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Abstract: Desert oases are vital for maintaining the ecological balance in arid regions’ inland river
basins. However, fine-grained assessments of water stress in desert oasis ecosystems are limited. In
our study, we aimed to evaluate the water stress in desert oasis ecosystems in the middle reaches of the
Keriya River Basin, with a specific focus on their ecological functions and optimizing water resource
management. We hypothesized that evapotranspiration has significant effects on ecological water
consumption. First, we estimated the actual evapotranspiration (ET) and potential evapotranspiration
(PET) based on the SEBS (surface energy balance system) model and remote sensing downscaling
model. Then, the ecological water requirement (EWR) and ecological water stress (EWS) index
were constructed to evaluate the ecological water resource utilization. Finally, we explored the
influencing factors and proposed coping strategies. It was found that regions with higher ET
values were mainly concentrated along the Keriya River and its adjacent farmland areas, while
the lower values were observed in bare land or grassland areas. The total EWR exhibited the
sequence of grassland > cropland > forest, while the EWR per unit area followed the opposite order.
The grassland’s EWS showed a distinct seasonal response, with severe, moderate, and mild water
shortages and water plenitude corresponding to spring, summer, autumn, and winter, respectively.
In contrast, the land use types with the lowest EWS were water areas that remained in a state of water
plentitude grade (0.08–0.20) throughout the year. Temperature and vegetation index were identified
as the primary influencing factors. Overall, this study provides a reliable method for evaluating the
EWR and EWS values of basin scale vegetation, which can serve as a scientific basis for formulating
water resource management and regulation policies in the region.

Keywords: evapotranspiration; SEBS; ecological water requirement; water stress; desert oases

1. Introduction

Water supply and utilization in inland river basins is critical to maintaining ecosystem
health and stability in arid and semi-arid regions [1]. However, global climate change and
human activities have intensified water shortages and overexploitation in desert oases,
further threatening human society’s security [2,3]. Therefore, effective water resource
management is a fundamental prerequisite for protecting the basin’s ecological environment
and promoting sustainable socio-economic development. The spatial quantification of
ecological water requirement (EWR) is indispensable to achieving the precise regulation of
water resources [4]. EWR refers to the total water demand necessary to maintain basin water
balance and ensure the ecosystem’s basic functions [5]. Based on the watershed ecosystem’s
composition, EWR can be divided into river, vegetation, wetland, and urban ecological
water requirement [6]. The vegetation ecosystem plays a crucial role in controlling soil
erosion and balancing the watershed ecosystem [7]. Accurately assessing vegetation
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ecological water requirement in ecologically fragile arid and semi-arid areas is vital to
better maintaining stable biodiversity in desert oasis ecosystems.

Several approaches are used for calculating vegetation EWR, including the area quota
method, phreatic evaporation method, water balance method, biomass method, Penman–
Monteith method, and remote sensing method [8–10]. The area quota method is suitable for
plants sharing similar underlying surface and climatic conditions and is commonly used to
calculate water requirement for artificial vegetation [11]. The phreatic evaporation method
is prevalent in arid and semi-arid areas with little precipitation, where vegetation growth
heavily relies on groundwater. However, obtaining sufficiently accurate groundwater
level data is often challenging. The water balance method focuses mainly on hydrological
process changes and does not consider the physiological characteristics of vegetation,
limiting its applicability [12]. The biomass method and the Penman–Monteith method
comprehensively consider vegetation and soil influences but may not accurately capture
the spatial characteristics of the study area based solely on field observation stations [13].
Remote sensing satellite imagery provides high-resolution reflectance data and land cover
information, enabling researchers to conduct observations at a regional scale. Studies have
established that it is very feasible to use satellite remote sensing to estimate vegetation
EWR at the basin scale, and this technique offers the advantages of low cost, high efficiency,
and accurate spatial quantification [13–15].

Evapotranspiration (ET) is the main component of ecological water consumption in
dry land vegetation ecosystems [16]. It serves as a key factor in estimating vegetation EWR.
In recent years, scientists have integrated remote sensing technology and energy balance
models to generate cost-effective and high-precision maps of ET and EWR [17,18]. The SEBS
model is widely recognized as a valuable tool in remote sensing technology, possessing
extensive applications in terrestrial ecological research, drought monitoring, and water
resource management [19,20]. The SEBS model enables the large-scale and multi-temporal
monitoring and analysis of evapotranspiration. It overcomes the limitations and potential
errors that may arise when traditional methods (such as Penman–Monteith) are scaled
up from station to regional level applications, particularly in areas with significant spatial
heterogeneity [21]. Moreover, the SEBS model fully incorporates the influence of climate,
vegetation, soil, and other factors on surface evapotranspiration. The input parameters
and model structure can be modified according to the study area’s characteristics, further
improving the accuracy and applicability of evapotranspiration inversion [22].

