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Abstract: As global warming intensifies, the damage caused by drought cannot be disregarded.
Traditional drought monitoring is often carried out with monthly resolution, which fails to monitor
the sub-monthly climatic event. The GRACE-based drought severity index (DSI) is a drought index
based on terrestrial water storage anomalies (TWSA) observed by the gravity recovery and climate
experiment (GRACE) satellite. DSI has the ability to monitor drought effectively, and it is in good
consistency with other drought monitoring methods. However, the temporal resolution of DSI
is limited by that of GRACE observations, so it is necessary to obtain TWSA with a higher temporal
resolution to calculate DSI. We use a statistical method to reconstruct the TWSA, which adopts
precipitation and temperature to obtain TWSA on a daily resolution. This statistical method needs
to be combined with the time series decomposition method, and then the parameters are simulated
by the Markov chain Monte Carlo (MCMC) procedure. In this study, we use this TWSA reconstruction
method to obtain high-quality TWSA at daily time resolution. The correlation coefficient between
CSR–TWSA and the reconstructed TWSA is 0.97, the Nash–Sutcliffe efficiency is 0.93, and the root
mean square error is 16.57. The quality of the reconstructed daily TWSA is evaluated, and the DSI on
a daily resolution is calculated to analyze the drought phenomenon in the Pearl River basin (PRB).
The results show that the TWSA reconstructed by this method has high consistency with other daily
publicly available TWSA products and TWSA provided by the Center for Space Research (CSR),
which proves the feasibility of this method. The correlation between DSI based on reconstructed
daily TWSA, SPI, and SPEI is greater than 0.65, which is feasible for drought monitoring. From 2003
to 2021, the DSI recorded six drought events in the PRB, and the recorded drought is more consistent
with SPI-6 and SPEI-6. There was a drought event from 27 May 2011 to 12 October 2011, and this
drought event had the lowest DSI minimum (minimum DSI = −1.76) recorded among the six drought
events. The drought monitored by the DSI is in line with government announcements. This study
provides a method to analyze drought events at a higher temporal resolution, and this method is also
applicable in other areas.

Keywords: GRACE; terrestrial water storage anomalies; reconstruction method; drought monitoring;
Pearl River basin

1. Introduction

As a stochastic natural catastrophe, drought has historically excessively impacted
humans [1,2]. A decrease in rainfall is frequently accompanied by drought, which causes
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extensive damage to the environment [3] and biological communities [4]. Being one of
the main results of sensitive climate change, the frequency and severity of drought are
increasing [5–7]. Therefore, a detailed analysis and description of the process of drought
is needed.

The physical processes of drought are non-linear and involve feedback, and there is
no single, global standard definition of drought now [8–10]. Drought is categorized into
meteorological drought, hydrological drought, agricultural drought, and socioeconomic
drought [8,9,11]. Quantification of drought requires drought indexes, the widely used
indices include the standardized precipitation index (SPI) [12], the standardized precipi-
tation evapotranspiration index (SPEI) [13], the standardized Runoff index (SRI) [14], the
Palmer drought severity index (PDSI) [15], the self-calibrating Palmer drought severity
index (cs-PDSI) [16], etc. Different drought indexes provide numerous perspectives for
drought analysis [17–19]. Traditionally, the variables involved in drought indexes are based
on ground-based point observations, such as hydrological and meteorological stations [20].
However, situ measurements are limited to uneven distribution, difficulty in determin-
ing spatial scale, and high cost of human and material resources. Nowadays, drought
monitoring is gradually moving away from reliance on station data. The advantage of
remote sensing relative to traditional ground observations is that, over a larger spatial and
temporal scale, it can obtain crucial characteristics connected to drought [21,22].

The gravity recovery and climate experiment (GRACE) satellite and the GRACE follow
on (GRACE-FO) mission were jointly launched by the National Aeronautics and Space
Administration (NASA) and the German Aerospace Centre (DLR) to provide a method
for monitoring terrestrial water storage (TWS) [23,24]. TWS is defined as the addition of
all groundwater and surface water on the land, including root zone soil moisture, surface
soil moisture, groundwater, and so on [25,26]. GRACE and GRACE-FO are capable of
monitoring the time variable gravity field of reflection changes in mass principally caused
by the Earth’s water cycle with high accuracy at certain scales [27], providing valuable
information for the analysis of hydrological phenomena [28]. The GRACE-based drought
severity index (DSI) [29] provides a perspective on drought events based on TWS. Drought
can be analyzed from multiple variables, which broadens the scope of drought monitoring.
GRACE has been extensively validated and used in drought monitoring and analysis
of hydrological phenomena [30–33]. Thomas et al. [34] utilized GRACE to establish a
groundwater drought index for the assessment of groundwater drought in the Central
Valley of California. Mohamed et al. [35] integrated GRACE, climate model outputs, and
precipitation data to study groundwater variations in Chad. Sun et al. [36] derived water
storage deficit based on GRACE. Wu et al. [30] used the TWSA-based total storage deficit
index (TSDI) to analyze drought in five southwestern provinces of China. Sinha et al. [37]
combined TWSA from GRACE with rainfall analysis to construct the combined climatologic
deviation index (CCDI) to study drought in Indian river basins. The purpose of the GRACE
satellite is to monitor changes in the time variable gravity field with a time interval of
about 30 days [23,38]. Therefore, many scholars reconstructed it to improve its spatial
resolution [39,40] or to fill in the gap time [41].

