,2)
(2)

where x, y are the spatial coordinates; v identifies the torrential sediment transport event;
subscripts 1 and 2 identify, respectively, the periods before and after the soil moisture
changes caused by the rain- or snowfall event linked to the sediment transport; av stands
for average; and avv,1 and avv,2 are the undisturbed spatial patterns of InSAR coherence
before and after the torrential sediment transport event:

avv,u =
∑

fv,u
j=iv,u(coh(x, y))
( fv,u − iv,u) + 1

, v, iv,u, fv,u ∈ N, u ∈ {1, 2} (3)

where u is either 1 or 2 and identifies, respectively, the periods before and after the soil
moisture decorrelation caused by the rain- or snowfall event linked to the sediment trans-
port; coh stands for the InSAR coherence between consecutive SAR images; and iv,u and
fv,u identify, respectively, the first and last raster or map of InSAR coherence of the pattern,
numbered in chronological order.

• Filter. The CCD method based on the coherence between consecutive SAR images.
Selection of the “abnormal” values of the InSAR coherence time series (Figure 2b).

The idea is similar to the patterns method: if the torrential sediment transport events
stand out because of the loss of coherence that they cause, the idea is to map only the
abnormal values of coherence. In other words, this method looks for changes in the
InSAR coherence in the temporal dimension of the data instead of the spatial dimension:
the abnormal values are the outliers of the time series of InSAR coherence, defined as
the values lower than a standard deviation below the median of the time series of the
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given point or pixel. So the CCD map is built as the map of coherence after applying the
following filter:

chg f ilter(x, y, r) =
{
∅ i f coh(x, y, r) ≥ med(x, y)− std.dev(x, y)
coh(x, y, r) i f coh(x, y, r) < med(x, y)− std.dev(x, y)

(4)

where r identifies the raster or map of coherence between consecutive SAR images, i.e., the
time; med stands for median; and std.dev stands for standard deviation. Again, since the
geometric decorrelation is aleatory in time and always presents a similar distribution in
space, and the soil moisture decorrelation also has an approximately constant distribution
in space, none of these effects should affect the maps obtained with the filter method, and
only the soil moisture decorrelation could have a minor role in when a change is detected,
but not where.

• MCR-ALS. The CCD method based on the coherence between consecutive SAR images.
Mixture resolution technique to identify the spatial distribution of permanent InSAR
coherence changes within a set of SAR images (Figure 2c).

This is an algorithm that identifies patterns within a dataset—as many patterns as
previously determined. Thus, the idea is that if the imposed number of patterns—called
components in MCR-ALS—is high enough and the torrential sediment transport events
significantly alter the InSAR coherence, then the variations in InSAR coherence caused
by these events should be “captured” by individual components. The idea is better con-
textualised in the explanation of the MCR-ALS that can be found later in this section, but
the result should be that MCR-ALS eliminates the “noise” that is not uniquely related to a
particular event, i.e., the geometric and soil moisture decorrelations—which should present
a similar spatial distribution from one event to another.

• Pre–post coherence. The CCD method based on the coherence between non-consecutive
SAR images. Coherence between SAR images straddling an event (and its temporal
effects) (Figure 2d).

This method was probably the first attempt to build CCD maps, and the idea is
similar to that of the patterns method, although more direct: the soil moisture decorrelation
is avoided by computing the coherence between the last SAR image before the rain- or
snowfall event triggering the torrential sediment transport and the first SAR image after
the temporal soil moisture decorrelation caused by the event. Thus, apart from torrential
sediment transport, the only factor affecting the InSAR coherence that may remain is the
geometric decorrelation, whose relevance can be evaluated with the perpendicular baseline:
if the perpendicular baseline is large (tens or hundreds of metres), then the geometric
decorrelation might be relevant in rugged-relief areas; if it is small (few metres), then the
geometric decorrelation will probably be insignificant.
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In addition, in the optical method, added as a non-CCD method in the evaluation of
the CCD results, some post-processing is applied to enhance the detection of changes in the
observed surface, which consists of (i) working only with the red band of the RGB images,
since we verified that, because of the chromatic context, it is more sensitive to changes;
(ii) normalising each image with its average value (of the red band) in the study area; and
(iii) computing the difference between an image before and an image after each rain- or
snowfall event triggering torrential sediment transport:

chgoptical(x, y, v) =


∣∣∣R2(x, y, v)· av(R1)

av(R2)
− R1(x, y, v)

∣∣∣ i f av(R1) ≥ av(R2)∣∣∣R2(x, y, v)− R1(x, y, v)· av(R2)
av(R1)

∣∣∣ i f av(R1) < av(R2)
(5)

where R1 and R2 are the red bands of the images before and after the event, respectively.
Note that the proposed methods cover a range of different degrees of complexity and

sensitivity to the geometric and soil moisture decorrelations (Table 1), in such a way that the
comparison of their results will allow us to evaluate the importance of each decorrelation
and, thus, the degree of uncertainty that they introduce into the CCD maps.

Table 1. Characteristics of the proposed mapping methods.