ET and EWR, respectively, analyze the water resource utilization of ecosystems from a
single perspective of ecosystem water consumption and water demand. They also need to
be combined with other parameters, such as ecological pressure caused by water supply–
demand imbalance, to reflect the risks of water scarcity [23]. Water stress is defined as
the inability of water resources to meet human or ecological demands for fresh water due
to water supply and consumption issues [24]. Severe pressure on water resources may
cause various ecological and environmental issues, such as water drying and shrinking,
water pollution, and vegetation withering [25]. Early researchers in this field used drought
indices, including the standardized precipitation index (SPI) and the standardized precip-
itation evapotranspiration index (SPEI), to characterize water resource availability [26].
Subsequently, the water stress index integrated various water resource balance factors,
including drought, to more comprehensively reflect water supply and demand in a region.
The measurement standard of water resource risk has further transformed from a single
availability index into a utilization–availability index [25,27]. However, most studies on
water resource stress focus on the stress caused by “blue water” (visible flowing water, such
as surface water and groundwater) [28,29]. The stress assessment on “green water” (the
water returned to the atmosphere through vegetation transpiration and soil evaporation),
which is closely related to ecology, is rarely studied. The assessment of ecological water
stress plays a significant role in water resource allocation in watersheds and the ecological
restoration of vegetation in oasis areas, particularly in arid and semi-arid regions where
the imbalance between water supply and demand is prominent [30].



Remote Sens. 2023, 15, 4638 3 of 21

The Keriya River, spanning 438 km through the arid region of Northwest China,
is a significant river in southern Xinjiang. Originating from the northern foot of the
Kunlun Mountains, the Keriya flows from south to north deep into the Taklimakan Desert,
developing the Yutian oasis in its middle reaches and the Daliyaboyi oasis in its lower
reaches. This creates a typical oasis–desert ecosystem. Serving as a vital link between the
upstream and downstream regions, the middle reaches hold direct implications for the
overall ecological water security of the entire river basin. Moreover, the middle reaches
are home to major residential areas and cultivated lands within the basin, consequently
exerting a significant influence on human activities [31]. Through previous research, it has
been demonstrated that there has been a continuous expansion of cultivated land (over 6%)
and a notable degradation of grassland (over 16%) in the middle reaches over the past two
decades, leading to considerable strain on the corresponding ecosystem’s water usage [32].
Furthermore, the acquisition of data in the oasis region of the middle reaches also boasts
distinct advantages over that of the lower reaches. As such, this study focuses on the
oasis in the middle reaches of the Keriya River Basin. Using Landsat 8-9 OLI/TIRS and
MOD16A2 remote sensing data, as well as model simulations, we constructed a monitoring
system for evaluating EWR and EWS of desert oasis in the years 2021 and 2022, from which
time the most recent data are available.

The main objectives of this research were as follows: (i) accurately identify the spa-
tiotemporal characteristics of actual and potential evapotranspiration in the middle reaches
of the Keriya River Basin; (ii) quantitatively assess the ecological water requirement and
ecological water stress of the oasis; (iii) analyze the impact of climate conditions and geo-
graphical environment on evapotranspiration, water requirement, and water stress. This
study presents a valuable approach and case for monitoring the EWR and EWS of desert
oases, offering essential response strategies for water resource management. It is antici-
pated that this monitoring system can be widely applied to assess water resource conditions
in desert oases in other nations or regions, thereby facilitating the rational utilization of
water resources and fostering sustainable social and economic development in arid areas.

2. Materials and Methods
2.1. Study Area

This study focused on the artificial oasis in the middle reaches of the Keriya River
Basin (Figure 1), located between 36◦37′50′′–37◦14′22′′N and 80◦41′39′′–82◦0′03′′E. This
area is endowed with a temperate continental arid climate, with an average temperature of
11.2 ◦C and annual precipitation of 50.3 mm. The annual evaporation is 1962.0 mm. The
dominant soil types are meadow soil and brown desert soil, while the primary vegetation
types include Populus euphratica, Tamarix ramosissima, alhagi, dogbane herb, karelinia caspica,
and Phragmites australis. The primary crop types cultivated in the region are cotton, maize,
wheat, rice, and grapes.