As the effects of drought continue to worsen, the short-term damage of drought cannot
be disregarded [42], and it is indispensable to use more accurate time resolution to investi-
gate the development of drought on a daily resolution, the daily evapotranspiration deficit
index (DEDI) developed by Zhang et al. [43] is to explore drought on a daily resolution.
The traditional DSI does not achieve monitoring droughts with a temporal resolution of
shorter than one month [44,45], which cannot accurately locate the daily spatial shift of
drought. The current daily TWSA provided by other institutions that can be used directly
are the global land data assimilation system (GLDAS) [46,47] and ITSG-Grace2018 [48,49].
Nevertheless, certain limitations exist regarding the current availability of daily TWSA
products, primarily due to discrepancies between TWSA products and GRACE TWSA
in specific regions of China [50]. Additionally, the daily TWSA products are limited to
infrequent updates and relatively short time series. Humphrey and Gudmundsson [51]
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develop a novel approach to reconstruct TWSA on a daily resolution, utilizing daily pre-
cipitation and temperature as the driving variables. This method can not only separate
human-driven and climate-driven TWSA changes [52] but also monitor mega-floods [53].
Bai et al. [54] indicate that the reconstructed TWSA from this method has higher quality.
Yang et al. [55] used this method to fill the missing TWSA from July 2017 to May 2018.
However, this method has not been accomplished in the actual spatial scale of the mason
solution provided by the Center for Space Research (CSR), and this study uses the spatial
scale of CSR to reconstruct TWSA.

The drought caused losses of more than 5.49 billion yuan in China in 2021, as reported
by the “2021 Bulletin of Flood and Drought Disaster in China” [56]. The Pearl River
basin (PRB), with expansive geographic coverage and intricate meteorological conditions,
assumes a vital role in the provision of water to major megacities, including Guangzhou,
Hong Kong, and the Pearl River Delta region [57]. The intricate dynamics of the climate
system are a contributing factor to the exacerbation of drought conditions within the
PRB [20]. The occurrence of recurrent and severe drought events has resulted in substantial
losses within the PRB. Consequently, ensuring water security within the PRB should be
prioritized, with particular emphasis placed on the monitoring of drought occurrences.
Such drought monitoring plays a crucial role in predicting the onset of disasters and
facilitating the formulation of effective mitigation and preventive strategies.

The utilization of GRACE is imperative for drought quantification in the PRB. Huang
et al. [20] analyzed drought events in the PRB utilizing GRACE but at a monthly resolution.
The occurrence of short-term extreme climate events has become more frequent. To a certain
extent, a temporal resolution of a month may not suffice for a comprehensive drought
analysis. In this paper, the daily TWSA of the PRB is obtained by the TWSA reconstruction
method, which in turn improves the temporal resolution of the GRACE-based drought
analysis in the PRB.

In this study, we reconstruct the daily TWSA and calculate the daily DSI, aiming to
explore the daily drought in the PRB. The main objectives of this work are (1) to validate
the quality of the daily TWSA obtained by this reconstruction method, (2) to calculate DSI
with an accurate temporal resolution to daily and compare it with other drought indexes to
verify the reliability of daily DSI in assessing drought events in the PRB, and (3) to calculate
DSI using the daily TWSA obtained based on the reconstruction method and to study the
temporal evolution and spatial distribution of drought in the PRB.

2. Study Area and Datasets
2.1. Study Area

The PRB is one of China’s major basins and is located in the southern part of the
country (Figure 1). The PRB covers an area of approximately 4.42 × 105 km2 [57] and is
higher in the west and lower in the east. There are primarily three major tributaries in
the PRB: the West River, the North River, and the East River [58]. Precipitation is mainly
concentrated from April to September [58,59], and hydrological drought is more severe
compared with meteorological drought [60]. Situated below the population density line
in China, the PRB has a high population density and robust socioeconomic development.
Hence, the potential harm inflicted by drought in this region would be substantial, which
makes it a matter of significant concern. Despite being a coastal region, the PRB should
pay close attention to water security because of recent increases in global warming and the
frequency of droughts.

The average rainfall in the Pearl River basin exhibits a trend of decreasing from the
east to the west, with the eastern coastal areas receiving higher rainfall amounts and the
maximum rainfall being significantly higher compared to the western areas (Figure S1). As
a result, the western regions are more susceptible to droughts. This east-to-west gradient
in rainfall distribution may be attributed to various climatic and geographical factors
influencing the region.
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2.2. Data
2.2.1. TWSA Products

(1) GRACE/GRACE-FO mascon solutions: the GRACE mascon solution released by
CSR (http://www2.csr.utexas.edu/grace/RL06_mascons.html (accessed on 15 June
2022)) are one of the most widely used data available today, and this study uses
the GRACE/GRACE-FO RL06 Mascon Solutions (version 02) provided by CSR. In
comparison to the RL05 version, the RL06 mascon solutions use a freshly established
grid that can limit the leakage between land and ocean signals. The native resolution
of RL06 is 1◦, the shape is a square hexagon, and the file is published at 0.25◦ so that
the coastline defined in the new RL06 mascon grid can be correctly represented [61].

