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Abstract: Remote sensing precipitation or precipitation from numerical weather prediction (NWP)
is considered to be the best substitute for in situ ground observations for flood simulations in
transboundary, data-scarce catchments. This research was aimed to evaluate the possibility of using
a combination of a satellite precipitation product and NWP precipitation for better flood forecasting in
the transboundary Chenab River Basin (CRB) in Pakistan. The gauge-calibrated satellite precipitation
product, i.e., Global Satellite Mapping of Precipitation (GSMaP_Gauge), was selected to calibrate
the Integrated Flood Analysis System (IFAS) model for the 2016 flood event in the Chenab River at
the Marala Barrage gauging site in Pakistan. Precipitation from the Global Forecast System (GFS)
NWP, with nine different lead times up to 4 days, was used in the calibrated IFAS model to predict
the flood hydrograph in the Chenab River. The hydrologic simulations, with global GFS forecasts,
were unable to predict the flood peak for all lead times. Then, the Weather Research and Forecasting
(WRF) model was used to downscale the precipitation forecasts with one-way and two-way nesting
approaches. In the WRF model, the CRB was centered in two domains of 25 km and 5 km resolutions.
The downscaled precipitation forecasts were subsequently supplied to the IFAS model, and the
predicted simulations were compared to obtain the optimal flood peak simulation in the Chenab
River. It was found in this study that the simulated hydrographs, at different lead times, from the
precipitation of two-way WRF nesting exhibited superior performance with the highest R2 and
Nash–Sutcliffe efficiency (NSE) and the lowest percent bias (PBIAS) compared with one-way nesting.
Moreover, it was concluded that the combination of GFS forecast and two-way WRF nesting can
provide high-quality precipitation prediction to simulate flood hydrographs with a remarkable lead
time of 96 h when applying coupled hydrometeorological flow simulation.

Keywords: sub-daily simulation; distributed hydrologic modelling; flood forecasting; IFAS;
transboundary river; numerical weather prediction (NWP)

1. Introduction

Floods are one of the major causes of natural hazards due to heavy or excessive pre-
cipitation over steep terrain, saturated soil, or the poor infiltration of soil. Comprehensive
knowledge of precipitation processes at higher resolutions has become important for flood
forecasting and flood monitoring. Reliable and accurate precipitation data are crucial for not
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only flood forecasting but also the study of climate variability and trends [1–3]. Currently,
the main methods of retrieving precipitation information for flood modelling are as follows:
traditional rain gauge observations, weather radar precipitation, satellite-based remote
sensing precipitation, and precipitation from numerical weather prediction (NWP) [4–7].

In situ rain gauge observations are considered to be the most reliable measurements
and to serve as the best input for hydrological simulations [8]. However, the acquisition
of rain gauge data has various drawbacks, such as missing temporal records, poor spa-
tial coverage, low rain gauge density, and inaccessibility in the case of transboundary
catchments [9–13]. As remote sensing technologies have evolved in the last few decades,
the drawbacks of temporal and spatial coverage, as well as transboundary issues, have been
solved with the use of satellite precipitation products (SPPs), such as Climate Prediction
Center (CPC) Morphing (CMORPH) [14], Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) [15], Tropical Rainfall Mea-
suring Mission (TRMM) [16], Global Precipitation Measurement (GPM) [17], and Global
Satellite Mapping of Precipitation (GSMaP) [18]. Nevertheless, rain gauge records and SPPs
are still lagging behind in flood forecasting due to less lead time and coarser resolutions,
which decrease the efficiency of flood forecasting [14,17,19].

These issues can be resolved in quantitative precipitation forecast (QPF), i.e., statistical QPF
and dynamic QPF. Statistical QPF includes time-series models [20], artificial intelligence [21],
and wavelet-based methods [22]. Dynamical QPF is a method of solving the equations
and laws that govern the atmosphere process. The spatial distribution of precipitation and
its dynamics are solved by physical governing equations in NWP models [23]. Since the
description of resolved processes, the parametrization of unresolved processes, and the
spatiotemporal resolution of NWP models have improved, the purpose of lead time and
finer resolutions of precipitation output have nearly been achieved [24,25].

NWP models are generally divided into general models (GMs) and regional models
(RMs) based on a range of simulation areas. GMs cover the global scale, while RMs
cover delimited domains that are typically nested from the GMs domain. Compared with
GMs, RMs give more detailed spatial distributions and more accurately capture extreme
precipitation events [26]. Therefore, GMs’ output can be used as input to RMs to obtain
precipitation forecasts at the regional level [27]. The most commonly used RMs are: the next-
generation Weather Research and Forecasting (WRF) model [28,29], the European Center
for Medium-Range Weather Forecasts (ECMWF) model [30], the National Meteorological
Center (NMC) forecast model [31], the operational Japan Meteorological Agency (JMA)
mesoscale model [32], and the numerical forecast model of the China Meteorological
Agency [33]. In this study, the WRF (version 4.0) model was implemented to enhance the
resolution of the global NWP model. The downscaling of global NWP by RMs effectively
improves forecasting capabilities by considering more realistic atmospheric circulations
and topographies [34–37]. For instance, [38] used NWP rainfall for the rainfall–runoff-
inundation of the 2010 flood in the Kabul River basin, Pakistan, and concluded that the
reliability of NWP was improved after downscaling with the WRF. The authors of [39]
applied WRF for the downscaling of ECMWF Re-Analysis (ERA-Interim) temperature and
precipitation in Greece. Their results revealed a good correlation for seasonal patterns, and
the WRF model outperformed the results of the coarse-resolution ERA-Interim.

Various methods and models that are capable of simulating floods using remotely
sensed data have recently been developed. This study focused on a distributed hydrological
model, i.e., the Integrated Flood Analysis System (IFAS) [40], for flood simulation in the
Chenab River Basin (CRB) in Pakistan. The IFAS was developed by the International Centre
for Water Hazard and Risk Management (ICHARM) in Japan and is suitable for flood
prediction in large and data-scarce river basins. The IFAS model has several benefits, e.g., it
is a concise tool kit with a user-friendly graphic user interface (GUI) and a straightforward
parameter manager for sensitivity analysis, the visualization of flood results, and free
distribution. The IFAS model can automatically collect and extract geographical, soil-
type, and land-use data to set up a river basin model for flood simulations. It can utilize
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both satellite and ground-based precipitation data as input. The easy incorporation of
ground-based precipitation data enables the use of NWP precipitation in the IFAS model.

The IFAS is a kinematic wave approximation model used by many researchers to
model floods in different areas of the world, including Pakistan [41–44]. For instance, [45]
used near real-time GSMaP-NRT data for the simulation of discharge in the Chenab and
Jhelum rivers in Pakistan with the IFAS and found that GSMAP-NRT products had to
be corrected before hydrologic application. The authors of [46] applied gauge-adjusted
GSMaP-Gauge data to the CRB in the IFAS model for calibration and used three global NWP
models with a 12 h simulation interval to predict the precipitation forecast pattern in the
CRB. They concluded that downscaled NWP data were more effective in flood simulations
than global NWP models. Some studies have used other hydrological models in the CRB
to perform flood simulations with the help of remote sensing SPPs. For example, [47]
studied the CRB with the application of three SPPs, i.e., Integrated Multi-satellitE Retrievals
for GPM (IMERG-F), Real Time TRMM (3B42RT), and GSMaP_NRT; they applied the
Hydrologic Modeling System (HEC-HMS) model to simulate peak flow, and IMERG-F
outperformed the rest of the SPPs. The authors of [48] used The Soil & Water Assessment
Tool (SWAT) model for hydrological simulation in the CRB with two SPPs (IMERG-F and
3B42), and they concluded that IMERG-F outperformed the 3B42 precipitation product at
daily and monthly timescales. Moreover, [49] evaluated the daily and sub-daily IMERG-
E, IMERG-L, and IMERG-F products for daily and monthly flow simulations over the
CRB. They concluded that the sub-daily SPPs showed superiority over the daily SPPs
among all three datasets. This study was a further continuation of the abovementioned
studies to improve the accuracy of flood simulation in the CRB with the application of
NWP, i.e., Global Forecast System (GFS). Many studies have also been conducted with
a combination of atmospheric–hydrologic models [50–53]. For instance, [52] coupled the
Liuxihe model with the WRF model. They optimized the Liuxihe model parameters with
rain-gauge precipitation and then re-optimized them with the WRF NWP. They concluded
that the flood forecasting produced by coupling the Liuxihe model with the WRF NWP
provided a good reference for a large watershed flood warning due to its long lead time. The
authors of [53] also proposed the feasibility of simulating urban floods via a WRF–SWMM
system, which was able to simulate the entire process from the precipitation produced by
atmospheric movements to the development of urban floods. In this study, the IFAS model
was coupled with WRF NWP to assess the feasibility of floods in the CRB.