2.2. Data

The Landsat 8-9 OLI/TIRS C2 L2 remote sensing data used in this study were obtained
from the USGS website (https://earthexplorer.usgs.gov/) (accessed on 17 February 2023).
Landsat Collection 2 Level-2 is a high-quality data product generated through the correction
and cleaning of Level-1 data. Surface reflectance data products were generated based
on the land surface reflectance code (LaSRC), and the accuracy of radiation correction
was improved using MODIS auxiliary climate data. Potential evapotranspiration (PET)
data were extracted from the MOD16A2 dataset provided by NASA Earth Observing
System Data and Information Center (EOSDIS) (https://ladsweb.modaps.eosdis.nasa.gov)
(accessed on 17 February 2023). ModISTool and ENVI 5.6 software were utilized for
preprocessing work, including format conversion, band extraction, projection conversion,
and cropping. Table 1 provides details on the selection and acquisition sources of remote
sensing images.

https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov
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Figure 1. Location and geography of the study area. (a) The location of Xinjiang in China; (b) the 
location of the Keriya River Basin and the study area in Xinjiang (the area of the Keriya River Basin 
is represented by the gray area, the range of the study area is represented by the red area, the blue 
line represents Keriya River, and the black solid dots indicate the surrounding cities); (c) the loca-
tion of Yutian meteorological station and the distribution of river systems in the middle reaches of 
the river basin; (d) Landsat 8 OLI image, indicating the upper, middle, and lower reaches of the 
river basin, as well as the location of Yutian oasis and Daliyaboyi oasis in the basin. 
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sunshine hours on the day of satellite transit. The ASTER GDEM elevation data with a 
spatial resolution of 30 m, covering five scenes in the study area, were obtained from the 
Chinese Geospatial Data Cloud (http://www.gscloud.cn/) (accessed on 1 March 2023). 
Land use/land cover (LULC) data with a spatial resolution of 10 m were acquired from 
Sentinel-2 Land Cover Explorer (https://livingatlas.arcgis.com/landcoverexplorer) (ac-
cessed on 1 March 2023), which is an online land cover classification tool supported by 
ESRI that uses machine learning and artificial intelligence algorithms to classify multi-
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Figure 1. Location and geography of the study area. (a) The location of Xinjiang in China; (b) the
location of the Keriya River Basin and the study area in Xinjiang (the area of the Keriya River Basin is
represented by the gray area, the range of the study area is represented by the red area, the blue line
represents Keriya River, and the black solid dots indicate the surrounding cities); (c) the location of
Yutian meteorological station and the distribution of river systems in the middle reaches of the river
basin; (d) Landsat 8 OLI image, indicating the upper, middle, and lower reaches of the river basin, as
well as the location of Yutian oasis and Daliyaboyi oasis in the basin.

Table 1. Descriptions of the acquisition sources of the remote sensing images.

Data Set Date Data Set Date (Julian Day)

2021 2022 2021 2022

Landsat 8-9 OLI/TIRS C2 L2 04 January 15 January MOD16A2 1 17
Path/Row: 145/34 05 February 08 February Tiles: h24v05 33 41
Resolution: 30 m 09 March 05 April Resolution: 500 m 65 97

Data source: 10 April 29 April Data source: 105 121

https://earthexplorer.usgs.gov 28 May 18 July https://ladsweb.modaps.
eosdis.nasa.gov 145 201

15 July 19 August 193 233
17 September 20 September 265 265

19 October 22 October 289 297
20 November 23 November 321 321
22 December 25 December 353 361

Note: “Julian day” represents the number of days in the year, and the transit time of MODIS satellite data is
recorded in this form.

The daily meteorological data for the period 2021–2022 were obtained from the Urumqi
Meteorological Bureau, including the daily average temperature, maximum temperature,
minimum temperature, air pressure, wind speed, relative humidity, and sunshine hours on
the day of satellite transit. The ASTER GDEM elevation data with a spatial resolution of
30 m, covering five scenes in the study area, were obtained from the Chinese Geospatial
Data Cloud (http://www.gscloud.cn/) (accessed on 1 March 2023). Land use/land cover
(LULC) data with a spatial resolution of 10 m were acquired from Sentinel-2 Land Cover
Explorer (https://livingatlas.arcgis.com/landcoverexplorer) (accessed on 1 March 2023),

https://earthexplorer.usgs.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
http://www.gscloud.cn/
https://livingatlas.arcgis.com/landcoverexplorer
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which is an online land cover classification tool supported by ESRI that uses machine
learning and artificial intelligence algorithms to classify multi-band remote sensing images.