(2) Daily TWSA productions: version 2 of the GLDAS (GLDAS-2) provides optimal
fields of land surface states and fluxes, which concludes TWS. The GLDAS-2.2 (https:
//disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_DA1_D_2.2/summary (accessed
on 8 July 2022)), which assimilates TWSA (0.25◦ × 0.25◦ resolution) from GRACE,
is one of the components of GLDAS-2 [46,47]. The ITSG-Grace2018 gravity field
model (1◦ × 1◦ resolution, https://www2.csr.utexas.edu/grace/RL06_mascons.html
(accessed on 18 December 2022)) provides Kalman smoothed daily solutions [48].
Humphrey and Gudmundsson [51] reconstruct daily TWSA using multiple precipi-
tations and provide different products of daily TWSA (https://doi.org/10.6084/m9
.figshare.7670849 (accessed on 25 December 2022)). In this study, JPL_ERA5 represents
the daily TWSA reconstructed by Humphrey and Gudmundsson using the JPL-TWSA
(3◦ × 3◦ resolution) and precipitation from ERA5, and JPL_MSWEP (3◦ × 3◦ reso-
lution) represents the daily TWSA reconstructed by Humphrey and Gudmundsson
using the JPL-TWSA and precipitation from MSWEP.

2.2.2. Precipitation and Temperature Data

CN05.1 (https://ccrc.iap.ac.cn/resource/detail?id=228 (accessed on 5 December 2022))
is a grid of data obtained by interpolation based on observations from 2400 Chinese
meteorological stations to provide precipitation and temperature with a spatial resolution
of 0.5◦ × 0.5◦ and covers the period from 1961 to 2021 [62–64]. Nie et al. [65] indicate that
the TWSA reconstructed using precipitation and temperature from CN05.1 outperformed
other precipitation data when using this method to reconstruct TWSA.

2.2.3. Daily Drought Index Dataset

Muliti-scale daily SPI and SPEI dataset over Mainland China: SPI, as well as SPEI, are
one of the most commonly used drought indexes. To improve the temporal resolution of
SPI and SPEI to identify flash droughts, Wang et al. [66,67] improved the traditional SPI and
SPEI calculation methods and developed new multiscale daily SPI (https://figshare.com/
articles/dataset/muliti-scale_daily_SPI_dataset_over_the_Mainland_China_from_1961-2
018/14135144 (accessed on 23 December 2022)) as well as SPEI (https://figshare.com/
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articles/dataset/muliti-scale_daily_SPEI_dataset_over_the_Mainland_China_from_1961-2
018/12568280 (accessed on 23 December 2022)) datasets. The datasets are based on data
from 484 meteorological stations in mainland China from 1961 to 2018. The new multiscale
daily SPI, as well as SPEI, can effectively capture drought events in different periods and
locations [68]. Table 1 shows the details of different data sets used in this study.

Table 1. Details of the different data sets used in this study.

Dataset Name Variables Temporal Resolution Spatial Resolution

CSR RL06 Mascon GRACE-TWSA TWSA monthly 1◦ × 1◦

(native resolution)

GLDAS GLDAS-TWSA TWSA daily 0.25◦ × 0.25◦

GRACE_REC
JPL_ERA5 TWSA daily

3◦ × 3◦
JPL_MSWEP TWSA daily

ITSG-Grace2018 ITSG-Grace2018 TWSA daily 1◦ × 1◦

CN05.1
Precipitation Precipitation

daily 0.25◦ × 0.25◦
Temperature Temperature

SPEI Dataset Daily SPEI Daily SPEI daily Station dataSPI Dataset Daily SPI Daily SPI

3. Method

In this study, we reconstructed the daily TWSA using meteorological data as well as
CSR–TWSA; the meteorological data are provided by CN05.1. The reconstruction model
was based on a statistical method, and the parameter of this method was calculated by the
MCMC. Then, the quality of this reconstructed TWSA was analyzed in comparison with
other daily TWSA products, including ITSG-Grace2018, GLDAS_TWSA, JPL_ERA5, and
JPL_MSWEP, aimed to validate the feasibility of the reconstruction method. The DSI was
calculated at the daily resolution using the reconstructed daily TWSA, and the calculated
DSI was compared with SPI and SPEI. Finally, we calculated the drought characteristics to
analyze the drought temporal distribution on a daily resolution from 2003 to 2021 and to
analyze the drought special distribution in 2011 (Figure 2).