Pakistan is prone to climate change and will face wetter conditions in the future,
especially over the monsoon region [54], so more floods are expected. From 1950 to the end
of 2020, Pakistan faced a financial loss of US$ 38,169 million, a death toll of approximately
13,262, and 616,558 km2 of area inundated by flood waters [55]. Floods become more
critical to handle in the case of a transboundary river, as upstream countries do not really
follow data-sharing practices [27]. Pakistan shares about 97% of the CRB (above the Marala
Barrage gauging site; see Figure 1) with India, from where it is hard to obtain ground-based
precipitation data due to the Jammu and Kashmir conflict [45,56]. Moreover, conventional
flood forecasting using precipitation gauges and river discharge gauges cannot mitigate
catastrophic damage due to small lead times. Fewer lead times will undoubtedly affect
the efficiency of flood warnings and the evacuation of people on time, particularly in
underdeveloped countries [57]. SPPs and NWP data are perfect alternatives to ground
observations for flood forecasting in such transboundary basins [58]. The objectives of this
study were identical to the described concerns, which are:

(1) To calibrate the hydrological Integrated Flood Analysis System (IFAS) model on the
transboundary Chenab River Basin (CRB) using an open-source satellite precipitation
product (SPP), elevation, soil, and land use.

(2) To apply the calibrated IFAS model for hydrometeorological flow simulations using
Global Forecast System (GFS) NWP, downscaled one-way WRF, and two-way WRF
GFS precipitation to obtain the optimal flood peak of the 2016 flood in the CRB.
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(3) To conduct flood forecasting with the calibrated IFAS model by using different forecast
lead times of GFS precipitations.
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Figure 1. Study area of the Chenab River Basin.

2. Study Area

The Chenab River is one of the main eastern tributaries of the Indus River, which
originates from the state of Himachal Pradesh in India and moves in the southwest direction
towards Pakistan. It has a steep slope (25 m/km) in upstream snowy parts and a less steep
slope (0.4 m/km) in the downstream plains of Punjab, Pakistan [59]. It has a first discharge
gauging site at Marala Barrage in Pakistan. The Chenab River Basin (CRB), above the
Marala Barrage, is a shared transboundary catchment between India and Pakistan, with
97% of the area on the Indian side. The elevation of the CRB ranges from 236 m to 6903 m
(Figure 1). The total area of the CRB, above Marala Barrage, is about 28,000 km2 and
extends between 32◦–34.3◦N and 74◦–77.85◦E, as shown in Figure 1.

The CRB lies in an active monsoon belt and snow-dominant area. It receives about
65% of its precipitation in the monsoon and pre-monsoon seasons, and 26% of its precip-
itation is in the form of snow in winter [60]. Moreover, 84% of the river flow occurs due



Remote Sens. 2023, 15, 457 5 of 22

to combined flow from snowmelt and rainfall in the pre-monsoon and monsoon seasons
(April–September) [61].

3. Materials and Methods
3.1. Topographic, Land-Use, and Soil-Type Data in IFAS Model

In this study, the Global Map Elevation ver2 dataset was retrieved from the Global
Data Archive of Geospatial Information Authority of Japan (GSI) (https://www.gsi.go.
jp/ENGLISH/ accessed on 15 September 2022), which was previously provided by the
secretariat of International Steering Committee for Global Mapping (ISCGM). These data
were used for a digital elevation model in the IFAS model. The Global Land Cover Char-
acterization dataset was obtained from (https://doi.org/10.5066/F7GB230D accessed on
15 September 2022) and used as land-use data in the IFAS model for the CRB. The land-use
classification consists of 24 categories in the CRB, which were parameterized into 5 classes
in the IFAS model, as shown in Table 1. The soil-type data were obtained from the FAO-
UNESCO Digital Soil Map of the World (DSMW) (https://data.apps.fao.org/ accessed on
15 September 2022) to perform the parameterization of the aquifer tank in the CRB. Eight
classes of soil were found in the CRB, i.e., Lithic, Orthic Luvisol, Glacier, Haplic Phaeozem,
Chromic Luvisol, Eutric Fluvisol, Gleyic Cambisol, and Eutric Gleysol. These datasets were
upscaled to a coarser resolution of 5 km in the IFAS model to reduce the computational
time for near-real-time forecasting.

Table 1. Land-use classification of the CRB and its surface tank parameter in the IFAS.

IFAS Parameters GLCC Land-Use Class

1

Deciduous Broadleaf Forest
Deciduous Needleleaf Forest
Evergreen Broadleaf Forest

Evergreen Needleleaf Forest
Mixed Forest

2

Cropland/Grassland Mosaic
Cropland/Woodland Mosaic

Grassland
Shrubland

Mixed Shrubland/Grassland
Savanna

Barren or Sparsely Vegetated
Herbaceous Tundra

Wooded Wetland
Mixed Tundra

Bare Ground Tundra

3

Dryland Cropland and Pasture
Irrigated Cropland and Pasture

Mixed Dryland/Irrigated Cropland and Pasture
Herbaceous Wetland

Wooded Wetland

4 Urban and Built-Up Land

5
Water Bodies
Snow or Ice

3.2. Satellite Precipitation Data

As discussed in the previous section, 97% of the CRB lies on the Indian side. There-
fore, that area is considered to be ungauged due to the unavailability of data because of
prolonged conflicts between Pakistan and India. However, satellite-based precipitation
data, Global Satellite Mapping of Precipitation (GSMaP), were chosen as a replacement
for rain gauge observations for hydrological simulation in the CRB. GSMaP is supported
and developed by the Japan Science and Technology Agency (JST) and Japan Aerospace

https://www.gsi.go.jp/ENGLISH/
https://www.gsi.go.jp/ENGLISH/
https://doi.org/10.5066/F7GB230D
https://data.apps.fao.org/
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Exploration Agency (JAXA) [62]. GSMaP incorporates data from both infrared (IR) and
passive microwave (PMW) sensors, and its global scale spatial coverage is helpful in
a wide range of hydrological applications. GSMaP provides many precipitation products
globally, i.e., GSMaP-NOW (real-time), GSMaP-NRT (near-real-time), GSMaP-MVK (post-
real-time microwave IR reanalyzed), and GSMaP-Gauge (gauge adjusted post-real-time).
In this study, version 6 of the GSMaP-Gauge product was used (ftp://hokusai.eorc.jaxa.jp/
accessed on 15 September 2022) after calibration with ground-based precipitation observa-
tories. GSMaP-Gauge has a temporal resolution of 1 h and a spatial resolution of 1◦ × 1◦,
covering the globe from 60◦N to 60◦S.

3.3. Chenab River Flow Data

The river flow data were obtained from Flood Forecasting Division, Pakistan Meteoro-
logical Department. Flow data were recorded every 6 h (at 00 h, 06 h, 12 h, and 18 h) during
the monsoon season (15 June–15 September) at the first discharge gauging site, i.e., Marala
Barrage, which is also known as the first rim station in Pakistan. The 2016 flood peak data
were obtained and used to calibrate and validate the hydrologic model (Figure 2).
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3.4. NWP Data for Flood Forecasting

In this study, NWP data were obtained from the Global Forecast System (GFS) from
the Research Data Archive of the National Center for Atmospheric Research (NCAR),
(https://rda.ucar.edu/datasets/ds084.1/ accessed on 1 October 2022). The GFS is a global-
scale NWP system that has a horizontal resolution of 0.25◦ × 0.25◦ with 32 pressure levels.
Data on these pressure levels are used to determine the initial and boundary conditions
for large-scale atmospheric conditions without the assimilation of observational data. The
GFS supplies forecasts with 16 days or 384 h of lead time. Forecasts are provided with 3 h
intervals from a 0 h forecast (f00) to a 384 h forecast (f384). These forecasts are provided
every 6 h, i.e., 00 h, 06 h, 12 h, and 18 h. In this study, GFS data were downloaded for
the 2016 peak event in the CRB, i.e., 5th August–10th August, with up to 4 days of lead
time or up to 96 h (f96) of forecast steps, as tabulated in Table 2. In the first step, the
forecasts were downloaded after every 6 h for the first 30 h. In the second step, the forecasts
were downloaded after every 12 h until 72 h, and in the end, one forecast after 96 h was
downloaded to extract the precipitation data (Figure 3).

ftp://hokusai.eorc.jaxa.jp/
https://rda.ucar.edu/datasets/ds084.1/


Remote Sens. 2023, 15, 457 7 of 22

Table 2. Download pattern of GFS forecast files for the selected peak event in the CRB.