2.3. Methods

This study evaluated the water resource use efficiency and water stress in the study
area using Landsat 8-9 OLI/TIRS and MOD16A2 remote sensing images and meteorological
data. First, actual evapotranspiration was estimated based on the SEBS model. Then,
high-resolution potential evapotranspiration (PET) was obtained by downscaling using
the MOD16A2 data product. Finally, vegetation EWR and EWS were calculated and
analyzed based on actual and potential evapotranspiration. Figure 2 presents an illustrative
framework to enhance our interpretation of this working system.
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2.3.1. The SBES Model

The SEBS model uses the surface information provided by remote sensing satellite
data, combined with meteorological data to estimate the surface flux. The energy balance
equation contains different components involved in the surface energy exchange, including
net radiation, sensible heat flux, latent heat flux, and soil heat flux. Using the principle of
constant evaporation ratio, the SEBS model estimates daily evaporation from instantaneous
evaporation measured during satellite transits. The surface energy balance equation can be
expressed as:

Rn= G0+H + ΛE (1)

where Rn is the surface net radiation (W·m−2); G0 is the soil heat flux (W·m−2); H is the sen-
sible heat flux (W·m−2); ΛE is the latent heat flux (W·m−2); E is the actual evapotranspira-
tion (mm); Λ is the vaporization latent heat coefficient of water (2.49 × 106 W·m−2·mm−1).
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The surface net radiation, Rn, represents the balance between incoming and outgoing
radiation at the Earth’s surface. It reflects the net income and expenditure of shortwave
(solar) radiation and longwave (thermal) radiation. The calculation of surface net radiation
can be expressed using the following formula:

Rn = (1 − α)·Rswd+ε·Rlwd − ε·σ·T4
0 (2)

where α is the surface albedo, calculated according to the method applicable to Landsat-8
OLI data [33]; Rswd is the downward solar short-wave radiation (W·m−2); Rlwd is the
downward atmospheric long-wave radiation (W·m−2); σ is the Stefan–Bolzmann constant
(5.678 × 10−8 W·m−2·K−4); ε is the surface emissivity; T0 is the surface temperature (K).

The soil heat flux, G0, quantifies the heat exchange that occurs between the soil and
vegetation. It represents the amount of heat transferred through conduction within the soil
layer. The calculation of soil heat flux can be expressed using the following formula:

G0= Rn·[Γc + (1 − f c) · (Γs − Γc)] (3)

where Γc and Γs are empirical coefficients that represent the ratio of soil heat flux to net
radiation. The value is 0.05 in the area covered by complete vegetation (Γc) and 0.315 in
the area covered by bare soil (Γs), and the area between the two is interpolated using the
vegetation coverage ( f c).

Sensible heat flux H represents the heat exchange per unit time between the land
surface and the surrounding air. This value is calculated using the atmospheric surface
layer (ASL) and the atmospheric boundary layer (ABL) via the application of stability
correction functions such as BAS and MOS. Multiple iterative calculations are often required
to obtain an accurate estimation of sensible heat flux. This iterative process ensures that the
estimate of sensible heat flux aligns with the observed data and provides a more reliable
understanding of land–atmosphere heat exchange. The specific formula is:

u =
u∗
k

[
ln
(

z − d0

z0m

)
− Ψm

(
z − d0

L

)
+Ψm

( z0m

L

)]
(4)

θ0 − θa =
H

ku∗ρCp

[
ln
(

z − d0

z0h

)
− Ψh

(
z − d0

L

)
+Ψh

( z0h
L

)]
(5)

L =
ρCpu3

∗θv

kgH
(6)

where k is the von Karman constant; u and u∗ are wind speed and friction, respectively
(m·s−1); z is the reference altitude (m); Ψh and Ψm are stability correction functions for
thermodynamic and kinetic transport; z0h and z0m are the surface heat transfer roughness
length and dynamic roughness length (m); d0 is the zero plane displacement height (m);
L is the Obukhov length (m); θ0 and θa are the potential temperatures at the surface
and reference height (K); ρ is the air density (kg·m−3); Cp is the specific heat for air
(J·kg−1·K−1); θv is the potential temperature near the surface (◦C); g is the acceleration of
gravity (9.8 m·s−2).