Method Technique SAR Images Soil Moisture
Decorrelation

Geometric
Decorrelation

Patterns CCD Consecutive No Unlikely
Filter CCD Consecutive Possible Unlikely

MCR-ALS CCD Consecutive Unlikely Unlikely
Pre–post coherence CCD Non-consecutive No Possible

Optical Optical - No Possible

The results obtained with the different CCD mapping methods are compared both
qualitatively and quantitatively. Qualitatively, we analyse if the methods detect sediment
transport (erosion or sedimentation) in the same areas. Quantitatively, we measure numeri-
cally how similar the maps obtained with the different methods are, using the Intersection
over Union (IoU) ratio, which compares the methods in pairs. For such a comparison, this
ratio requires a binary conversion of the maps into changes (torrential sediment transport)
and non-changes, since it is defined as the ratio between the area where both methods de-
tect changes (intersection) and the area where one or both methods detect changes (union).
The procedure is described in the next section.

Finally, as MCR-ALS stands out among the mapping methods for being a technique
that is possibly never used in geomorphology, a more complete explanation of this method
concludes this section. MCR-ALS is an algorithm developed in chemometrics to resolve
complex chemical mixtures. Multivariate Curve Resolution (MCR) is a family of algorithms
that address the mixture analysis problem by expressing the original data (the mixture)
as a bilinear combination of pure species [33]. In particular, MCR-ALS solves the MCR
bilinear model using a constrained Alternating Least Squares (ALS) algorithm. The main
advantages of MCR-ALS are that no previous knowledge about the pure species is needed,
but, at the same time, if such knowledge is available, it can be introduced in the model
through the constraints. This makes MCR-ALS a highly flexible and versatile technique
suitable to be applied to a great variety of fields and data [34], such as geomorphology.

From the mathematical point of view, the MCR-ALS model can be expressed in the
following matrix form [35]:

D = C · ST + E (6)

where D is the input mixture data, C is the concentrations, and S the spectra of the pure
species or, in terms of this study, D contains the rasters or maps of coherence between
consecutive SAR images (one raster at each column), C contains the spatial distributions
of the components (one component at each column), and S contains the weights of the
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bilinear combinations. The superscript T stands for the transposed matrix, and the matrix
E contains the residuals not explained by the pure species or components of matrix C.
Thus, the input data are the mixture (the rasters of InSAR coherence) and the number
of components, and the outputs are the concentrations of the pure species (the spatial
distributions of the components) and their spectra (the weights of each component in each
raster). The dimensions of the matrices are D (p × r), C (p × c), S (r × c), and E (p × r),
where p is the number of pixels of the rasters of InSAR coherence, r is the number of rasters,
and c is the number of components. Note that the construction of the matrix D requires
a geometrical conversion of each raster of coherence from an (i × j) matrix to an (i·j × 1)
vector (where i·j = p), a conversion that will have to be reverted (from (i·j × 1) vectors
to (i × j) matrices) to obtain the spatial distributions of the components. In other words,
the rasters can be understood as matrices of i rows and j columns (i and j multiplied by
the spatial resolution of the rasters give the geographical dimension of the rasters), and
their pixels—the cells of the matrices—need to be reordered into a single column in the
construction of matrix D.

The MCR-ALS is an iterative method that begins with an initial estimation of either
C or S, usually obtained using methods based on evolving factor analysis (EFA) or SIM-
PLISMA (Simple-to-Use Interactive Self-Modelling Mixture Analysis) [34]. Then, matrices
C and S are optimised by iteratively solving Equation (6) with ALS. During the ALS opti-
misation, several constraints can be applied to C and S, such as non-negativity, selectivity
(some values are forced to zero), unimodality, or closure (a certain sum is forced to a
constant value; for instance, mass conservation) [34,35]. Convergence is achieved (i) when a
certain percentage of explained variance is reached, (ii) when the lack of fit is under a given
threshold, (iii) when the matrices C and S do not evolve anymore (which is usually mea-
sured with the standard deviation of the residuals between the experimental—input—and
the ALS-calculated matrices of consecutive iterations), or (iv) when a maximal preselected
number of iterations is reached [34,35]. The main drawback of MCR-ALS is that it may
fail to converge to the optimal C and S matrices [35]. Thus, in order to verify that the
correct solution has been achieved, it is essential to check and compare the lack of fit (LoF,
Equation (7)) of the solutions obtained with ALS and principal component analysis (PCA)
and check the percentage of explained variance (R2, Equation (8)) [35,36]:

LoF(%) = 100·

√√√√ ∑k,l(ek,l
2)

∑k,l

(
dk,l

2
)
 (7)

R2(%) = 100·

1− ∑k,l

(
ek,l

2)
∑k,l

(
dk,l

2
)
 (8)

where ek,l are the elements of the matrix E and dk,l are the elements of the matrix D. The
optimal number of components can be found by comparing the performance of MCR-ALS
models using a different number of components [36]. Its initial estimation is often obtained
with PCA [33]. Further details about the MCR-ALS can be found in the literature [33–36].