3.1. Recontraction Method
3.1.1. GRACE TWSA Reconstruction Method

Humphrey and Gudmundsson [51] present a statistical approach to reconstruct TWSA
by assuming a linear water storage model and using precipitation and temperature forcing
data. The model can be mathematically expressed as Equations (1) and (2):

TWSA(t) = TWSA(t − 1)·e−
1

τ(t) + P(t) (1)

τ(t) = a + b·TZ(t) (2)

where t is the daily time vector, and TWSA(t), P(t), and TZ(t) represent TWSA, precipitation,
and the transformation of temperature at time t, respectively. The daily TWSA obtained by
providing the above method needs to be averaged into a monthly time scale corresponding
to the monthly time bounds of GRACE and calibrated using the GRACE TWSA with the
following monthly calibration equation:

anom(GRACE(tm)) = β·anom(TWSA(tm)) + ε (3)

where ε denotes the error and β denotes the calibrated scaling factor. anom() denotes the
removal of the seasonal and trend terms from the data, and the parameters a, b, and β are

https://figshare.com/articles/dataset/muliti-scale_daily_SPEI_dataset_over_the_Mainland_China_from_1961-2018/12568280
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calibrated using a Markov chain Monte Carlo (MCMC) procedure. The TWSA reconstructed
by this method is primarily explained by climate change [52].
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In this paper, we reconstructed the daily scale TWSA from 1 January 2003 to 31
December 2021 and adjusted the model parameters using the monthly TWSA provided
by CSR from January 2003 to December 2021 as observations (missing months were not
involved in parameter adjustment). Each GRACE mascon individually calibrates the above
statistical model. After obtaining the parameters, we calculated the daily TWSA using
Equations (1)–(3) and then interpolated the trend and seasonal terms of the original GRACE
time series to obtain the daily trend and seasonal terms, and all the above terms were
summed to obtain the final results.

3.1.2. Time Series Decomposition

The seasonal and trend terms need to be removed from TWSA in Equation (3), and
the TWSA can be decomposed by the following equation [27,69]:

TWSA = Trend + Annual signal + Semi − annual signal + Residuals (4)

The trend is the linear trend of the TWSA time series. Seasonal terms consist of
annual signal and semi-annual signal. Annual signal and semi-annual signal are the annual
and semi-annual cycle of TWSA. The seasonal terms can be extracted by fitting sine or
cosine functions; residual is the difference between TWSA and the sum of the other three
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previously mentioned [54,69]. In this paper, the least-squares regression method was used
to remove the linear trend as well as seasonality from the data, as in Equation (5):

f (t) = a + b·(t − t0)︸ ︷︷ ︸
Trend term

+ c·cos(2πt) + d·sin(2πt)︸ ︷︷ ︸
Annual signal

+ e·cos(4πt) + f ·sin(4πt)︸ ︷︷ ︸
semi−annual signal︸ ︷︷ ︸

Seasonal term

+ ε (5)

where a is the constant term, b is the trend term, c, d, e, and f denote the seasonal term,
and ε denotes the residual term [70]. The parameters were obtained by the least-squares
regression method. Figure 3 displays the time series as well as the trend and seasonal terms
of TWSA in the PRB, which were calculated by the aforementioned method.
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3.2. Drought Index
3.2.1. DSI

The GRACE-based DSI was suggested by Zhao et al. [29] to identify drought phenom-
ena. Based on this, this work extends the initial temporal resolution for DSI calculation
from monthly resolution to daily resolution. Daily TWSA is used to analyze the daily
drought phenomena. It can be calculated by Equation (6):

DSIi,j =
TWSAi,j − TWSAj

σj
(6)

In the variable DSIi,j and TWSAi,j, i denotes the ith year, which in this paper means
19 years from 2003 to 2021, so i = 1,2, . . . 19; j denotes the jth day of a year, j = 1,2, . . . 366 in
leap years and j = 1,2, . . . 365 in other years; TWSAj represents the collections of TWSA
on the same day in different years. For example, TWSA1 is the collections of TWSA1,1,
TWSA2,1, TWSA3,1 . . . TWSA19,1. TWSAj and σj denote the mean and standard deviation
of TWSAj.

The DSI was categorized into five drought categories by matching their ranking
percentiles to thresholds, as recommended by the U.S. drought monitor (USDM) [29], to
classify the severity of the current drought. Table 2 shows the classification of drought
indices for DSI, SPI, and SPEI [29,66,67]. Generally, a drought that occurs for a period
greater than or equal to three months is recorded as a drought event, and the severity of
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the drought needs to be given. The formula for calculating the severity of a drought event
is Equation (7) [37,44]

Drought Severity =
m

∑
n

DSI(m − n ≥ 90, when DSI ≤ −0.50) (7)

where ‘n’ represents the start date of a drought event and ‘m’ represents the end date of
a drought event. Some academics [71] contend that the final month of a drought event is
thought to be the transition between the drought period and the normal period; it should
not be taken into account when determining the severity of the event. In this study, the
temporal resolution of drought events was accurate to daily, and the severity of a drought
event was recorded more reasonably.

Table 2. The range and relative categories of drought conditions for SPI, SPEI, and DSI [29,66,67].