Lead Time Downloaded GFS Files

Days and Hours Date Time Forecast Timestep
(Hours)

4 days 1 August 2016 00 UTC 96
3 days 2 August 2016 00 UTC 72

2 days 12 h 2 August 2016 12 UTC 60
2 days 3 August 2016 00 UTC 48

1 days 12 h 3 August 2016 18 UTC 30
1 day 4 August 2016 00 UTC 24

0 day 18 h 4 August 2016 06 UTC 18
0 day 12 h 4 August 2016 12 UTC 12
0 day 06 h 4 August 2016 18 UTC 06
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3.5. WRF Model Settings for NWP Data

In this study, the NWP data were processed by using WRF version 4.0 with Advance
Research WRF (ARW) dynamic core. The WRF model is a non-hydrostatic atmospheric
model that was developed by the National Center for Atmospheric Research (NCAR), USA.
This model is widely used for research, education, and real-time operational forecasting. It
incorporates different physical processes for the representation of explicit microphysics,
convection, surface physics, boundary layer turbulence, atmospheric radiation, surface tem-
perature, and moisture at a sub-grid scale. The WRF-ARW model integrates compressible,
non-hydrostatic Euler equations. The equations are cast in the flux form using variables that
have conservation properties. These equations are governed by using a terrain-following,
hydrostatic pressure vertical coordinate denoted by η and defined as:

η =
Pd − Pt

Ps − Pt
(1)

where

Pd = the hydrostatic component of the pressure of dry air;
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Ps and Pt = the values of Pd along the surface and top boundaries, respectively.

Since µ(x, y) represents the mass per unit area within the column in the model domain
at (x, y), the appropriate flux-form variables are as follows:

V = µv = (U, V, W), (2)

Ω = µ
.
η, (3)

Θm = µθm. (4)

where

v = (U, V, W) = the covariant velocities in the two horizontal and vertical directions;
.
η = ω = the contravariant vertical velocity;
θm = is the moist potential temperature.

To solve the atmospheric dynamics in the WRF-ARW model, the flux-form Euler
equation can be expressed as follows:

∂tU + (∇.Vu)− (Pφn) + (Pφx) = FU , (5)

∂tV + (∇.Vv)− ∂y(Pφn) +
(

Pφy
)
= FV , (6)

∂tW + (∇.Vw)− g
(
∂η P− µd

)
= FW , (7)

∂tΘm + (∇.VΘm) = FΘm
, (8)

∂tµd + (∇.V) = 0, (9)

∂tφ + µd
−1 [(V.∇φ

)
− gW

]
= 0. (10)

The diagnostic equation for dry hydrostatic pressure:

∂tφ = −αdµd (11)

The diagnostic relation for the full pressure (dry air plus water vapor):

P = Po

(
RdΘm

Poαd

)γ

(12)

In Equations (5)–(10), the subscripts x, y and η denote differentiation

∇.Va = ∂xUa − ∂yVa + ∂nΩa (13)

and
∇.Va = U∂xa−V∂ya + Ω∂na (14)

where

P = pressure;
a = generic variable;
γ = the ratio of heat capacities for dry air

(
cp/cv

)
;

αd = the inverse density of the dry air (1/ρd);
α = the inverse density taking the full parcel density into account;
Rd = the gas constant for dry air;
Po = a reference surface pressure (in Pascals),
φ = gz = the non-conserved variables (geo-potential);
FU , FV , FW , and FΘm

= forcing terms arising from model physics, turbulent mixing,
spherical projections, and the Earth’s rotation the inverse density of dry air, respectively.

Further description of the governing equations and processes can be found in the
technical notes of WRF model version 4 [28].
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WRF is used to dynamically downscale global forecasts to local or regional scales,
as described by [63]. Many researchers, who have used regional models like WRF, have
proposed some guidelines regarding the resolution, nesting strategies, and size of do-
mains. For example, [64] concluded that, with a higher resolution (less than 5 km), the
computational time required to perform physics on multiple domains in the WRF model
was increased. In this study, the 5 km resolution of the final domain size was adopted to
perform one-way and two-way nesting approaches in the CRB. The CRB was centered in
the two domains, i.e., d01 and d02, as shown in Figure 4. The parent domain (d01) had
dimensions of 2400 km (east–west) × 1400 km (north–south), with a horizontal resolution
of 25 km. The nested domain (d02) covered most of the area of Indian-Administrated
Jammu and Kashmir, in which 97% of the CRB lies. The horizontal resolution of d02 was
5 km, with dimensions of 480 km (east–west) × 280 km (north–south). The WRF model
has multiple applications with flexibility in the selection of physics and dynamics options.
For each geographic location and application, there should be appropriate selections of
WRF parameterizations. Therefore, in this research, the selections of physics options were
based on previous studies in the region [46,65,66]. Complete information on the model’s
physics options and configuration of grid description in the WRF model is tabulated in
Table 3. It should be kept in mind that the cumulus scheme is theoretically only effective
in bigger-sized domains (>10 km). Hence, the cumulus scheme was only used for d01,
and d02 was set up without the cumulus scheme. Initial and boundary conditions were
passed from d01 to d02. In this study, the one-way and two-way nesting approaches were
selected to obtain downscaled NWP. The one-way nesting approach used no nesting of
outer domain communication; the solution for the outer domain was independent of that
of the nested domain. Alternatively, in two-way nesting, the solution on the outer domain
was continually replaced by that of the nested domain.

Table 3. Summary of the WRF model grids configuration and physics options.

Model Aspects Model Settings

Model version 4.0

Map projection Lambert conformal

Mandatory Static Data High-resolution dataset at 30′′ and 6′′ for d01
and d02, respectively

True-lat 33.27◦N

True-lon 75.84◦W

Domain grids 96 and 56 grid points for x and y, respectively

Domain ratio 1:5

Grid resolution 25 km (d01) and 5 km (d02)

Outer domain extent 2400 km × 1400 km

Inner domain extent 480 km × 280 km

Cloud microphysics Lin (Purdue) [67]

Long-wave radiation Rapid Radiative Transfer Model (RRTM) [68]

Short-wave radiation Dudhia scheme [69]

Land surface model Noah land surface model (LSM) [70]

Planetary boundary layer Yonsei University scheme [71]

Cumulus parameterization Kain–Fritsch [72] for d01; without cumulus
scheme mode for d02
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In the WRF pre-processing system, GFS data were interpolated onto the WRF grid.
It has to be noted that GFS precipitation was not input to WRF, as it was solely derived
by WRF physics and parametrizations itself. According to the objective of this study, to
investigate the effect of lead time on NWP, GFS data with nine different lead times of up
to 96 h were supplied to the WRF model to generate the precipitation forecasts, i.e., f06,
f12, f18, f24, f30, f48, f60, f72, and f96. Forecast f06 means that the starting date and time
of data acquisition was the 4th August 18 UTC, with the other terms following the same
scheme (Figure 3). According to Figure 3, the 5th and 6th of August were considered to be
the spin-up phase for the model to stabilize it, while the 7th to 9th were termed the event
phase. Outcomes from every forecast run of the WRF model were converted into .asc files
with Python routines for further use in the hydrological model.

3.6. Hydrologic Flood Simulation

Hydrological simulation in the CRB was conducted with the help of the IFAS model.
This model was set up and applied in many previous studies to predict or simulate dis-
charge in worldwide basins [41–44,73,74]. The IFAS model is a routing-based hydrologic
model and a tank-based kinematic wave hydraulic model. It has several tank mod-
els, e.g., a surface tank model, an aquifer tank model, and a river tank model. It uses
a non-linear relationship based on Manning’s law, Darcey’s law, and the kinematic wave
equation to simulate the discharge in a stream. Further information can be found in the
user manual of the IFAS model [75].