2.4. Procedure

The mapping of the area affected by a torrential sediment transport event using
CCD requires us to first (i) define the study area, (ii) download the SAR images of the
study period (Table A1), (iii) calculate the rasters of InSAR coherence (Equation (1)), and
(iv) identify the events that occurred during the study period, i.e., the dates when such
events happened and the duration of the temporal soil moisture decorrelation. These steps
were already carried out in a previous work [27], and the results are used here as a starting
point, i.e., input data (Figure 3a). Then, with the rasters of coherence, the dates of the
events, and the duration of the temporal effects related to each event, i.e., the soil moisture
decorrelation, the procedure is different for each method (Figure 3):
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• Patterns:

1. Calculation of the average maps of coherence between consecutive SAR images
before the event and after its temporal soil moisture decorrelation (Equation (3)).

2. Mapping of the events (Equation (2)).

• Filter:

1. Application the filter (Equation (4)).
2. Mapping of the events, i.e., generation of the maps for the relevant dates.

• MCR-ALS:

1. Determination of the number of components of the MCR-ALS model. As a first
guess, we consider one component (or one spatial pattern or distribution of
InSAR coherence) between the events and two components during an event
(temporal and permanent changes in the InSAR coherence).

2. Application of the MCR-ALS algorithm. In this study, the initial estimation of the
matrix C was obtained using a modified SIMPLISMA algorithm; a non-negativity
constraint was applied to both matrices S and C, using, respectively, the fast
non-negative least squares and the forced-to-zero methods [34]; the convergence
was achieved when the standard deviation of the residuals between the elements
of the experimental and the ALS-calculated matrix D changed less than 0.01%
between two consecutive iterations.

3. Verification of the weights of the components at each raster of coherence between
consecutive SAR images to validate the number of components determined in
step 1. Ideally, for each event, there should be at least one component that is only
relevant in the rasters related to that event and other components with a random
weight along the series of rasters (i.e., over time). The former will represent the
changes in the surface related to the event, whereas the latter represents and
eliminates the other components of the decorrelation.

4. If needed, iteration of steps 1 to 3.

• Pre–post coherence:

1. Mapping the events, i.e., computation of the coherence between the last SAR im-
age before the rain- or snowfall event triggering the torrential sediment transport,
and the first SAR image after the temporal soil moisture decorrelation caused by
the event.

• Optical:

1. Downloading of the images for the relevant dates (Table A2).
2. Normalisation of the red band of the images by their average (Equation (5)).
3. Mapping of the events (Equation (5)).

Note that the methods based on the coherence between consecutive SAR images
(namely, patterns, filter, and MCR-ALS) are applied to the whole series of rasters, including
events and “non-events”. Nevertheless, the previous analysis to identify the occurrence
of the events and the duration of the temporal disturbances in the InSAR coherence is
necessary as it provides the required input information. The pre–post coherence and the
optical methods greatly benefit from such an analysis since it allows us to only work with
the relevant dates.

Finally, regarding the quantitative comparison of the results obtained with each CCD
mapping method, i.e., the IoU ratio, the procedure used is as follows (Figure 3c):

1. Uniformisation of the resolution of the maps of all the methods.
2. Binary conversion of the maps obtained with each method into changes (hypotheti-

cally, erosion or sedimentation) and non-changes:

ξm(x, y, v) =
{

0 i f coh(x, y, v) ≥ thresm
1 i f coh(x, y, v) < thresm

(9)
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where ξm is the binary value after the conversion for the mapping method m, and thresm
is the threshold of the method m used for the conversion. Since the sensitivity of each
method to the surface changes is different, the criterion to determine the threshold is that
the extension of the area where changes are detected—or, in other words, the number
of pixels where the coherence is lower than the threshold—is the same for all four CCD
mapping methods. As a basis for comparison, a threshold value of 100 was applied to the
pre–post coherence method (for an InSAR coherence normalised to the range from 0 to 254),
but the results should remain essentially the same if a different reference was used.
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3. Sum of the binary maps. Only three values are possible in the resulting map: 0 where
either of the two methods being compared detects any change; 1 where only one of
the two methods detects changes; and 2 where both methods detect changes, i.e., the
intersection.

4. IoU ratio:

IoU(m1, m2, v) =
A2

A1 + A2
(10)

where m1 and m2 are the two mapping methods being compared, and A1 and A2 are
the area or, equivalently, the number of pixels (p) of the map obtained in step 3 (the
sum of the binary maps) that have a value of 1 and 2, respectively. The IoU ratio, as
defined in Equation (10), can take values in the range of [0, 1].

The IoU ratio may be very sensitive to slight discrepancies between the maps of the
methods being compared. For instance, two methods could detect surface changes along
the same section of a gully, which should correspond to a maximal IoU ratio, but a small
difference in the width of the stripe where the changes are detected, caused by a different
sensitivity of the methods, may decrease the IoU ratio to a very low value. Therefore, in
order to reduce such over-sensitivity, we base the quantitative comparison on the IoU ratio
over a 3 × 3-pixel window, which is also calculated using Equation (10) but after applying
a tolerance filter of ±1 pixel on the map obtained in step 3 (the sum of the binary maps). At
a given pixel p, this filter is defined as follows:

• If the map obtained in step 3 has a value of 0 at the pixel p, then the value of the
filtered map remains 0 at the pixel p.