Category Description DSI SPI SPEI

D0 Abnormally dry −0.50 to −0.79
D1 Moderate drought −0.80 to −1.29 −0.50 to −0.99 −0.50 to −0.99
D2 Severe drought −1.30 to −1.59 −1.00 to −1.49 −1.00 to −1.49
D3 Extreme drought −1.60 to −1.99 −1.50 to −199 −1.50 to −199
D4 Exceptional drought −2.0 or less −2.00 or less −2.00 or less

3.2.2. Daily SPI

Wang et al. [67] proposed the formula for daily SPI. Firstly, the daily cumulative
precipitation time series at a defined time scale (30, 90, 180 days, etc.) is calculated by the
Equation (8):

Xk
i,j =

30
∑

l=31−k+j
Pi−1,l +

j
∑

l=1
Pi,l , i f j < k and

Xk
i,j =

j
∑

l=j−k+1
Pi,l , i f j > k

(8)

where i denotes the ith year, j denotes the jth day, and k (days) is the time scale.Xk
i,j and

Pi,j denote the cumulative precipitation and the daily precipitation on day j of the year
i, respectively. After that, the probability distribution of the cumulative precipitation is
calculated by fitting the function of gamma probability distribution and normalizing it, and
the final SPI formula is as follows. For more details, please refer to the original article [67].

SPI = S c0+W−c1W−c2W2

1+d1W+d2W2+d3W3 ,

W =
√

ln 1
P2

{
P = 1 − F(x), S = −1 F(x) ≤ 0.5
P = 1 − P, S = 1 F(x) > 0.5

(9)

3.3. Evaluation Metrics

In this paper, we mainly used correlation coefficient (CC) [72], root mean square
error (RMSE) [73], and Nash–Sutcliffe efficiency (NSE) [74] to analyze the quality of model
reconstruction results, and the three metrics are calculated as follows:

CC =
∑n

i=1 (Xi − X)(Yi − Y)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(10)

NSE = 1 − ∑n
i=1 (Yi − Xi)

2

∑n
i=1 (Xi − X)

2 (11)
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RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (12)

where Y and X represent observed and simulated values, respectively, Y and X are the
average of the observed and simulated values, respectively, and n is the amount of data.
The reconstructed results are more accurate the greater the NSE and CC are between
the observed and simulated values. The accuracy of the model increases as the RMSE
approaches zero.

4. Result
4.1. Evaluation of Reconstructed Daily TWSA

The quality of the daily TWSA derived by this method is contingent upon the ac-
curacy of the precipitation forcing data. JPL_ERA5, JPL_MSWEP, ITSG-Grace2018, and
GLDAS-TWSA were chosen to analyze the quality of the reconstructed daily TWSA in this
study, with a uniform comparison from 2004 to 2016. Four ways are used to evaluate the
reconstructed daily TWSA: (1) compare the reconstructed daily TWSA with the CSR–TWSA;
(2) average the various daily TWSA products on a monthly scale that is consistent with
the GRACE “month” and then compare them with CSR–TWSA; (3) remove the seasonal
and trend terms of the various daily TWSA products, and then compare them with the
reconstructed TWSA time series; and (4) determine the CC, NSE, and RMSE between the
various TWSA products, to evaluate the quality of the daily TWSA reconstruction.

The reconstructed TWSA fits very well with CSR–TWSA, and the TWSA in the missing
period of GRACE is also well-complemented (Figure 4). The NSE between the reconstructed
TWSA’s monthly mean corresponding to the GRACE time bounds and CSR–TWSA is as
high as 0.92. The CSR–TWSA in the PRB shows a clear periodicity, with a significantly
smaller peak of wave in 2011 than that in other years. The reconstructed data not only
simulate the periodic fluctuations of the TWSA in the PRB but also the anomalous situation
of a low peak of wave in 2011. The TWSA in the PRB has a clear periodicity, but in 2016,
the TWSA did not show a clear trough of wave due to the high precipitation and only
fluctuated in a certain value. The reconstructed data in this paper reflect the situation
consistent with CSR–TWSA, indicating that the method can simulate the TWSA variation
even in special periods.
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As shown in Figure 5, there is some consistency among the different daily TWSA
products, with TWSA cycles rising and falling at relatively consistent times. The monthly
average of daily TWSA products is relatively smoother. Due to a large amount of data and
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graphic complexity, Figure 5b is split into Figure 6a–d, the red line indicates CSR–TWSA
and the blue line indicates reconstructed TWSA to examine the differences between the
reconstructed TWSA and other products. The reconstructed TWSA has high consistency
with other TWSA products (Figure 6). While there are some differences between the daily
TWSA products in some periods and the CSR–TWSA, they are within acceptable limits.
The long-term trends of all different daily TWSA products are not particularly obvious, and
CSR–TWSA also shows that the trend of TWSA in the PRB is only 2.95 mm/yr (Figure 3).
Humphrey and Gudmundsson [51] mentioned that long-term trends need to be carefully
considered when using JPL_ERA5 and JPL_MSWEP, so the differences between these two
products and CSR–TWSA may be due to long-term trends.
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Remote Sens. 2023, 15, 4849 11 of 20

Figure 7 shows the time series of different daily TWSA products after removing the
seasonal and trend terms. After removing the trend and seasonal terms, it can reflect the
fluctuation of TWSA due to other conditions other than time. After removing the seasonal
and trend terms, the reconstructed TWSA is still in outstanding consistency with other
daily TWSA products, especially with the time series of JPL_ERA5 and JPL_MSWEP, but
the difference with GLDAS-TWSA is relatively large. The discrepancy primarily manifests
in the varying amplitudes during the ascent and descent of TWSA. The difference between
the reconstructed TWSA and JPL_ERA5 and JPL_MSWEP is mainly determined by the
quality of the precipitation [51]. Combining the results in Figures 5 and 6, in general, the
reconstructed TWSA has remarkable consistency with other TWSA products in terms of
time series, and the feasibility of the reconstruction method in this study is verified.
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Figure 7. Comparison of different daily TWSA products after removing trend and seasonal terms;
(a) time series of reconstructed TWSA in this study, JPL_ERA5, JPL_MSWEP; (b) time series of
reconstructed TWSA in this paper, GLDAS-TWSA, ITSG-Grace2018.