Topographic, land-use, and soil-type data were imported into the IFAS model to set up
the model in the CRB. The IFAS model was set up with 6 hourly-based temporal resolutions
and a spatial resolution of 5 km× 5 km. The IFAS model has a rainfall data manager, which
was used to download and import the GSMaP-Gauge satellite rainfall data into the model.
The downloaded GSMaP-Gauge rainfall data were supplied to calibrate the model for the
2016 flood event. To calibrate the model, sensitivity analysis was performed to tune the
surface, aquifer, and river parameters. The simulated discharge at a river outlet (Marala
Barrage) was validated with the observed discharge hydrograph.

The validated model was further used to predict the discharge in the CRB. The NWP
rainfall from the global GFS model and the WRF model were supplied to the IFAS model
to simulate the discharge with different lead times. According to Figure 3, forecasts up to
96 h (f96) were supplied to the model with different increments in forecast intervals. In the
first step, the forecasts were supplied after every 6 h for the first 30 h. In the second step,
the forecasts were supplied after every 12 h until 72 h, and in the end, one forecast after
96 h was supplied to the IFAS model (Figure 3). The hydrologic simulations of the global
NWP, one-way, and two-way nesting approaches were compared, and their performance
indices were calculated to indicate the performance of the best approach for forecast in the
CRB. The coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE), and PBIAS
were used to evaluate the model performance in order to compare the forecasts in the CRB.

4. Results
4.1. Precipitation Forecasts from One-Way and Two-Way Nesting Approaches in WRF Model

In this study, the precipitation forecasts from the Global Forecasts System (GFS), with
a resolution of 0.25◦ (~27.7 km), were downscaled to a 5 km resolution. The global GFS data
were downscaled eighteen times at different forecast time-steps with the WRF one-way and
two-way nesting methods. The precipitation from the global model, WRF one-way nesting,
and WRF two-way nesting approaches were compared with each other to evaluated the
hydrological and forecasting skills of GFS precipitation. Figure 5 displays the accumulated
precipitation from 00:00 UTC 06 August 2016 to 18:00 UTC 07 August 2016 in the CRB. The
accumulated total precipitations from the global GFS forecasts are displayed in the first
column for each forecast step. The accumulated total precipitations from the one-way WRF
nesting and the two-way WRF nesting are displayed with domain 1 (d01) and domain 2
(d02) in the second and fourth columns, respectively. All of the global GFS forecasts were
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simulated by the WRF model with nine initial times between 18:00 UTC 4 August 2016
and 12:00 UTC 1 August 2016. These nine initial forecasts were from 06 h (f06) to 96 h (f96)
with increments of 06 h, 12 h, and 24 h until f30, f72, and f96, respectively. It can be seen in
Figure 5 that almost all of the forecast types showed a significant amount of precipitation
inside the CRB. The global forecasts showed almost the same pattern of rainfall near or
inside the CRB. However, the global forecasts and both d01 domains had coarser-resolution
precipitation maps than the d02 precipitation maps. Moreover, d02 with the two-way
nesting approach gave more detailed precipitation information than d02 with the one-
way nesting approach. The domination trend of d02 with two-way nesting was observed
for every forecast step. Summarized details of the precipitation maps are tabulated in
Table 4, in which the accumulated total precipitation statistics for each forecast step and
precipitation source are given. This table contains the average, maximum, minimum, and
standard deviation of the total precipitation forecasts over the CRB. The trends show that
the two-way nesting approach had high values of averages compared with the one-way
nesting and global forecast approaches. It can also be seen that two-way nesting had
larger standard deviation values than the one-way nesting and global forecast approaches,
which shows that two-way nesting had better ability to capture the spatial variations in
precipitation patterns than the one-way nesting and global forecast approaches. Global
forecast, on the other hand, showed the smallest values of precipitation averages and
standard deviations, which could make it poor for hydrological simulation in the CRB.

4.2. Flood Forecasts with Different Precipitation Sources, (i.e., Global, One-Way and Two-Way
WRF Nesting Approaches)

To examine the applicability of global GFS precipitation, the GFS forecasts were
processed and supplied to the calibrated IFAS model for flood forecasting. The different
simulated peak discharges with different global forecasts for the 2016 flood event in the
CRB are shown in Figure 6. It can be seen that simulations with GFS data underestimated
the observed flood peaks for every forecast step because the simulated precipitation was
too low, partly due to the coarse resolution of the mode. It could only reach a maximum of
5360 m3/s of discharge in all forecast steps, while the maximum observed peak discharge
was recorded at 11,215 m3/s. To improve the accuracy of the forecasts, the coarser global
forecasts were supplied to the WRF model to better resolve smaller-scale processes, leading
to improved precipitation forecasts. The WRF model was run with the one-way and
two-way nesting approaches, and the output of each WRF forecast, with d01 and d02, was
then supplied to the calibrated IFAS model to observe the simulation patterns of each
precipitation source and forecast step. Figure 6 also displays the hydrographs simulated
with the precipitation of the one-way and two-way WRF nesting approaches. Here, lines
with circle symbols represent the hydrologic simulation from the precipitation of the
one-way nesting approach and lines with star symbols represent that of the two-way
nesting approach. Figure 6 demonstrates that the downscaled precipitation showed more
predictive skills of floods than the global GFS precipitation. It also shows that d01 and
d02 from the one-way nesting approach overestimated the observed hydrograph in almost
all of the forecast steps for the 2016 flood event in the CRB. Moreover, d01 (one-way
nesting) showed an irregular and overestimated discharge pattern compared with the
observed hydrograph, while the hydrograph with the precipitation of d02 (one-way nesting)
presented improvements over d01 (one-way nesting). However, d02 (one-way nesting)
was also unable to capture the shape of the observed hydrograph very well. Six out of
nine forecasts with d01 (one-way nesting) overestimated the observed peak discharge. d01
and d02 with two-way nesting displayed more promising results for flood forecasting
in the CRB than one-way nesting (Figure 6). Most of the flood hydrographs were in
good shape and well-captured the peak event, except f72. This was due to the shifting of
the precipitation forecast (f72) to the southern side of the CRB, as displayed in Figure 5.
Seven out of nine forecasts were able to capture the 2016 flood event in the CRB. These
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forecasts were able to predict precipitation within the CRB with an accurate intensity and
were thus successful in predicting the exceptionally high flood peak event.
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Table 4. Average (avg), minimum (min), maximum (max), and standard deviation (std) for the global
GFS, one-way and two-way WRF simulated accumulated precipitation (from 00:00 UTC 06 August to
18:00 UTC 07 August 2016).

Forecasts f06 f12 f18 f24 f30 f48 f60 f72 f96

Global
forecast

avg 19.5 18.6 21.1 21.9 23.7 32.5 30.4 28.2 21.3
max 142.6 132.1 147.4 136.0 152.9 142.2 213.2 160.8 134.9
min 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.0
std 18.7 18.7 22.0 24.1 25.3 26.3 30.6 25.9 19.6

One-way
nesting

(d02)

avg 57.0 45.0 48.5 53.9 61.6 68.6 57.1 63.5 76.1
max 378.8 397.0 369.8 290.8 354.7 477.6 444.0 409.5 746.0
min 1.4 0.3 0.1 0.4 0.2 0.5 0.5 0.2 0.0
std 66.6 51.5 53.5 50.9 61.2 75.9 69.8 70.5 114.1

Two-way
nesting

(d02)

avg 171.0 141.8 98.1 147.8 118.0 141.9 115.5 123.6 165.8
max 1268.5 1650.2 1029.5 1371.3 807.0 1440.2 1131.3 1826.5 1298.3
min 3.0 0.0 0.1 0.0 1.3 0.0 0.2 0.0 0.0
std 187.1 217.9 98.7 209.0 109.4 168.2 126.4 219.4 229.0
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different initial forecasts times (i.e., f06, f12, f18, f24, f30, f48, f60, f72, and f96) for the 2016 event in the
CRB. The circle symbol represents one-way nesting, and the star symbol represents two-way nesting.
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4.3. Hydrologic Performance Evaluation of WRF Domains