To determine the evaporation coefficient, the SEBS model analyzes the ratio of latent to
sensible heat of pixels in an image under extremely dry and humid conditions. Sensible heat
flux becomes the dominant form of heat transport under extremely dry surface conditions.
When soil moisture is insufficient to support evaporation, the latent heat flux of thermal
energy associated with evaporation approaches zero. On the other hand, sensible heat
flux is minimized in extremely wet surface environments. This means that less heat is
transferred directly between the land surface and the air. Instead, most of the available
energy is used for latent heat flux, which explains the intense evaporation of soil water.
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The expression for calculating the evaporation fraction (Λ) from the relative evaporation
fraction (Λr) is estimated as:

Λr =
ΛE

ΛEwet
= 1 − ΛEwet − ΛE

ΛEwet
= 1 − H − Hwet

Hdry − Hwet
(7)

Λ =
ΛE

Rn − G0
=

ΛrΛEwet

Rn − G0
(8)

where Hdry is the sensible heat flux under extremely dry surface environment (W·m−2);
ΛEwet and Hwet are latent heat flux and sensible heat flux under an extremely humid
surface environment (W·m−2). Assuming that the evaporation ratio does not change within
a day, the daily evapotranspiration can be calculated as follows:

ET =8.64× 107×Λ×Rn − G0

Λρw
(9)

where ET is the actual evapotranspiration (mm·d−1); ρw is the water density (kg·m−3).

2.3.2. Downscaling Analysis of PET

In order to match the SEBS ET data, this study employed a downscaling method based
on the random forest algorithm to spatially downscale the PET data. The basic principle of
this method is to establish a regression model using the coarse-resolution MOD16A2 PET
data and surface feature factors that are correlated with the PET process at the same scale.
Based on the hypothesis that the spatial scale relationship remains constant, it is assumed
that the regression model constructed at the low-resolution scale is still applicable at the
high-resolution scale [34]. By inputting the high-resolution feature parameter data into
the established downscaling model, the high-resolution PET results can be obtained. The
downscaling model can be represented as:

PET = f (NDVI, LST, Emis, Albedo, FVC, DEM) (10)

where PET represents the target data; NDVI (normalized difference vegetation index),
LST (land surface temperature), Emis (land surface emissivity), Albedo (broad-band surface
reflectance), FVC (fractional vegetation cover), and DEM are downscaling factors related
to PET that are closely associated with water and energy exchange. The regression function
uses the random forest algorithm, which is an ensemble learning algorithm that enhances
prediction accuracy by combining the predictions of multiple decision trees. It can be
represented as:

Y =
1
n

n

∑
i=1

hi(x) (11)

where Y is the prediction result of the random forest model; hi(x) is the i-th predictor; n is
the total number of predictors.

In this study, we utilized MAE (mean absolute error), RMSE (root mean square error),
and R2 (coefficient of determination) as evaluation metrics to assess the regression accuracy
of the PET downscaling model. Furthermore, the accuracy of the model was verified using
the Penman–Monteith equation. The specific expressions are as follows:

MAE =
1
n

n

∑
i=1
|PET_ti − PET_pi| (12)

RMSE =

√
1
n

n

∑
i=1

(PET_ti − PET_pi)
2 (13)
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R2= 1− ∑n
i=1(PET_ti − PET_pi)

2

∑n
i=1
(

PET_ti − PET_t
)2 (14)

where PET_t is the actual values of PET, and PET_p is the predicted values of PET; i
denotes the i-th sample, and n is the total number of samples. The Penman–Monteith
equation is as follows:

ET0 =
0.408∆(Rn − G)− γ

900U2(es−ea)
T+273

∆ + γ(1 + 0.34U2)
(15)

where ET0 is the reference crop evapotranspiration (mm·d−1); Rn is the net surface radia-
tion (MJ·m−2·d−1); G is the soil heat flux (MJ·m−2·d−1); γ is the psychrometric constant
(kPa·◦C−1); T represents the average temperature (◦C); ∆ represents the slope of the satura-
tion vapor pressure curve at temperature T (kPa·◦C−1); es and ea represent the saturation
vapor pressure and actual vapor pressure, respectively (kPa); U2 represents the wind speed
at a height of 2 m above the ground (m·s−1).

