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1. Introduction

Synthetic aperture radar (SAR) is an important active microwave imaging sensor. Its
all-day and all-weather working capacity makes it play an important role in the remote
sensing community. Since the launch of the first SAR satellite by the United States [1],
SAR has received extensive attention in the remote sensing community [2], e.g., geolog-
ical exploration [3], topographic mapping [4], disaster forecast [5,6], and marine traffic
management [7–10]. Therefore, it is valuable and meaningful to study SAR-based remote
sensing applications [11].

In recent years, with the rapid development of artificial intelligence, deep learning
(DL) [12] has been applied to all walks of life, such as face recognition, automatic driving,
search recommendation, internet of things, and so on. The DL represented by convolutional
neural network (CNN) is promoting the evolution of many algorithms and the innovation
of advanced technologies. At present, scholars are exploring the application value of DL in
SAR remote sensing field. Many SAR remote sensing application technologies based on
DL have emerged, such as land surface change detection, ocean remote sensing, sea-land
segmentation, traffic surveillance and topographic mapping.

Aiming to promote the application of DL in SAR, we initiated this Special Issue and
collected a total of 14 papers (including 12 articles, 1 review and 1 technical note) covering
various topics, e.g., object detection, classification and tracking, SAR image intelligent
processing, data analytics in the SAR remote sensing community and interferometric SAR
technology. The overview of contribution is in the following section.

2. Overview of Contribution

On the topic of object detection, classification and tracking, Li et al. [13] summarized
the dataset, algorithm, performance, DL framework, country and timeline of DL-based
ship detection methods. They analyzed the 177 published papers about DL-based SAR
ship detection and attempted to stimulate more research in this field. Xia [14] proposed a
visual transformer framework based on contextual joint-representation learning referred
to as CRTransSar. CRTransSar combined the global contextual information perception
of transformers and the local feature representation capabilities of convolutional neural
networks (CNNs). It was found to produce more accurate ship detection results than
other most advanced methods. Note that the authors also released a larger-scale SAR
multiclass target detection dataset called SMCDD. Feng et al. [15] established a lightweight
position-enhanced anchor-free SAR ship detection algorithm called LPEDet. They designed
a lightweight multiscale backbone and a position-enhanced attention strategy for balancing
detection speed and accuracy. The results showed that their method achieved a higher
detection accuracy and a faster detection speed than other state-of-the-art (SOTA) detection
methods. Xu et al. [16] presented a unified framework combining triangle distance IoU loss

Remote Sens. 2023, 15, 303. https://doi.org/10.3390/rs15020303 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020303
https://doi.org/10.3390/rs15020303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6780-6100
https://doi.org/10.3390/rs15020303
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020303?type=check_update&version=2


Remote Sens. 2023, 15, 303 2 of 4

(TDIoU loss), an attention-weighted feature pyramid network (AW-FPN), and a Rotated-
SARShip dataset (RSSD) for arbitrary-oriented SAR ship detection. Their method showed
superior performance on both SAR and optical image datasets, significantly outperforming
the SOTA methods. Xiao et al. [17] proposed a simple, yet effective, self-supervised
representation learning (Lite-SRL) algorithm for the scene classification task. Note that
they successfully evaluate the on-board operational capability of Lite-SRL by transplanting
Lite-SRL to the low-power computing platform NVIDIA Jetson TX2. Kačan et al. [18]
explored object classification on a raw and a reconstructed Ground-based SAR (GBSAR)
data. They revealed how processing raw data provides overall better classification accuracy
than processing reconstructed data, and revealed the value of this method in industrial
GBSAR applications where processing speed is critical. Bao et al. [19] proposed a guided
anchor Siamese network (GASN) for arbitrary targets of interest (TOI) tracking in Video-
SAR. GASN used a matching function for returning the most similar area, followed by a
guided anchor subnetwork to suppress false alarms. GASN realized the TOI tracking with
high diversity and arbitrariness, outperforming SOTA methods.

On the topic of SAR image intelligent processing, Tan et al. [20] proposed a feature-
preserving heterogeneous remote sensing image transformation model. Through decou-
pling network design, the method enabled enhancing the detailed information of the
generated optical images and reducing its spectral distortion. The results in SEN-2 satellite
images revealed that the proposed model has obvious advantages in feature reconstruction
and the economical volume of the parameters. Zhang et al. [21] proposed a self-supervised
despeckling algorithm with an enhanced U-Net called SSEUNet. Unlike previous self-
supervised despeckling works, the noisy-noisy image pairs in SSEUNet were generated
from real-world SAR images through a novel generation training pairs module, making it
possible to train deep convolutional neural networks using real-world SAR images. Finally,
experiments on simulated and real-world SAR images show that SSEUNet notably exceeds
SOTA despeckling methods. Habibollahi et al. [22] proposed a DL-based change detection
algorithm for bi-temporal polarimetric SAR (PolSAR) imagery called TCD-Net. In particu-
lar, this method applied three steps as follows: (1) pre-processing, (2) parallel pseudo-label
training sample generation based on a pre-trained model and the fuzzy C-means (FCM)
clustering algorithm, and (3) classification. TCD-Net could learn more strong and abstract
representations for the spatial information of a certain pixel, and was superior to other
well-known methods. Fan et al. [23] proposed a high-precision, rapid, large-size SAR
image dense-matching method. The method mainly included four steps: down-sampling
image pre-registration, sub-image acquisition, dense matching, and the transformation
solution. The experimental results demonstrated that the proposed method is efficient and
accurate, which provides a new idea for SAR image registration. Zhang et al. [24] proposed
A low-grade road extraction network Based on the fusion of optical and SAR images at
the decision level called SDG-DenseNet. Furthermore, they verified that the decision-level
fusion of road binary maps from SAR and optical images can significantly improve the
accuracy of low-grade road extraction from remote sensing images.

On the topic of data analytics in the SAR remote sensing community, Wangiyana
et al. [25] explored the impact of several data augmentation (DA) methods on the perfor-
mance of building detection on a limited dataset of SAR images. Their results showed that
geometric transformations are more effective than pixel transformations and DA methods
should be used in moderation to prevent unwanted transformations outside the possible
object variations. The study could provide potential guidelines for future research in
selecting DA methods for segmentation tasks in radar imagery.

On the topic of interferometric SAR technology, Pu et al. [26] proposed a robust
least squares phase unwrapping method called PGENet that works via a phase gradient
estimation network based on the encoder–decoder architecture for InSAR. Experiments
on simulated and real InSAR data demonstrated that PGENet outperformed the other five
well-established phase unwrapping methods and was robust to noise.
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3. Conclusions

Recently, as many SAR systems have been put into use, massive SAR data are available,
providing important support for exploring how to apply DL to SAR fields. A large number
of SAR data coupled with the DL methodology jointly promote the development of SAR
fields. The Special Issue shows innovative applications in object detection, classification
and tracking, SAR image intelligent processing, data analytics in the SAR remote sensing
community and interferometric SAR technology. There is no doubt that applying DL to
more SAR fields (such as terrain classification, SAR agriculture monitoring, SAR imaging
algorithm updating, SAR forest applications, marine pollution, etc.) is of great significance
for earth remote sensing. In addition, we welcome scholars who are interested in applying
DL to SAR to contribute to the scientific literature on this subject.
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