• If the map obtained in step 3 has a value of 2, then the value remains 2.
• If the map obtained in step 3 has a value of 1, then:

• If the map obtained in step 3 has a value of 2 somewhere in a 3 × 3-pixel window
centred at the pixel p, then the filtered map takes a value of 2 at the pixel p.

• Otherwise, the value of the filtered map remains 1 at the pixel p.

In the case of the filter method, the IoU ratios are calculated only in the pixels selected
according to Equation (4), i.e., in the pixels where the filter method provides data.

The idea behind this tolerance filter is that, if two methods indicate the same spatial
distribution of surface changes and their only difference is the extent, the numerical com-
parison should not penalise this discrepancy as much as if their spatial distributions were
completely different or the changes were detected at different locations.

3. Results

The results obtained with the four CCD mapping methods show a general agreement
at the scale of the study area: the areas affected by torrential sediment transport are (i) wide
areas along the main channels of the proximal fans, especially in the northern ones; (ii) the
slopes of the northern summits above 3500 m.a.s.l.; (iii) high-altitude torrential materials
located at 3900–4000 m.a.s.l. in the southeast of the study area; and (iv) other more localised
and less extensive torrential materials in the southern outcrops (Figures 4 and 5). When
observing the results, note that the patterns method (leftmost column in Figures 4 and 5)
provides extra information in comparison to the other methods: positive values in the
results indicate an increase in the stability of the radar signal after an event, whereas
negative values indicate the opposite. Thus, changes are represented by large values (either
positive (blue) or negative (orange to red)), which, in the case of agreement, should be
located in the areas with low values (red) for the other methods. Regarding the MCR-ALS
model, after a few iterations, the number of components was fixed at 30 components,
achieving a lack of fit of 4.195% and 1.493% for the ALS and PCA, respectively, and 99.824%
of explained variance.
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images are the pairs of optical images compared for each event, included in this figure to ease the
interpretation of the changes mapped with them. The dates of the time periods covered by each map
are indicated below, as well as the rainfall accumulated during that event at the meteorological station
in the Salar de Atacama Basin that registered the largest amount, and the maximal daily decrease in
the snow cover in the study area during the event (thaw). Note that, although the colour legend is
not the same for every method, their meaning remains the same (except for the patterns method):
red indicates changes, while blue indicates stability. For the patterns method, the brightest colours
indicate changes, while the darkest (blue) colours indicate stability. There is a general agreement
in the detection of the areas affected by torrential sediment transport between the CCD methods,
except for the MCR-ALS map of event 2. According to the meteorological records, this may be due to
aeolian sediment transport.
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Figure 5. Results (ii): events 4 and 5. See the caption of the previous figure for more information. The
red rectangles in event 5 are the extension of Figure 7. The eastern red band in event 4 (top row) is
snow, which, interestingly, does not distort the map of the patterns method (first column).

Logically, the degree of coincidence between the CCD mapping methods at the scale
of a gully or an alluvial fan diminishes, as can be observed with the IoU ratio (Figure 6).
Numerically, the average IoU ratio for the five events that occurred during the study period
(April 2015–June 2018), with a tolerance of±1 pixel, as described in Section 2.4, ranges from
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42 to 61%, depending on the pair of methods being compared (Table 2). If the tolerance is
increased to ±2 pixels, the IoU ranges from 54 to 71% (Table 2). This increase shows the
high sensitivity of the IoU to small discrepancies between the maps being compared.
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Figure 6. Sum of the binary maps generated for the calculation of the Intersection over Union (IoU)
ratios between the CCD mapping methods, with a tolerance filter of ±1 pixel (see Section 2.4). Each
column contains the comparison between two methods, and each row contains the comparisons for
one event. The IoU ratios are the ratios between the green area and the sum of the green and the
red areas.
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Table 2. Average Intersection over Union (IoU) ratios between the CCD mapping methods for the
five events that occurred during the study period, with a tolerance of ±1 pixel (without brackets) and
±2 pixels (in brackets).

Pre–Post Coh. Patterns Filter MCR-ALS

Pre–post coh. 100% 45% (57%) 61% (71%) 61% (69%)
Patterns 100% 44% (58%) 42% (64%)

Filter 100% 56% (66%)
MCR-ALS 100%

An initial analysis of the results obtained with each method shows the following.

• The patterns method is less sensitive to changes in the observed surface because
it compares averages. For the same reason, this method is not able to distinguish
between rain- or snowfall events that occurred very close together. On the other hand,
it appears to be the only method not affected by snow cover (see event 4, top row in
Figure 5), and the sign of its results provides extra information in comparison to the
other methods. This point will be further discussed in the next section.

• The filter works well and provides useful results that are consistent with the other
methods, but since it does not provide information everywhere for every event, its
maps are not as clear as for the other methods.

• The MCR-ALS provides results very similar to the pre–post coherence but at a higher
cost, if the dates of the events and the duration of the associated temporal soil moisture
decorrelation were known a priori. However, if this information is not known a priori,
the cost-benefit in comparison to the pre-post coherence method is debatable. Another
advantage of the MCR-ALS is that it is able to distinguish between events that occurred
close together. Finally, MCR-ALS appears to be sensitive to aeolian sediment transport,
which, based on the meteorological records, could explain its discrepancy with the
other methods in event 2 (middle row in Figure 3). According to the available data,
this is the only event among the five that occurred during the study period in which
significant aeolian sediment transport occurred.