2.3.3. Calculation of Vegetation EWR

Evapotranspiration is the primary physiological process through which plants in arid
areas consume water. It can account for up to 90% of the total ecological water demand
during the growth period [35]. In this study, the extension of the area quota method, known
as the evapotranspiration method, is employed to determine and calculate the ecological
water requirement of local vegetation. This value is calculated as follows:

EWR =
n

∑
i=1

Ai×ETi (16)

where Ai represents the area of the i-th vegetation type (m2); ETi represents the evapotran-
spiration corresponding to the i-th vegetation type (mm) (which was retrieved by SEBS
model in this study); EWR is the vegetation ecological water requirement (m3).

2.3.4. Calculation of EWS

The actual evapotranspiration and potential evapotranspiration obtained from the
SEBS model and the MOD16A2 dataset are used to calculate ecological water stress (EWS).
The calculation process is as follows:

EWS = 1 − ET
PET

(17)

where EWS is the ecological water stress (a dimensionless value that represents the uti-
lization and stress of the local ecological water resources). The greater the EWS value, the
greater the risk of ecological water shortage will be. According to the common quartile
method in statistics, the evaluation criteria of EWS are shown in Table 2. ET is the ac-
tual evapotranspiration (mm·d−1) and can be obtained from the SEBS model; PET is the
potential evapotranspiration (mm·d−1) and can be obtained by downscaling analysis of
MOD16A2 data.

Table 2. Water shortage severity classification based on EWS.

Severity Type EWS Value

0 Water plentitude 0.00 ≤ EWS < 0.25
1 Mild water shortage 0.25 ≤ EWS < 0.50
2 Moderate water shortage 0.50 ≤ EWS < 0.75
3 Severe water shortage 0.75 ≤ EWS ≤ 1.00
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3. Results
3.1. Verification of the Rationality of the Results

Evapotranspiration has ceased to be a fixed observation item of the local meteorological
observatory in the study area since 2020. Considering the lack of measured data, we selected
the evapotranspiration calculated by the Penman–Monteith formula suggested by the Food
and Agriculture Organization of the United Nations (FAO) as the true value. It should
be noted that the reference crop evapotranspiration (ET0) calculated using the Penman–
Monteith formula represents the potential evapotranspiration under ideal conditions such
as extensive land, vigorous growth, sufficient fertility, and no pests and diseases. In other
words, ET0 is equivalent to PET. The downscaled simulation of PET and ET0 data showed
a close approximation to the 1:1 line, with the R2 value exceeding 0.86 (Figure 3c,d). The
random forest regression model for PET in this study also showed good accuracy (Table 3).
Furthermore, there was a strong agreement between the PET derived from the Landsat
data and the original MOD16A2 PET (Figure 3e,f), with the R2 value ranging from 0.91 to
0.92, the MAE ranging from 0.72 to 1.16 mm, and the RMSE ranging from 0.89 to 1.46 mm.
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Actual evapotranspiration is influenced by various factors, including climatic condi-
tions, plant type, growth cycle, and soil moisture status [13]. In order to evaluate the ET
simulated by the SEBS model more accurately, a correction was applied using the crop
coefficient mentioned in the related research [36]. This allowed us to estimate the actual
evapotranspiration value from ET0. As shown in Figure 3a,b, the ET values simulated by
the SEBS model in this study closely aligned with the ET calculated using the modified
Penman–Monteith formula, with an R2 value exceeding 0.89. However, there was still a
slight overestimation, as indicated by the trend line lying above the 1:1 line. The MAE
for 2021 and 2022 was 0.41 mm and 0.63 mm, respectively, while the RMSE was 0.51 mm
and 0.84 mm, respectively. Therefore, the SEBS model demonstrated good performance
in simulating evapotranspiration in the oasis area located in the middle reaches of the
Keriya River.
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Table 3. Description of random forest regression fitting accuracy.