All the various daily TWSA products in PRB have a high correlation (Figure 8a,b).
The reconstructed TWSA exhibits correlation coefficients of up to 0.86 or higher with other
daily TWSA datasets. Excluding GLDAS-TWSA, the correlation coefficients between the
reconstructed TWSA and other products are above 0.94. After removing the trend and
seasonal terms, the CC between each daily TWSA product is reduced, but the TWSA
reconstructed in this study still maintains a high CC with other products. The CC between
CSR–TWSA and the reconstructed TWSA is 0.97, the NSE is 0.93, and the RMSE is 16.57.
CSR–TWSA and other daily TWSA products also have high CC (Figure S2). In summary,
the reconstructed TWSA in this paper is consistent with other daily TWSA products, and
the reconstructed TWSA is close to the CSR–TWSA in terms of graphical and numerical
characteristics.
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4.2. Evaluation of DSI in the PRB

Figure 9a shows the time series of the daily DSI calculated based on the reconstructed
daily TWSA and the monthly DSI calculated based on CSR–TWSA, where the gray area in-
dicates the missing months of GRACE. In calculating the monthly DSI, the missing months
of CSR–TWSA, except for June 2017~May 2018, are filled using cubic spline interpolation.
The DSI of June 2017~May 2018 was not calculated because GRACE had long continuous
missing values during this period. The time series plot exhibits strong coherence among
different resolution DSI, particularly in the timing of drought occurrences. However, some
periods demonstrate suboptimal agreement, primarily attributed to modeling errors during
simulation. The daily DSI recorded six drought events, while the monthly DSI recorded
seven. The difference is that the monthly DSI recorded a drought event from October 2007
to January 2011, while the daily DSI monitored 82 days of drought in that period, not
exceeding 90 days, so the daily DSI did not record that period as a drought event. The DSI
values for this period are analyzed in detail. The value of the monthly DSI in October 2007
was −0.52, but at the end of October 2007 and the first half of November 2007, the daily
DSI fluctuated around −0.5, causing this period not to be considered as the time when the
drought occurred. If the daily DSI had not fluctuated in early November 2007, this drought
event would have exceeded 90 days and would also have been recorded.
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There is a certain correlation between different drought indexes (Figure 10). The daily
SPI and daily SPEI here are used from datasets provided by Wang et al. [66,67]. SPI-3
indicates daily SPI on a 3-month time scale (180-day scale). Similarly, SPI-6, SPI-12, SPEI-3,
SPEI-6, and SPEI-12 follow the same pattern. The CC between DSI and other drought
indexes at all time scales is above 0.65. Among them, the DSI and SPI-6 have the highest CC
of 0.8. SPI and SPEI correlated over 0.95 on the same time scale. There is a certain correlation
between different indices and differences, mainly due to the different perspectives of
various drought indices in monitoring drought. The CC reflects the consistency of different
drought indices in monitoring drought from different perspectives. DSI has the highest
correlation with SPI-6 and SPEI-6, and Figure 1 shows the time series of SPI-6, SPEI-6, and
DSI. Depressions are present in both SPI-6 and SPEI-6 on the dates when the DSI recorded a
drought event (Figure 3), producing a wetting peak in all three indices in 2016. In summary,
daily DSI is not only highly consistent with monthly DSI but also with daily SPI and daily
SPEI, reflecting the reliability of daily DSI.
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5. Discussion
5.1. Drought Temporal Distribution in the PRB from 2003 to 2021

Table 3 shows the characteristics of drought events recorded by DSI in PRB. Six
drought events were recorded by DSI during the period from 2003 to 2021, among which
the drought event occurring from 21 August 2009 to 31 May 2010 had the highest severity
and the longest duration. The drought event occurring from 27 May 2011 to 12 October
2011 had the lowest DSI minimum, with a drought classification of D3. Since the next
drought does not occur until 2021 after 2011, the time distribution of drought events is
uneven, and droughts are more concentrated before 2011. There is a slow rise in TWSA in
the PRB (Figure 2), but there is still a possibility of drought occurrence. The drought from
21 August 2009 to 31 May 2010 experienced two drought peaks, on 10 November 2009 and
31 March 2010, respectively. The DSI for the two peaks is −1.49 and −1.37, respectively,
and the drought lasted for a total of 284 days, the most severe drought ever monitored by
DSI. From an overall temporal perspective, the droughts that occurred in the PRB varied
widely from year to year, with three drought events occurring before 2008, which were
longer in duration and did not have high extreme values. The drought events that occurred
afterward had higher extreme values. It is difficult to summarize the objective pattern of
drought and flood occurrence in the PRB only from the temporal analysis.
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Table 3. Statistics of DSI-identified drought events.