• The pre–post coherence offers much clearer results than the filter at a lower cost,
provided that the dates of the events and the duration of the associated temporal
soil moisture decorrelation were already known. However, similar to the patterns
method, it is not able to distinguish between rain- or snowfall events that occurred
very close together.

• Finally, the optical images appear to be of very limited help. On the one hand, this is
because of the obstruction caused by cloud cover (either the direct obstruction or their
projected shadow) and, in event 4, the chromatic distortion of the snow cover. And
on the other hand, this is because even without those limitations, the optical method
is less sensitive than the CCD methods (see event 3 in Figure 4). Nevertheless, the
analysis of the optical results at a more local scale (a gully or an alluvial fan) shows
changes in the same areas as the CCD-based maps (see, for instance, the comparison
with a field campaign in the next section).

4. Discussion
4.1. Analysis of the Mapping Methods

According to the reasoning discussed in Section 2.3 (Table 1), the only CCD mapping
method exposed to decorrelation not caused by changes in the observed surface is the
pre–post coherence (it may be affected by the geometric decorrelation). However, no
correspondence is observed between how much the topographic relief is visible in the
maps (fourth column in Figures 4 and 5) and the perpendicular baseline (Table A2). In
fact, according to the IoU ratios, the pre–post coherence is the method with the largest
coincidence with the other ones (Table 2). Furthermore, for all of the four CCD mapping
methods, the changes detected in the surface are neither always detected in the same areas,
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nor are they detected with the same intensity (Figures 4 and 5). In other words, the spatial
distribution of the detected changes varies from one event to another. If these changes were
due to geometric decorrelation, not only should the intensity of the changes correlate with
the perpendicular baseline, but their spatial distribution should also be similar for all the
events, which is not the case.

Regarding the eventual soil moisture decorrelation, the two CCD methods that might
be sensitive to it, namely the filter and the MCR-ALS (Table 1), never indicate changes in
areas where the other methods do not detect changes too, especially the pre–post coherence
method (second, third, and fourth columns in Figures 4 and 5).

Consequently, we conclude that, in the area and period of study, neither the geometric
nor the soil moisture decorrelation that may remain in the CCD maps are significant. Thus,
the areas marked on the CCD maps have probably experienced erosion or sedimentation
related to flash floods, even if these areas happen to be some of the zones that are the most
susceptible to the geometric (the gullies) and/or the soil moisture decorrelation (e.g., the
alluvial fans).

Nevertheless, in the patterns method (first column in Figures 4 and 5), in some areas
and for some events, parallel patterns with opposite signs are observed on the maps. See,
for instance, the northern gullies in event 2 or the mid-latitude volcanic cone in events 2
and 3 (Figure 5). Although the meaning of the sign of the results is not clear yet, we wonder
if such features could be the signature of the effects of the perpendicular baseline. In such
a case, the patterns method could be a technique to detect such effects in an easier and
more economical way than, for instance, processing different SAR datasets obtained with
different geometries. This point remains to be better analysed in further research.

In any case, the comparison with other sources of data, specifically the optical Sentinel-
2 images and field observations, is also satisfactory. The validation with the optical images
is very limited due to the cloud cover and the snow, but in the local areas where the
comparison with the CCD results is possible, the optical results show changes in the same
areas as the most significant changes detected using the CCD methods. However, the
optical images seem to be insensitive to the smaller changes observed in the CCD-based
maps. In other words, the CCD methods are more sensitive to changes in the observed
surface than the comparison between optical images—as already stated in the Introduction.
Regarding the field observations, the comparison of the results of the CCD methods with
a field campaign that mapped the sediments mobilised by event 5 (last row in Figure 5)
shows very good agreement (Figure 7).

Thus, the next step in the mapping of torrential sediment transport based on CCD
would be to build probability maps showing the areas where such phenomena are most
likely to occur. Such maps would require a statistical analysis of historical records that,
unfortunately, do not exist, especially in such remote areas. However, SAR data do offer
a historical archive that could be analysed retrospectively. This could also be a task for
further research. In the meantime, the data analysed in this study already allow us to
perform an approximation of a 3-year return period probability map (Figure 8), since the
study period spans over approximately three years: the average of the binary change maps
of the five events (see Section 2.4). Given the scarcity of information in a region like the
study area, this information is already highly valuable.
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4.2. Comparison with the Literature

Since this is not the only study on the use of CCD to map torrential sediment transport
events in arid environments, it is worth making a brief comparison with the methods,
results, and observations of other studies in the literature.