DOY
(2021)

MAE
(mm)

RMSE
(mm) R2 DOY

(2022)
MAE
(mm)

RMSE
(mm) R2

1 0.06 0.15 0.89 17 0.11 0.25 0.89
33 0.17 0.41 0.92 41 0.12 0.34 0.89
65 0.22 0.53 0.93 97 0.25 0.64 0.96

105 0.20 0.54 0.95 121 0.25 0.65 0.96
145 0.20 0.55 0.96 201 0.28 0.74 0.95
193 0.25 0.67 0.95 233 0.28 0.65 0.92
265 0.21 0.56 0.96 265 0.22 0.57 0.95
289 0.16 0.42 0.95 297 0.22 0.50 0.93
321 0.13 0.30 0.90 321 0.19 0.43 0.91
353 0.09 0.23 0.90 361 0.08 0.19 0.90

Mean 0.17 0.44 0.93 Mean 0.20 0.50 0.93

In general, the simulated values of ET and PET closely followed the trend of the actual
values, with only a small discrepancy between them. The R2 values indicated a high level
of agreement between the simulated and real values. By utilizing the Penman–Monteith
formula as an intermediary, the two distinct datasets employed in this study, namely SEBS
ET and downscaled PET, exhibited good comparability. As a result, they can be reliably
utilized for the estimation of EWR and EWS in this research.

3.2. Spatiotemporal Characteristics of Evapotranspiation (ET and PET)

Figures 4 and 5 display the temporal and spatial distribution characteristics of daily
ET in the middle reaches of the Keriya River Basin. In 2021, the daily ET values ranged
from 0 to 9.336 mm throughout the middle reaches, with an average of 1.21 mm/d. In
2022, the daily ET varied between 0 and 8.347 mm, with an average of 1.34 mm/d. The ET
values in 2022 were slightly higher than those observed in 2021, although the ET values in
2021 exhibited greater fluctuations. Furthermore, it was evident that the vegetation growth
season (spanning from April to October) corresponded to a relatively high period of ET
and PET. The differences in ET and PET between the two years mainly occurred during the
growing season, with minimal variation observed during the nongrowing season. Apart
from a slight dip in ET values in April 2021, the trend of ET and PET throughout the year
remained relatively stable. ET generally exhibited a gradual increase from January to July,
peaked in August, and then displayed a clear downward trend, reaching its lowest point in
December. PET started to rise rapidly in February, reached its maximum in July, and then
declined until January of the following year.

The distribution pattern of ET was basically consistent with the current land use
status (Figure 6). The distribution of high ET values in the middle reaches of the Keriya
River Basin was primarily concentrated in areas that were in close proximity to both
sides of the river, areas with cultivated land, and areas with vegetation cover adjacent to
farmland. In contrast, the location of low ET values varied with different seasons. During
spring and summer, they were commonly observed in grassland areas within the study
area, while in winter they appeared on the bare land at the edges of the oasis. As for
autumn, the low ET values can be found in both bare land and grassland areas, with
less distinct boundaries between them. Furthermore, both ET and PET showed obvious
seasonal differences. Evapotranspiration during summer was significantly higher than
in other seasons, followed by spring and autumn, while winter represented the period
with the lowest evapotranspiration. Among different land cover types, the water and
forest displayed the most pronounced seasonal differences in ET, with winter values only
amounting to 1/8 of those observed in summer. PET showed noticeable seasonal variations
in water, forest, cropland, and impervious areas, exhibiting differences of up to 10 times
between winter and summer. Only barren land maintained a relatively stable low value for
both ET and PET throughout the year, with minor distinctions.
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3.3. Spatiotemporal Characteristics of Vegetation EWR

The EWR of vegetation in the middle reaches of the Keriya River Basin was estimated
using the ET data after inversion by the SEBS model. The results are summarized in Table 4.
In 2021, the EWR of vegetation was 10.445 × 108 m3, and it increased to 10.995 × 108

m3 in 2022, which was a growth of 0.55 × 108 m3. When comparing the total EWR of
each vegetation type, we found that the overall requirement was mainly influenced by the
size of the vegetation area. Taking 2021 as an example, the order of total ecological water
requirement from high to low was: grassland (6.328 × 108 m3) > cropland (4.123 × 108 m3)
> forest (0.004 × 108 m3). If we consider the vegetation water requirement capacity per unit
area, the average EWR followed an opposite pattern compared with the total EWR: forest
(1.067 × 103 m3) > cropland (0.642 × 103 m3) > grassland (0.327 × 103 m3). This trend is
also evident in Figure 7. During the growing season, the water requirement per unit area for
forest was significantly higher than for cropland and grassland. Additionally, an interesting
observation was that the EWR of grassland exhibited a bimodal distribution. The first peak
occurred February-March, while the second peak was observed August–September.

Table 4. Ecological water requirement of vegetation in the study area.