In this section, the hydrological skills of two domains in the WRF model (d01 and d02),
with one-way and two-way nesting, were evaluated with performance indices, e.g., R2,
NSE, and PBIAS [76–78]. R2 is the coefficient of determination, ranging from 0 to 1, which
was used to depict the strength of linear correlation between observed and simulated
discharge (Equation (15)). NSE is the Nash–Sutcliffe Efficiency, falling between −∞ and 1,
which was used to define how perfectly the observed and modeled discharge matched the
1:1 line (Equation (16)). PBIAS was used to capture the underestimation or overestimation
of simulated values relative to observed values; PBIAS shows a value of 0 under optimal
conditions, whereas a positive value denotes an underestimation and a negative denotes an
overestimation (Equation (17)). Figure 7 displays the performance indices of the simulated
discharge driven by the IFAS model for different forecast steps during the 2016 peak event
in the CRB. The scatter plots of six hourly-based observed versus simulated discharge
rates at different forecast steps are also presented in Figure 7. It can be seen in the figure
that the simulations with precipitation from the one-way nesting approach showed more
underestimation, with high values of PBIAS, than simulations with global forecasts and
precipitation from the two-way nesting approach for all forecast steps. Simulations with
one-way nesting data also showed poor performance for both domains, with low values of
NSE, compared with simulations with global forecasts and precipitation from the two-way
nesting approach. In most of the forecast steps, observed and simulated discharge also
showed lower coefficients of determination for simulation with one-way nesting data than
for simulations with data derived from the two-way nesting approach. The simulations with
global forecast data displayed lower R2 and NSE values between observed and simulated
values than simulations with two-way nesting data for almost all of the forecast steps.
The simulations with global forecast data showed a good hydrograph shape according
to Figure 7, but they could not precisely capture the peaks, as discussed earlier. Hence,
it can be stated that d02 (two-way nesting) exhibited the best performance in simulating
the forecasts among all of the precipitation sources, with higher R2 and NSE values and
acceptable limits of PBIAS. The simulations with d02 (two-way nesting) displayed high
values of R2 (f06 = 0.75, f12 = 0.75, f18 = 0.78, f24 = 0.79, f30 = 0.7, f48 = 0.74, f60 = 0.76,
f72 = 0.67, and f96 = 0.84), high values of NSE (f06 = 0.75, f12 = 0.67, f18 = 0.5, f24 = 0.3,
f30 = 0.42, f48 = 0.54, f60 = 0.71, f72 = 0.65, and f96 = 0.26), and low values of PBIAS
(f06 = 3.5%, f12 = 15.9%, f18 = 26.5%, f24 = 31.3%, f30 = 25.3%, f48 = 24.2%, f60 = 12.8%,
f72 = 7.1%, and f96 = 34.4%) compared with simulations with one-way nesting and global
forecast data.

R2 =
∑n

i=1
(
Oi −O

)
.
(
Si − S

)√
∑n

i=1
(
Oi −O

)2.
√

∑n
i=1
(
Si − S

)2
(15)

NSE = 1−
[

∑n
i=1(Oi − Si)

2

∑n
i=1
(
Oi −O

)2

]
(16)

PBIAS =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

× 100 (17)

where Oi, O, Si, and S represent the observed discharge, average observed discharge,
simulated discharge, and average simulated discharge, respectively.
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For comparison between simulations with data from the two domains, i.e., d01 and
d02, radar plots were also plotted for R2, NSE, and PBIAS, as displayed in Figure 8. In these
plots, simulations with data from d01 and d02 with the one-way and two-way nesting
approaches were separately compared. It can be seen in Figure 8 that simulations with
data from d01 (one-way nesting) exhibited poorer performance than simulations with
data from d01 (two-way nesting). For example, when switching from simulations with
data from one-way nesting to simulations with two-way nesting data for d01(f06), the
values of R2, NSE, and PBIAS improved from 0.37 to 0.73, −0.15 to 0.72, and 30.8 to 1.7,
respectively. Similar improvements were observed for the rest of the forecast steps. In
the case of simulations with data from d01 (one-way nesting), the f96 forecast heavily
overestimated the observed discharge, and its values of NSE and PBIAS were very low and
very high, respectively, compared with the other forecast steps. However, the f96 forecast
showed a good performance for simulations with data from the d01 (two-way nesting) case
with high NSE and acceptable PBIAS values. In the second column of Figure 8, the radar
plots of the performance statistics of simulations with data from d02 with the one-way
and two-way nesting approaches are displayed. Radar plots for simulations with data
from d02 with the one-way and two-way nesting approaches depict the same behavior as
d01. Similarly, when switching from simulations applying data with one-way nesting to
simulations with data using two-way nesting for d02(f06), the values of R2, NSE, and PBIAS
improved from 0.65 to 0.75, 0.47 to 0.75, and 20.1 to 3.5, respectively. The rest of the forecast
steps also showed that the simulations with data from d02 (two-way nesting) outperformed
the simulations with data from d02 (one-way nesting) in all of the statistical calculations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

 

Figure 8. Radar plots of performance indices. 

In the conclusion, the two-way WRF nesting approach showed a higher agreement 

with observations in producing precipitation and when data were used to simulate 

hydrographs compared with the global forecast and one-way WRF nesting approaches. 

Therefore, two-way nesting was better than one-way nesting for providing precipitation 

data when capturing the 2016 flood peak in the CRB. The two-way WRF nesting approach 

produced improvements in both the precipitation and hydrologic simulations applying 

the precipitation data compared with the one-way WRF nesting approach; this was 

consistent with other studies [79,80]. 

5. Discussion and Conclusions 

Figure 8. Radar plots of performance indices.



Remote Sens. 2023, 15, 457 18 of 22

In the conclusion, the two-way WRF nesting approach showed a higher agreement
with observations in producing precipitation and when data were used to simulate hydro-
graphs compared with the global forecast and one-way WRF nesting approaches. Therefore,
two-way nesting was better than one-way nesting for providing precipitation data when
capturing the 2016 flood peak in the CRB. The two-way WRF nesting approach produced
improvements in both the precipitation and hydrologic simulations applying the precipi-
tation data compared with the one-way WRF nesting approach; this was consistent with
other studies [79,80].

5. Discussion and Conclusions

Flood forecasting and simulation are major problems in large transboundary catch-
ments, especially in the India–Pakistan region where data sharing is a major problem due
to the Jammu and Kashmir conflict. Pakistan does not have access to in situ rain gauge
stations on the Indian side of Jammu and Kashmir. However, Pakistan has faced many
floods in the recent past due to climate change and heavy monsoonal rainfalls. Recently,
several satellite products and numerical weather prediction models became available to
estimate or predict atmospheric variables, including precipitation information. This study
was used to evaluate the performance of the Weather Research and Forecast (WRF) model
for precipitation forecasting in the transboundary Chenab River Basin (CRB) in Pakistan.
About 97% of the CRB, above the first gauging site (Marala Barrage in Pakistan), lies on the
Indian side of Jammu and Kashmir, where ground data acquisition is a critical job. Hence,
in this study, a combination of precipitation from the gauge-calibrated Global Satellite
Mapping of Precipitation (GSMaP_Gauge) and the numerical weather prediction (NWP)
precipitation from the WRF model was used to predict the forecast of the Chenab River for
the 2016 flood event.

First of all, GSMaP_Gauge was used to calibrate the Integrated Flood Analysis System
(IFAS) model of the 2016 flood event in the CRB. Later, NWP precipitation, obtained from
the Global Forecast System (GFS) model, was used in the calibrated IFAS model to predict
the flood peak with different precipitation forecast lead times. The forecasts were used
every 6 h for the first 30 h, then every 12 h until 72 h, and then every 24 h until 96 h
to predict the flood event in the IFAS model. The GFS precipitation-based simulations
underestimated the observed hydrograph for every forecast step, (i.e., f06, f12, f18, f24,
f30, f48, f60, f72, and f96) because the coarser resolution of the global GFS forecasts could
not properly predict the intensities of precipitation. The global precipitation forecasts
were downscaled with WRF. In this study, the CRB was centered in two domains, i.e.,
d01 and d02, in the WRF model. The one-way and two-way nesting approaches were
selected to generate better precipitation forecasts and hydrological simulations. As the
spatial resolution of precipitation forecasts (i.e., f06, f12, f18, f24, f30, f48, f60, f72, and f96)
became finer (with WRF nesting), the agreement of simulated hydrograph with observed
hydrograph significantly increased and the flood hydrographs, simulated with one-way
and two-way nesting precipitation, showed improvements in capturing the 2016 flood peak
compared with simulations with the GFS forecasts.