Thus, regarding the applied methods, it is interesting to note that PCA, which is a
method close to MCR-ALS, has also been used in CCD aiming to eliminate the components
of the decorrelation not related to changes in the observed surface [24]. Logically, the most
direct method, which is to calculate the coherence between an image before a rain- or
snowfall event and an image after the temporal effects on the InSAR coherence caused
by the event—i.e., the soil moisture decorrelation—has also been applied in previous
studies [16]. The pattern method follows the same idea. However, the advantage in our
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case is that, in our previous study [27], we determined the period affected by the temporal
changes in coherence based on the direct analysis of the InSAR coherence data instead of
using a model (for instance, of the decorrelation related to humidity changes), and working
only with the coherence between consecutive SAR images, rather than with the coherence
rasters between all possible pairs of SAR images. Thus, we believe that our methodology is
much more efficient and more precise in determining the duration of the temporal effects.
As a final observation related to the methodology, the amount of precipitation was found
to affect the duration of temporal changes in coherence, but not their magnitude [16]. We
agree, but our previous study [27] suggests that we should be careful since it might also
be due to a lack of representativeness of the meteorological data, which would prevent
observing a correlation between the amount of precipitation and the magnitude of the
temporal loss of coherence. In any case, the results of the methods that might be affected by
the temporal soil moisture decorrelation—namely, the filter and, perhaps, the MCR-ALS to
a lesser extent—and the results of the methods not affected by these effects coincide, which
supports the mentioned hypothesis.

Moving on to the analysis of the results, in the literature, changes in InSAR coher-
ence are detected in the same areas, from the upper reaches of the gullies to the alluvial
fans [4], but with nuances between studies. Some observe a decrease in the decorrelation
downstream caused by a progressive reduction in the flow of water and sediments due to
evaporation and infiltration [1]. In our case, we do detect a less important decorrelation
in the middle reaches, but it increases again in the lower reaches until the alluvial fan.
Precisely in the alluvial fans, several studies (e.g., [26]) conclude that their whole surface is
affected by sediment transport (in principle, sedimentation). However, we do not always
detect changes in all the alluvial fans, nor in their entire extent. In fact, for example, the field
campaign included in the discussion shows precisely an example in which the sediment
transport was mainly limited to the main channels of the alluvial fan. Another interesting
aspect is that, although other studies have also detected changes in coherence along the
gullies [1,4,16], quite often, it is not confirmed whether the changes are related to real
changes in the surface or to geometric effects related to the perpendicular baseline. In a
similar way, apart from the gullies, the literature also notes decorrelation in areas of steep
relief [15], which are often also associated with geometric decorrelation. In our case, the
comparison between different mapping methods allows us to conclude that, indeed, there
has most likely been sediment transport in these areas. Moreover, this comparison between
methods that have different sensitivities to the effects of the perpendicular baseline and
soil moisture changes has allowed us to relate the correlation that we observe between
loss of coherence and surface geology and topographic relief (alluvial fans and gullies),
which has also been observed by other authors [24], to real changes in the surface, despite
the correlation that also exists between the geometric and the soil moisture decorrelations
and surface geology and topographic relief. The fact is that, on the one hand, the areas
that are the most susceptible to decorrelation due to torrential sediment transport are the
areas of mobilisation and the deposition of sediments, i.e., the upper reaches of the gullies
and the alluvial fans, respectively; but, on the other hand, these are also the areas that
are the most susceptible to the geometric and soil moisture decorrelations: gullies are
areas of very rugged topographic relief and, therefore, the areas where errors due to the
perpendicular baseline are maximal, and the alluvial fans are the most porous areas, able
to retain moisture for a longer time, so these are the areas where the errors due to soil
moisture changes are maximal too. As a last remark to close this discussion, as already
stated in the literature [4,11,18], our results show that the CCD methods are more sensitive
to changes in the observed surface than optical images, which positions CCD as a highly
useful technique despite the uncertainties that remain to be resolved.

5. Conclusions

This paper analysed the uncertainties related to the decorrelation caused by the
perpendicular baseline and changes in soil moisture on the maps of torrential sediment
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transport in arid environments based on InSAR coherence-change detection (CCD). To this
end, the results of four CCD mapping methods, each one with a different sensitivity to each
component of the decorrelation, were compared between each other and with two mapping
methods of a different nature: changes in satellite optical images and a field campaign.

Both the comparison between CCD methods and the comparison of the CCD methods
with the optical method and the field observations lead to the conclusion that CCD maps
are reliable in the identification of the zones affected by sediment transport, although the
precision in the delimitation of the affected area remains an open issue. However, highly
rugged relief areas still require a thorough analysis of the results in order to discard errors
related to the perpendicular baseline.

Based on the discussion of the results, a combination of the pre–post coherence and
the patterns methods would be the most convenient to map torrential sediment transport in
an arid environment: the pre–post coherence method because it offers good results at a low
cost, and the patterns method to check if there is any area where the geometric decorrelation
(related to the perpendicular baseline) could be relevant. As a reminder, we mention that
the pre–post coherence method computes the coherence between the last SAR image before
the rain- or snowfall event triggering the torrential sediment transport, and the first SAR
image after the temporal soil moisture decorrelation caused by the event, and the patterns
method calculates the difference between the average coherence between consecutive SAR
images during the period prior to the event not affected by soil moisture decorrelation from
previous events, and the average coherence after the temporal soil moisture decorrelation
caused by the event being analysed. Furthermore, the pre–post coherence requires the
previous determination of the date of the event and the duration of the temporal effects.