ID Duration Duration (Days) Total Severity Minimum DSI (Category) Minimum DSI Date

1 2003/10/1–2004/4/16 199 −180.11 −1.12 (D1) 2004-03-17
2 2004/9/19–2005/5/9 233 −224.98 −1.17 (D1) 2005-02-10
3 2005/9/8–2006/5/26 261 −236.14 −1.21 (D1) 2006-02-16
4 2009/8/21–2010/5/31 284 −298.57 −1.49 (D2) 2009-11-10
5 2011/5/27–2011/10/12 139 −171.15 −1.76 (D3) 2011-08-31
6 2021/6/7–2021/10/20 136 −131.12 −1.29 (D2) 2021-06-27

Six drought events were recorded by SPI-6 during the period from 2003 to 2021
(Table S1). SPI-6 here is calculated from the precipitation of CN05.1. There are similarities
and differences between the drought characteristics described by DSI and those described
by SPI-6. The occurrence time of each drought recorded by DSI and SPI-6 overlaps greatly,
and six drought events are recorded in both drought indexes. The main reason for the
difference between the two is that DSI mainly reflects hydrological drought, and SPI mainly
reflects meteorological drought. There are differences in the characteristics of drought
events recorded by different drought indexes.

5.2. Spatial Distribution of Extreme Drought in the PRB in 2011

The drought that occurred from May 27, 2011, to October 12, 2011, has the lowest
minimum recorded by DSI. This study analyzes the spatial distribution of this drought
event in detail. The “2011 Bulletin of Flood and Drought Disaster in China” [75] shows
that the peak of the drought was in early September 2011, and the specific date of the peak
of this drought recorded by DSI is 31 August 2011, with a peak value of −1.76, which
is only one day different from the government recorded drought. Figure 11 shows the
spatial distribution of drought monitored by DSI from 15 August 2011 to 30 September 2011.
During the entire period, the PRB experienced a severe drought, with the most intense
drought occurring at the tri-provincial junction of Yunnan, Guangxi, and Guizhou, and
the central part of Guangdong also being significantly affected by drought. The overall
drought showed a slow aggravation trend in August, and the area of D4 kept expanding.
The whole drought process is spreading from west to east, reaching its peak on 31 August.
The drought in the part of Guangxi, Yunnan, and Guizhou in the PRB improved slightly
after 3 September but was still in a drought situation. The drought level in the whole
PRB appeared to be significantly reduced on 30 September. The “2011 Bulletin of Flood
and Drought Disaster in China” [75] shows that the drought was relieved by an effective
precipitation process in Guangxi, Yunnan, and Guizhou in mid to late September, but the
drought did not lift directly. The DSI shows that the drought in the three provinces did
show a drought relief process in mid to late September, and the drought in the entire PRB
was significantly reduced by the end of September 2011, which is more consistent with the
description in the “2011 Bulletin of Flood and Drought Disaster in China” [75].

Both DSI and SPI-1 or SPI-6 show that there was a severe drought in August-September
2011 (Figure 12), and the drought was most severe in the tri-provincial border of Yunnan,
Guangxi, and Guizhou, followed by the drought in the central part of Guangdong. SPI-1
shows that the drought in Guangxi, Yunnan, and Guizhou regions decreased from 15
August to 30 August, then briefly increased from 30 August to 5 September, and then
continued to decrease until the drought largely disappeared at the end of September.
Compared with the DSI, SPI-1 is lower for the drought in central Guangxi, and the drought
level in central Guangxi is mostly D1 during the peak of the drought, and there are even no
drought areas, so there may be an underestimation of the drought. The drought described
by SPI-1 almost disappeared at the end of September is not consistent with the drought still
exists in some areas in the “2011 Bulletin of Flood and Drought Disaster in China” [75], so
there may be an underestimation of the drought. SPI-1 fluctuates sharply, and SPI-6 as well
as DSI fluctuate slowly. The drought characteristic described by SPI-6 has been D4 in the
region of Yunnan, Guangxi, and Guizhou provinces, which appears to be aggravated in
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September and hardly mitigated at the end of September, which is not consistent with the
description that effective precipitation makes drought mitigated in Yunnan, Guangxi, and
Guizhou provinces in “2011 Bulletin of Flood and Drought Disaster in China” [75], and
there may be an overestimation of drought.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 11. Drought distribution in the PRB monitored by DSI from 15 August to 30 September 2011. Figure 11. Drought distribution in the PRB monitored by DSI from 15 August to 30 September 2011.



Remote Sens. 2023, 15, 4849 16 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 12. Drought distribution in the PRB monitored by SPI-1 and SPI-6 from 15 August to 30 Sep-
tember 2011. 

The DSI is closer to the “2011 Bulletin of Flood and Drought Disaster in China” 
[75] in its description of this drought. There are differences in the description of this 
drought between different drought indices. The difference between SPI-1 and SPI-6 is 
mainly caused by the length of observation time. The main reason for the difference be-
tween DSI and SPI is that SPI studies meteorological drought, which is mainly based on 
the observation of precipitation, while DSI studies hydrological drought, which is based 
on TWSA for the analysis of drought. 