Simulations with the d01 and d02 domains were also separately compared to obtain
the optimal flood forecast in the Chenab River. It was observed that simulations with
precipitation from d01 and d02 with the one-way nesting approach overestimated the
observed hydrograph in almost all of the forecast steps for the 2016 flood event in the
Chenab River. Simulations with data derived from the one-way nesting approach were
unable to properly capture the shape of the observed hydrograph. The simulations applying
data from d01 and d02, with the two-way nesting approach, displayed more promising
results for flood forecasting in the CRB than the simulations with precipitation using the
one-way nesting approach. Most of the flood hydrographs were in strong shape and
adequately captured the peak event. Seven out of nine forecasts were able to reproduce
the 2016 flood event in the CRB. These forecasts were able to predict precipitation within
the CRB with accurate intensity and were thus successful in predicting the exceptionally
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high flood peak event. Performance indices showed that the simulated hydrographs, with
precipitation from two-way WRF nesting, at different lead times showed remarkable results
compared with the observed hydrographs, with the highest R2 and NSE values and the
lowest PBIAS values. As a conclusive note, it can be said applying the precipitation from
two-way WRF nesting enabled the simulation of flood hydrograph with a remarkable lead
time of 96 h with coupled hydrometeorological flow simulation.

Although this study was only focused on the 2016 flood event in the CRB, it clearly
shows that two-way coupled atmospheric–hydrological flow simulation calibrated with
satellite products and run with NWP precipitation has the potential to improve precipitation
and hydrological forecasts with a sufficient lead time. It can also be useful in the issuance
of early warnings to initiate necessary precautions, timely emergency response, and public
evacuation before a catastrophic flood event. However, further studies need to be conducted
to verify this approach with different WRF domain sizes, different combinations of WRF
parameterization schemes (e.g., cumulus and microphysics), and different flood events.

Author Contributions: Conceptualization, E.A.; methodology, E.A. and N.S.; software, E.A. and
M.R.A.; validation, E.A. and F.A.J.; formal analysis, E.A. and M.R.A.; data curation, N.S. and A.S.;
writing—original draft preparation, E.A.; writing—review and editing, A.S. and K.B.; visualization,
K.B. and P.K.; supervision, P.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors are thankful to the GSMaP research community for making the
satellite precipitation data available for this study. The authors would like to extend their gratitude
to the Flood Forecasting Division, Pakistan Meteorological Department (PMD), for the provision of
valuable data for this research. E.A. is grateful to the Higher Education Commission of Pakistan (HEC)
and the German Academic Exchange Service (DAAD) for providing him a scholarship opportunity to
pursue his Ph.D. research. E.A. is thankful for the support of the Graduate Academy of TU Dresden
for the completion and wrap-up phase of the Ph.D. grant. E.A. would also like to thank the facilities
provided by the Institute of Urban and Industrial Water Management, TU Dresden.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saddique, N.; Muzammil, M.; Jahangir, I.; Sarwar, A.; Ahmed, E.; Aslam, R.A.; Bernhofer, C. Hydrological evaluation of 14

satellite-based, gauge-based and reanalysis precipitation products in a data-scarce mountainous catchment. Hydrol. Sci. J. 2022,
67, 436–450. [CrossRef]

2. Larson, L.W.; Peck, E.L. Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res. 1974, 10,
857–863. [CrossRef]

3. Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A Review of Global Precipitation Data Sets: Data Sources,
Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [CrossRef]

4. Parvaze, S.; Khan, J.N.; Kumar, R.; Allaie, S.P. Flood forecasting in Jhelum river basin using integrated hydrological and hydraulic
modeling approach with a real-time updating procedure. Clim. Dyn. 2022, 59, 2231–2255. [CrossRef]

5. Abro, M.I.; Zhu, D.; Ali Khaskheli, M.; Elahi, E.; Aleem ul Hassan Ramay, M. Statistical and qualitative evaluation of multi-sources
for hydrological suitability inflood-prone areas of Pakistan. J. Hydrol. 2020, 588, 125117. [CrossRef]

6. Yucel, I. Assessment of a flash flood event using different precipitation datasets. Nat. Hazards 2015, 79, 1889–1911. [CrossRef]
7. Yilmaz, K.K.; Hogue, T.S.; Hsu, K.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of Rain Gauge, Radar, and

Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting. J. Hydrometeorol. 2005, 6, 497–517. [CrossRef]
8. Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall

using PACRAIN data. J. Geophys. Res. Atmos. 2013, 118, 2184–2196. [CrossRef]
9. Maddah, M.A.; Akhoond-Ali, A.M.; Ahmadi, F.; Ghafarian, P.; Rusin, I.N. Forecastability of a heavy precipitation event at

different lead-times using WRF model: The case study in Karkheh River basin. Acta Geophys. 2021, 69, 1979–1995. [CrossRef]
10. Dubey, A.K.; Kumar, P.; Chembolu, V.; Dutta, S.; Singh, R.P.; Rajawat, A.S. Flood modeling of a large transboundary river using

WRF-Hydro and microwave remote sensing. J. Hydrol. 2021, 598, 126391. [CrossRef]

http://doi.org/10.1080/02626667.2021.2022152
http://doi.org/10.1029/WR010i004p00857
http://doi.org/10.1002/2017RG000574
http://doi.org/10.1007/s00382-022-06206-3
http://doi.org/10.1016/j.jhydrol.2020.125117
http://doi.org/10.1007/s11069-015-1938-9
http://doi.org/10.1175/JHM431.1
http://doi.org/10.1002/jgrd.50250
http://doi.org/10.1007/s11600-021-00669-4
http://doi.org/10.1016/j.jhydrol.2021.126391


Remote Sens. 2023, 15, 457 20 of 22

11. Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s
Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [CrossRef] [PubMed]

12. Nkuna, T.R.; Odiyo, J.O. Filling of missing rainfall data in Luvuvhu River Catchment using artificial neural networks. Phys. Chem.
Earth Parts A/B/C 2011, 36, 830–835. [CrossRef]

13. Biswas, N.K.; Hossain, F.; Bonnema, M.; Aminul Haque, A.M.; Biswas, R.K.; Bhuyan, A.; Hossain, A. A computationally efficient
flash flood early warning system for a mountainous and transboundary river basin in Bangladesh. J. Hydroinformatics 2020, 22,
1672–1692. [CrossRef]

14. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive
Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [CrossRef]

15. Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural
Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1853. [CrossRef]

16. Garstang, M.; Kummerow, C.D. The Joanne Simpson Special Issue on the Tropical Rainfall Measuring Mission (TRMM). J. Appl.
Meteorol. 2000, 39, 1961. [CrossRef]

17. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global
Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]

18. Okamoto, K.I.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (GSMaP) project.
In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Korea,
29 July 2005; IEEE: Manhattan, NY, USA, 2005; Volume 5, pp. 3414–3416.

19. Chang, M.-J.; Chang, H.-K.; Chen, Y.-C.; Lin, G.-F.; Chen, P.-A.; Lai, J.-S.; Tan, Y.-C. A Support Vector Machine Forecasting Model
for Typhoon Flood Inundation Mapping and Early Flood Warning Systems. Water 2018, 10, 1734. [CrossRef]

20. Wagena, M.B.; Goering, D.; Collick, A.S.; Bock, E.; Fuka, D.R.; Buda, A.; Easton, Z.M. Comparison of short-term streamflow
forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environ. Model. Softw. 2020, 126,
104669. [CrossRef]

21. Diez-Sierra, J.; del Jesus, M. Long-term rainfall prediction using atmospheric synoptic patterns in semi-arid climates with
statistical and machine learning methods. J. Hydrol. 2020, 586, 124789. [CrossRef]

22. Paul, R.K.; Paul, A.K.; Bhar, L.M. Wavelet-based combination approach for modeling sub-divisional rainfall in India. Theor. Appl.
Climatol. 2020, 139, 949–963. [CrossRef]

23. Zhang, X.; Anagnostou, E.N.; Frediani, M.; Solomos, S.; Kallos, G. Using NWP Simulations in Satellite Rainfall Estimation of
Heavy Precipitation Events over Mountainous Areas. J. Hydrometeorol. 2013, 14, 1844–1858. [CrossRef]

24. Liu, J.; Wang, J.; Pan, S.; Tang, K.; Li, C.; Han, D. A real-time flood forecasting system with dual updating of the NWP rainfall and
the river flow. Nat. Hazards 2015, 77, 1161–1182. [CrossRef]

25. Schmidli, J.; Goodess, C.M.; Frei, C.; Haylock, M.R.; Hundecha, Y.; Ribalaygua, J.; Schmith, T. Statistical and dynamical
downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J. Geophys. Res. 2007, 112,
D04105. [CrossRef]

26. Vichot-Llano, A.; Martinez-Castro, D.; Giorgi, F.; Bezanilla-Morlot, A.; Centella-Artola, A. Comparison of GCM and RCM simulated
precipitation and temperature over Central America and the Caribbean. Theor. Appl. Climatol. 2021, 143, 389–402. [CrossRef]

27. Noble, E.; Druyan, L.M.; Fulakeza, M. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative
Parameterizations. Part II: Precipitation. Mon. Weather Rev. 2017, 145, 215–233. [CrossRef]

28. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al.
A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA,
2019; p. 145.

29. Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications.
J. Comput. Phys. 2008, 227, 3465–3485. [CrossRef]

30. Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and validation. Q. J.
R. Meteorol. Soc. 1996, 122, 73–119. [CrossRef]

31. Black, T.L. The New NMC Mesoscale Eta Model: Description and Forecast Examples. Weather Forecast. 1994, 9, 265–278. [CrossRef]
32. Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.; Kumagai, Y.; Aranami, K.; Ohmori, S.; Nagasawa, R.; Kumagai, S.; Muroi, C.; et al. The

Operational JMA Nonhydrostatic Mesoscale Model. Mon. Weather Rev. 2006, 134, 1266–1298. [CrossRef]
33. Zechun, L.; Dehui, C. The development and application of the operational ensemble prediction system at National Meteorological

Center. J. Appl. Meteorol. Sci. 2002, 13, 1–15.
34. Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance

of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnology 2020, 1, 100010. [CrossRef]
35. Yan, H.; Gallus, W.A. An Evaluation of QPF from the WRF, NAM, and GFS Models Using Multiple Verification Methods over

a Small Domain. Weather Forecast. 2016, 31, 1363–1379. [CrossRef]
36. Yu, W.; Nakakita, E.; Kim, S.; Yamaguchi, K. Impact Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood

Forecasting with Catchment Scale. Adv. Meteorol. 2016, 2016, 1384302. [CrossRef]
37. Roberts, N.M.; Cole, S.J.; Forbes, R.M.; Moore, R.J.; Boswell, D. Use of high-resolution NWP rainfall and river flow forecasts for

advance warning of the Carlisle flood, north-west England. Meteorol. Appl. 2009, 16, 23–34. [CrossRef]

http://doi.org/10.1175/BAMS-D-14-00283.1
http://www.ncbi.nlm.nih.gov/pubmed/30008481
http://doi.org/10.1016/j.pce.2011.07.041
http://doi.org/10.2166/hydro.2020.202
http://doi.org/10.1175/1525-7541(2004)005&lt;0487:CAMTPG&gt;2.0.CO;2
http://doi.org/10.1175/JAM2173.1
http://doi.org/10.1175/1520-0450(2001)040&lt;1961:TJSSIO&gt;2.0.CO;2
http://doi.org/10.1175/BAMS-D-13-00164.1
http://doi.org/10.3390/w10121734
http://doi.org/10.1016/j.envsoft.2020.104669
http://doi.org/10.1016/j.jhydrol.2020.124789
http://doi.org/10.1007/s00704-019-03026-0
http://doi.org/10.1175/JHM-D-12-0174.1
http://doi.org/10.1007/s11069-015-1643-8
http://doi.org/10.1029/2005JD007026
http://doi.org/10.1007/s00704-020-03400-3
http://doi.org/10.1175/MWR-D-15-0294.1
http://doi.org/10.1016/j.jcp.2007.01.037
http://doi.org/10.1002/qj.49712252905
http://doi.org/10.1175/1520-0434(1994)009&lt;0265:TNNMEM&gt;2.0.CO;2
http://doi.org/10.1175/MWR3120.1
http://doi.org/10.1016/j.ese.2020.100010
http://doi.org/10.1175/WAF-D-16-0020.1
http://doi.org/10.1155/2016/1384302
http://doi.org/10.1002/met.94


Remote Sens. 2023, 15, 457 21 of 22

38. Ushiyama, T.; Sayama, T.; Tatebe, Y.; Fujioka, S.; Fukami, K. Numerical Simulation of 2010 Pakistan Flood in the Kabul River
Basin by Using Lagged Ensemble Rainfall Forecasting. J. Hydrometeorol. 2014, 15, 193–211. [CrossRef]

39. Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High-resolution dynamical downscaling of ERA-Interim temperature and
precipitation using WRF model for Greece. Clim. Dyn. 2021, 57, 799–825. [CrossRef]

40. Sugiura, T.; Fukami, K.; Inomata, H. Development of Integrated Flood Analysis System (IFAS) and Its Applications. In Proceedings
of the World Environmental and Water Resources Congress, Honolulu, HI, USA, 12–16 May 2008; American Society of Civil
Engineers: Reston, VA, USA, 2008; pp. 1–10.

41. Sugiura, A.; Fujioka, S.; Nabesaka, S.; Tsuda, M.; Iwami, Y. Development of a flood forecasting system on the upper Indus
catchment using IFAS. J. Flood Risk Manag. 2016, 9, 265–277. [CrossRef]

42. Hafiz, I.; Nor, N.D.M.; Sidek, L.M.; Basri, H.; Hanapi, M.N.; Livia, L. Application of Integrated Flood Analysis System (IFAS) for
Dungun River Basin. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012128. [CrossRef]

43. Chen, Y.-C.; Gao, J.-J.; Bin, Z.-H.; Qian, J.-Z.; Pei, R.-L.; Zhu, H. Application study of IFAS and LSTM models on runoff simulation
and flood prediction in the Tokachi River basin. J. Hydroinformatics 2021, 23, 1098–1111. [CrossRef]

44. Kimmany, B.; Ruangrassamee, P.; Visessri, S. Optimal Multi-Reservoir Operation for Hydropower Production in the Nam Ngum
River Basin. Eng. J. 2020, 24, 1–13. [CrossRef]

45. Shahzad, A.; Gabriel, H.F.; Haider, S.; Mubeen, A.; Siddiqui, M.J. Development of a flood forecasting system using IFAS: A case
study of scarcely gauged Jhelum and Chenab river basins. Arab. J. Geosci. 2018, 11, 383. [CrossRef]

46. Asghar, M.R.; Ushiyama, T.; Riaz, M.; Miyamoto, M. Flood and Inundation Forecasting in the Sparsely Gauged Transboundary
Chenab River Basin Using Satellite Rain and Coupling Meteorological and Hydrological Models. J. Hydrometeorol. 2019, 20,
2315–2330. [CrossRef]

47. Ali, S.; Cheema, M.; Waqas, M.; Waseem, M.; Leta, M.; Qamar, M.; Awan, U.; Bilal, M.; Rahman, M. Flood Mitigation in
the Transboundary Chenab River Basin: A Basin-Wise Approach from Flood Forecasting to Management. Remote Sens. 2021,
13, 3916. [CrossRef]

48. Ahmed, E.; Al Janabi, F.; Zhang, J.; Yang, W.; Saddique, N.; Krebs, P. Hydrologic Assessment of TRMM and GPM-Based
Precipitation Products in Transboundary River Catchment (Chenab River, Pakistan). Water 2020, 12, 1902. [CrossRef]

49. Ahmed, E.; Al Janabi, F.; Yang, W.; Ali, A.; Saddique, N.; Krebs, P. Comparison of flow simulations with sub-daily and daily GPM
IMERG products over a transboundary Chenab River catchment. J. Water Clim. Chang. 2022, 13, 1204–1224. [CrossRef]

50. Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully coupled atmospheric-hydrological modeling at regional and
long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res. 2016, 52, 3187–3211. [CrossRef]

51. Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River.
J. Appl. Meteorol. Climatol. 2011, 51, 285–299. [CrossRef]

52. Li, J.; Chen, Y.; Wang, H.; Qin, J.; Li, J.; Chiao, S. Extending flood forecasting lead time in a large watershed by coupling WRF QPF
with a distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 1279–1294. [CrossRef]

53. Gu, Y.; Peng, D.; Deng, C.; Zhao, K.; Pang, B.; Zuo, D. Atmospheric–hydrological modeling for Beijing’s sub-center based on WRF
and SWMM. Urban Clim. 2022, 41, 101066. [CrossRef]

54. Ali, S.; Kiani, R.S.; Reboita, M.S.; Dan, L.; Eum, H.; Cho, J.; Dairaku, K.; Khan, F.; Shreshta, M.L. Identifying hotspots cities
vulnerable to climate change in Pakistan under CMIP5 climate projections. Int. J. Climatol. 2021, 41, 559–581. [CrossRef]

55. Federal Floods Commission Government of Pakistan. Annual Flood Report for the Year 2020. Available online: https://ffc.gov.
pk/wp-content/uploads/2021/04/2020-Annual-Report-of-Oo-CEA-CFFC.pdf (accessed on 10 September 2022).