Regarding future lines of research, several issues remain unresolved. First, the meaning
of the sign of the patterns method’s results remains to be understood, as does whether
parallel patterns on the maps of opposite signs are indeed related to topographic errors
or not. Second, the probability map for torrential sediment transport could be improved
using the entire historical archive of SAR data. And third, it would be interesting to have
more in situ records of rainfall around the study area in order to compare the geographical
distribution of the intensity of the torrential sediment transport detected by the CCD maps
with the geographical distribution of the amount and intensity of precipitation.
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Appendix A

Table A1. Rasters (maps) of coherence between consecutive SAR images.

Coherence
Raster 1st Image 2nd Image Perpendicular

Baseline (m)
Temporal

Baseline (d)

1 02/04/2015 26/04/2015 117 24
2 26/04/2015 20/05/2015 50 24
3 20/05/2015 13/06/2015 90 24
4 13/06/2015 07/07/2015 110 24
5 07/07/2015 31/07/2015 41 24
6 31/07/2015 24/08/2015 91 24
7 24/08/2015 17/09/2015 119 24
8 17/09/2015 11/10/2015 16 24
9 11/10/2015 04/11/2015 50 24
10 04/11/2015 28/11/2015 29 24
11 28/11/2015 22/12/2015 54 24
12 22/12/2015 15/01/2016 58 24
13 15/01/2016 03/03/2016 45 48
14 03/03/2016 27/03/2016 10 24
15 27/03/2016 20/04/2016 72 24
16 20/04/2016 14/05/2016 79 24
17 14/05/2016 07/06/2016 71 24
18 07/06/2016 25/07/2016 28 48
19 25/07/2016 18/08/2016 30 24
20 18/08/2016 11/09/2016 58 24
21 11/09/2016 29/09/2016 66 18
22 29/09/2016 11/10/2016 77 12
23 11/10/2016 04/11/2016 9 24
24 04/11/2016 28/11/2016 100 24
25 28/11/2016 22/12/2016 97 24
26 22/12/2016 15/01/2017 16 24
27 15/01/2017 08/02/2017 84 24
28 08/02/2017 04/03/2017 19 24
29 04/03/2017 16/03/2017 75 12
30 16/03/2017 28/03/2017 49 12
31 28/03/2017 09/04/2017 52 12
32 09/04/2017 21/04/2017 43 12
33 21/04/2017 03/05/2017 4 12
34 03/05/2017 15/05/2017 22 12
35 15/05/2017 27/05/2017 86 12
36 27/05/2017 08/06/2017 54 12
37 08/06/2017 20/06/2017 36 12
38 20/06/2017 02/07/2017 6 12
39 02/07/2017 14/07/2017 61 12
40 14/07/2017 26/07/2017 68 12
41 26/07/2017 07/08/2017 11 12
42 07/08/2017 19/08/2017 15 12
43 19/08/2017 31/08/2017 51 12
44 31/08/2017 12/09/2017 34 12
45 12/09/2017 24/09/2017 17 12
46 24/09/2017 06/10/2017 92 12
47 06/10/2017 18/10/2017 9 12
48 18/10/2017 30/10/2017 80 12
49 30/10/2017 11/11/2017 27 12
50 11/11/2017 23/11/2017 15 12
51 23/11/2017 05/12/2017 87 12
52 05/12/2017 17/12/2017 4 12
53 17/12/2017 29/12/2017 35 12
54 29/12/2017 10/01/2018 48 12
55 10/01/2018 22/01/2018 1 12
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Table A1. Cont.

Coherence
Raster 1st Image 2nd Image Perpendicular

Baseline (m)
Temporal

Baseline (d)

56 22/01/2018 03/02/2018 41 12
57 03/02/2018 15/02/2018 5 12
58 15/02/2018 27/02/2018 7 12
59 27/02/2018 11/03/2018 14 12
60 11/03/2018 23/03/2018 38 12
61 23/03/2018 04/04/2018 103 12
62 04/04/2018 16/04/2018 59 12
63 16/04/2018 22/04/2018 17 6
64 22/04/2018 28/04/2018 26 6
65 28/04/2018 04/05/2018 15 6
66 04/05/2018 10/05/2018 81 6
67 10/05/2018 22/05/2018 14 12
68 22/05/2018 28/05/2018 28 6
69 28/05/2018 03/06/2018 40 6
70 03/06/2018 09/06/2018 61 6
71 09/06/2018 15/06/2018 60 6
72 15/06/2018 21/06/2018 40 6
73 21/06/2018 27/06/2018 64 6
74 27/06/2018 03/07/2018 17 6

Table A2. Rasters (maps) of coherence between non-consecutive SAR images (for CCD mapping
method pre–post coherence).

Coherence
Raster 1st Image 2nd Image Perpendicular

Baseline (m)
Temporal

Baseline (d)

e1 31/07/2015 17/09/2015 30 48
e2 27/03/2016 20/05/2016 9 54
e3 15/01/2017 16/03/2017 6 60
e4 03/05/2017 20/06/2017 91 48
e5 03/02/2018 15/02/2018 5 12

Table A3. Sentinel-2 optical images.