6. Conclusions 
In this study, based on the CSR–TWSA product, the reconstruction model based on 

a statistic method was used to reconstruct the daily TWSA and analyze the drought events 
in the PRB from 2003 to 2021 with the calculated DSI. We compared multiple TWSA prod-
ucts and compared multiple drought indexes to validate the method in this paper. The 
main conclusions are as follows: 
(1) The quality of reconstructed TWSA using the precipitation and temperature data 

provided by CN05.1 is acceptable. The reconstructed TWSA is in remarkable con-
sistency with CSR–TWSA. The NSE between the reconstructed TWSA’s monthly 
mean corresponding to the GRACE time bounds and CSR–TWSA is as high as 0.92. 
The daily TWSA obtained by this method is also in noteworthy consistency with 
other daily TWSA products in the PRB. 

(2) DSI is calculated with an improved temporal resolution to analyze more accurate 
drought events in the PRB. There are six drought events from 2003 to 2021 and three 
drought events before 2008, which have a longer duration and lower severity. The 
daily DSI calculated in this paper is in remarkable agreement with monthly DSI, daily 
SPI, and daily SPEI. The correlation coefficient between DSI and the other two is 
higher than 0.65. This alignment highlights the substantial significance of the DSI as 
a reliable metric for assessing drought conditions. The utilization of DSI with im-
proved temporal resolution allows the characterization of drought analysis to be 

Figure 12. Drought distribution in the PRB monitored by SPI-1 and SPI-6 from 15 August to 30
September 2011.

The DSI is closer to the “2011 Bulletin of Flood and Drought Disaster in China” [75]
in its description of this drought. There are differences in the description of this drought
between different drought indices. The difference between SPI-1 and SPI-6 is mainly caused
by the length of observation time. The main reason for the difference between DSI and SPI
is that SPI studies meteorological drought, which is mainly based on the observation of
precipitation, while DSI studies hydrological drought, which is based on TWSA for the
analysis of drought.

6. Conclusions

In this study, based on the CSR–TWSA product, the reconstruction model based on a
statistic method was used to reconstruct the daily TWSA and analyze the drought events in
the PRB from 2003 to 2021 with the calculated DSI. We compared multiple TWSA products
and compared multiple drought indexes to validate the method in this paper. The main
conclusions are as follows:

(1) The quality of reconstructed TWSA using the precipitation and temperature data
provided by CN05.1 is acceptable. The reconstructed TWSA is in remarkable consis-
tency with CSR–TWSA. The NSE between the reconstructed TWSA’s monthly mean
corresponding to the GRACE time bounds and CSR–TWSA is as high as 0.92. The
daily TWSA obtained by this method is also in noteworthy consistency with other
daily TWSA products in the PRB.

(2) DSI is calculated with an improved temporal resolution to analyze more accurate
drought events in the PRB. There are six drought events from 2003 to 2021 and three
drought events before 2008, which have a longer duration and lower severity. The
daily DSI calculated in this paper is in remarkable agreement with monthly DSI, daily
SPI, and daily SPEI. The correlation coefficient between DSI and the other two is
higher than 0.65. This alignment highlights the substantial significance of the DSI as a
reliable metric for assessing drought conditions. The utilization of DSI with improved
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temporal resolution allows the characterization of drought analysis to be studied
precisely to the day, which can effectively capture the spatial evolution of drought.

(3) In the study of drought events in the PRB in 2011, this drought event monitored by the
DSI is closer to the government report than SPI-1 and SPI-6. Furthermore, the spatial
distribution of drought events in all three drought indexes exhibits a relatively similar
pattern, with the primary drought centers situated near the tri-provincial border of
Yunnan, Guangxi, and Guizhou. From 15 August to 31 September 2011, the entirety
of the PRB experienced a severe drought. Despite a brief respite during this period,
drought persisted through the end of September, with a minimum DSI of 1.76 on
31 August.

This study primarily focuses on enhancing the temporal resolution in drought research.
Given the temporal resolution of TWSA provided by the GRACE satellite at a monthly
resolution, preceding studies have predominantly centered around monthly assessments
of drought and water scarcity. This paper endeavors to augment the temporal resolution of
drought research. The main limitation of this article is not to make predictions. Simulating
future daily TWSA poses a challenge, primarily due to the reliance on daily precipitation
as a key variable in this simulation. While simulating monthly precipitation for future
periods is comparatively more feasible, accurate prediction of daily precipitation remains
considerably difficult. This simulation necessitates daily precipitation data of high quality to
yield a more precise TWSA estimation. Prospective research directions for this model may
center on prediction. If a robust model capable of accurately predicting daily precipitation
becomes available, it may be worthwhile to explore the application of simulated daily
precipitation data with this model for forecasting future TWSA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15194849/s1, Figure S1 showing spatial distribution of mean
and maximum precipitation in the Pearl River basin; Figure S2 showing the CC between different
daily TWSA products and CSR–TWSA; Table S1 highlighting the characteristics of SPI-6-identified
drought events.
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