56. Riaz, M.; Aziz, A.; Hussain, S. Flood Forecasting of an Ungauged Trans-boundary Chenab River Basin Using Distributed
Hydrological Model Integrated Flood Analysis System (IFAS). Pak. J. Meteorol. 2017, 13, 51–62.

57. Carsell, K.M.; Pingel, N.D.; Ford, D.T. Quantifying the Benefit of a Flood Warning System. Nat. Hazards Rev. 2004, 5,
131–140. [CrossRef]

58. Hossain, F.; Katiyar, N.; Hong, Y.; Wolf, A. The emerging role of satellite rainfall data in improving the hydro-political situation of
flood monitoring in the under-developed regions of the world. Nat. Hazards 2007, 43, 199–210. [CrossRef]

59. Awan, S. Pakistan: Flood Management-River Chenab from Marala to Khanki. World Meteorol. Organ. Glob. Water Partnersh. 2003,
1–4. Available online: https://www.floodmanagement.info/publications/casestudies/cs_pakistan_chenab_sum.pdf (accessed on
10 September 2022).

60. Singh, P.; Ramasastri, K.S.; Kumar, N. Topographical Influence on Precipitation Distribution in Different Ranges of Western
Himalayas. Hydrol. Res. 1995, 26, 259–284. [CrossRef]

61. Singh, P.; Jain, S.K.; Kumar, N. Estimation of Snow and Glacier-Melt Contribution to the Chenab River, Western Himalaya.
Mt. Res. Dev. 1997, 17, 49. [CrossRef]

62. Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.;
Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production
and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [CrossRef]

63. Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.;
Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am.
Meteorol. Soc. 2017, 98, 1717–1737. [CrossRef]

http://doi.org/10.1175/JHM-D-13-011.1
http://doi.org/10.1007/s00382-021-05741-9
http://doi.org/10.1111/jfr3.12248
http://doi.org/10.1088/1755-1315/16/1/012128
http://doi.org/10.2166/hydro.2021.035
http://doi.org/10.4186/ej.2020.24.5.1
http://doi.org/10.1007/s12517-018-3737-6
http://doi.org/10.1175/JHM-D-18-0226.1
http://doi.org/10.3390/rs13193916
http://doi.org/10.3390/w12071902
http://doi.org/10.2166/wcc.2022.420
http://doi.org/10.1002/2015WR018185
http://doi.org/10.1175/JAMC-D-11-082.1
http://doi.org/10.5194/hess-21-1279-2017
http://doi.org/10.1016/j.uclim.2021.101066
http://doi.org/10.1002/joc.6638
https://ffc.gov.pk/wp-content/uploads/2021/04/2020-Annual-Report-of-Oo-CEA-CFFC.pdf
https://ffc.gov.pk/wp-content/uploads/2021/04/2020-Annual-Report-of-Oo-CEA-CFFC.pdf
http://doi.org/10.1061/(ASCE)1527-6988(2004)5:3(131)
http://doi.org/10.1007/s11069-006-9094-x
https://www.floodmanagement.info/publications/casestudies/cs_pakistan_chenab_sum.pdf
http://doi.org/10.2166/nh.1995.0015
http://doi.org/10.2307/3673913
http://doi.org/10.1109/TGRS.2007.895337
http://doi.org/10.1175/BAMS-D-15-00308.1


Remote Sens. 2023, 15, 457 22 of 22

64. Ekström, M. Metrics to identify meaningful downscaling skill in WRF simulations of intense rainfall events. Environ. Model. Softw.
2016, 79, 267–284. [CrossRef]

65. Srinivas, C.V.; Hariprasad, D.; Bhaskar Rao, D.V.; Anjaneyulu, Y.; Baskaran, R.; Venkatraman, B. Simulation of the Indian summer
monsoon regional climate using advanced research WRF model. Int. J. Climatol. 2013, 33, 1195–1210. [CrossRef]

66. Patil, R.; Pradeep Kumar, P. WRF model sensitivity for simulating intense western disturbances over North West India. Model. Earth
Syst. Environ. 2016, 2, 82. [CrossRef]

67. Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22,
1065–1092. [CrossRef]

68. Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM,
a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [CrossRef]

69. Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional
Model. J. Atmos. Sci. 1989, 46, 3077–3107. [CrossRef]

70. Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System.
Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [CrossRef]

71. Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes.
Mon. Weather Rev. 2006, 134, 2318–2341. [CrossRef]

72. Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [CrossRef]
73. Hafiz, I.; Sidek, L.M.; Basri, H.; Fukami, K.; Hanapi, M.N.; Livia, L.; Jaafar, A.S. Integrated flood analysis system (IFAS) for

Kelantan river basin. In Proceedings of the 2014 IEEE 2nd International Symposium on Telecommunication Technologies (ISTT),
Langkawi, Malaysia, 24–26 November 2014; IEEE: Manhattan, NY, USA, 2014; pp. 159–162.

74. Chow, M.F.; Jamil, M.M. Review of development and applications of Integrated Flood Analysis System (IFAS) for flood forecasting
in insufficiently-gauged catchments. J. Eng. Appl. Sci. 2017, 12, 9210–9215.

75. ICHARM/PWRI IFAS ver.2.0 Technical Manual. 2014, p. 40. Available online: https://www.pwri.go.jp/icharm/research/ifas/
download_files/ifas_calibrator_ver_2_0_user_manual_e.pdf (accessed on 10 August 2022).

76. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,
282–290. [CrossRef]

77. Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data.
J. Hydrol. 1996, 181, 23–48. [CrossRef]

78. Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic
Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]

79. Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting
Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. [CrossRef]

80. Harris, L.M.; Durran, D.R. An Idealized Comparison of One-Way and Two-Way Grid Nesting. Mon. Weather Rev. 2010, 138,
2174–2187. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.envsoft.2016.01.012
http://doi.org/10.1002/joc.3505
http://doi.org/10.1007/s40808-016-0137-3
http://doi.org/10.1175/1520-0450(1983)022&lt;1065:BPOTSF&gt;2.0.CO;2
http://doi.org/10.1029/97JD00237
http://doi.org/10.1175/1520-0469(1989)046&lt;3077:NSOCOD&gt;2.0.CO;2
http://doi.org/10.1175/1520-0493(2001)129&lt;0569:CAALSH&gt;2.0.CO;2
http://doi.org/10.1175/MWR3199.1
http://doi.org/10.1175/1520-0450(2004)043&lt;0170:TKCPAU&gt;2.0.CO;2
https://www.pwri.go.jp/icharm/research/ifas/download_files/ifas_calibrator_ver_2_0_user_manual_e.pdf
https://www.pwri.go.jp/icharm/research/ifas/download_files/ifas_calibrator_ver_2_0_user_manual_e.pdf
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1016/0022-1694(95)02918-4
http://doi.org/10.13031/2013.23153
http://doi.org/10.3390/hydrology3020019
http://doi.org/10.1175/2010MWR3080.1

	Introduction 
	Study Area 
	Materials and Methods 
	Topographic, Land-Use, and Soil-Type Data in IFAS Model 
	Satellite Precipitation Data 
	Chenab River Flow Data 
	NWP Data for Flood Forecasting 
	WRF Model Settings for NWP Data 
	Hydrologic Flood Simulation 

	Results 
	Precipitation Forecasts from One-Way and Two-Way Nesting Approaches in WRF Model 
	Flood Forecasts with Different Precipitation Sources, (i.e., Global, One-Way and Two-Way WRF Nesting Approaches) 
	Hydrologic Performance Evaluation of WRF Domains 

	Discussion and Conclusions 
	References