Image Event Date File Observations

1 1 08/08/2015 S2A_MSIL1C_20150808T144816_N0204_R096__20150808T144817 Scattered clouds
2 1 18/08/2015 S2A_MSIL1C_20150818T144816_N0204_R096__20150818T144817 Cloudy in the north
3 2 04/04/2016 S2A_MSIL1C_20160404T143722_N0201_R096__20160404T144137 Scattered clouds
4 2 04/05/2016 S2A_MSIL1C_20160504T143802_N0202_R096__20160504T144136
5 3 20/12/2016 S2A_MSIL1C_20161220T143742_N0204_R096__20161220T143919
6 3 29/01/2017 S2A_MSIL1C_20170129T143751_N0204_R096__20170129T144458
7 4 19/05/2017 S2A_MSIL1C_20170519T143751_N0205_R096__20170519T143812
8 4 08/06/2017 S2A_MSIL1C_20170608T143751_N0205_R096__20170608T144911 Distorted by snow
9 5 29/01/2018 S2B_MSIL1C_20180129T143749_N0206_R096__20180129T180250 Cloudy
10 5 05/03/2018 S2A_MSIL1C_20180305T143751_N0206_R096__20180305T143751

Appendix B

The identification of the torrential sediment transport events in the study area during
the study period performed in a previous study [27] was verified, among other analyses,
through comparison with meteorological data. Two meteorological variables are included
in this study: rainfall and snow cover. Daily accumulated rainfall was retrieved from
meteorological stations of the Dirección General de Aguas (DGA) [37], Ministry of Public
Works (MOP) of Chile (Table A4). Since the records show a significant geographical
variability in rainfall (see the range in Figure A1), the considered stations were located
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not only within the study area but also in the surroundings as complementary data for an
improved interpolation in their interpretation (Figure A2).

Table A4. Meteorological records: stations, time period covered by the records of daily rainfall, and
coordinates. See the location of the stations in Figure A2.

Meteorological
Station

Rainfall
from

Rainfall
to

Latitude
WGS84 (◦)

Longitude
WGS84 (◦)

Altitude
(m.a.s.l.)

Camar 01/01/1986 30/04/2018 −23.410000 −67.960000 2700
Chaxa 01/08/1999 30/06/2018 −23.288920 −68.183490 2307
Cordillera_Sal 19/10/2017 31/03/2021 −23.641238 −68.562540 2363
Interna 10/07/2015 09/10/2017 −23.042575 −68.129584 2359
KCL 01/01/2015 31/07/2018 −23.542934 −68.398893 2307
LZA12-3 02/06/2015 27/02/2019 −23.042575 −68.129584 2359
LZA3-2 09/07/2015 31/12/2019 −23.430187 −68.115476 2306
Monturaqui 01/01/2015 30/06/2018 −24.345094 −68.437070 3430
Paso_Jama 18/08/2016 10/01/2022 −22.925545 −67.703100 4825
Paso_Sico 18/08/2016 08/01/2022 −23.825336 −67.441728 4323
Peine 01/01/1986 30/04/2018 −23.681879 −68.066942 2460
Rio_Grande 01/01/1986 30/04/2018 −22.651977 −68.167375 3217
San Pedro de Atacama 01/01/1986 31/12/2016 −22.910384 −68.200528 2450
Socaire 01/01/1986 31/12/2016 −23.587870 −67.891654 3251
SOP 01/01/2015 31/07/2018 −23.478960 −68.385836 2300
Talabre 01/08/1995 30/04/2018 −23.315846 −67.889638 3255
Tatio 01/01/1986 13/01/2022 −22.351323 −68.016396 4370
Toconao_expe 01/01/1986 28/02/2009 −23.192581 −67.999524 2500
Toconao_P. 11/08/2016 09/01/2022 −23.185721 −68.005544 2492
Toconao_Q.4 18/08/2016 31/12/2020 −23.156794 −67.900116 3437
Toconao_Retn 01/01/1986 31/01/1991 −23.197307 −68.011185 2460
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The snow cover was obtained from Moderate Resolution Imaging Spectroradiometer
(MODIS) snow cover product version 6. MODIS snow cover products offer a one-day
temporal resolution and an approximately 500 m spatial resolution for regional snow cover
mapping [38–41], with the visual obstruction caused by clouds [42,43], vegetation, and
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rugged relief in mountainous areas [44,45] being their main limitations. In the study area,
the MODIS data are affected only by the cloud cover. The snow cover products are produced
with the SNOMAP algorithm, which is essentially based on the normalised difference snow
index (NDSI). MODIS snow cover time series were created and downloaded with the
MODIS Time Series Preprocessing (MODIStsp) R-package version 1.3.9 [46] and included
data acquired using the Terra satellites (MOD10A1). The post-processing of the data
involved the removal of errors due to salts and clouds mistaken for snow, the linear
interpolation of missing data during heavy snowfalls, the calculation of the extent of the
snow cover in the study area, and the search for and correction of outliers. Finally, the time
series of the extent of the snow cover was translated into thaw, i.e., a decrease in the snow
cover and negative daily variations (Figure A3).
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