Year Ecological Water Requirement Cropland Forest Grassland Sum

2021 Total EWR (108 m3) 4.123 0.004 6.328 10.445
Average EWR (103 m3) 0.642 1.067 0.327 2.036

2022 Total EWR (108 m3) 4.221 0.004 6.770 10.995
Average EWR (103 m3) 0.650 0.997 0.346 1.993
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Figure 8 illustrates the spatial distribution of annual-scale vegetation EWR in the study
area. Generally, there was a south-to-north and east-to-west gradient, with higher values in
the southern and eastern regions and lower values in the northern and western regions.
The areas with higher vegetation EWR were predominantly located in the wet riverbank
regions that had greater vegetation coverage, with these areas generally exceeding 900 m3.
On the other hand, remote areas with poor water conditions exhibited sparse vegetation
and significantly lower EWR values, most of which were below 150 m3. Cropland was
mainly concentrated in the central region, accounting for 18% of the total study area, with
relatively high EWR values. At the same time, there were also some discrete low-value
areas of EWR, most of which were impervious surfaces and unused land.
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3.4. Spatiotemporal Characteristics of EWS

The ecological water stress in the study area was calculated based on the basis of the
SEBS model’s simulated actual ET and the downscaled MOD16A2 data product’s PET. The
EWS was evaluated for six land use types: grasslands, barren land, impervious surfaces,
croplands, forests, and water. The results are shown in Figure 9. Overall, the EWS in the
middle reaches of the Keriya River Basin was expected to be lower in 2022 compared with
2021. The maximum and minimum EWS values were observed for grasslands (0.87 in 2021
and 0.75 in 2022) and barren land (0.048 in 2021 and 0.035 in 2022), respectively.

The seasonal changes in EWS for cropland, grassland, barren land, and impervious
surfaces followed the pattern of spring > summer > autumn > winter. Among these,
grasslands had the highest EWS and exhibited severe water shortage, moderate water
shortage, mild water shortage, and water plentitude conditions in the four seasons of
spring, summer, autumn, and winter, respectively. The EWS of barren land showed
significant changes in spring (from 2021 to 2022), transitioning from displaying a moderate
water shortage (0.61) to a mild water shortage (0.36). In contrast, forests and bodies of
water did not show regular seasonal differences. For instance, the EWS of forests was
highest in autumn 2021 and highest in summer 2022. The overall EWS in water areas was
the lowest compared with other land use types, but the water resources remained plentiful
throughout all seasons.

Observing Figure 10, it can be found that the spatial distribution of EWS in the same
season in the two years remained essentially identical. EWS was consistently higher
in spring compared with other seasons, with most of the middle reaches experiencing
moderate-to-severe water shortages. In summer, when temperatures rose and both ET and
PET were high, there was significant spatial variation in ecological water stress. The water
system of the Keriya River Basin is primarily located in the low-EWS zone. Moving farther
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away from the riverbank, vegetation became sparser, and EWS gradually increased. In
autumn, a large area experienced moderate water shortage, with a few discrete areas of
severe water shortage in the middle. Winter, characterized by cold weather and dormant
vegetation, had the lowest EWS, with most areas experiencing water plentitude conditions.
The ecological water stress in winter 2021 was slightly higher than in 2022, as indicated by
a larger distribution area of mild water shortage.
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4. Discussion
4.1. Comprehensive Effects of Vegetation and Water on ET, EWR, and EWS

The spatiotemporal dynamics of evapotranspiration are constrained by the character-
istics of vegetation and the availability of water [37]. This study reveals that plants exhibit
the highest levels of activity during their growth period when transpiration consumes
a significant amount of water. Additionally, the spatial pattern of evapotranspiration
closely aligns with the distribution of vegetation, with higher levels of evapotranspiration
observed in the wet riverbank areas compared with the edges of oases. This is because
various vegetation characteristics, such as vegetation type, growth status, coverage, root
depth, and stomatal aperture, can affect the balance between vegetation transpiration
and soil evaporation [38]. Another study indicates that the impact of vegetation green-
ing on evapotranspiration is more pronounced in arid and semi-arid regions than in
warm and humid coastal areas [39]. This demonstrates that moisture and vegetation
statuses have interdependent effects on evapotranspiration. Lush vegetation typically
possesses a sufficient leaf surface area that enhances transpiration rates while reduc-
ing soil water loss through evaporation. Conversely, limited water supply restricts the
plant’s ability to absorb water through its roots, thereby hindering its capacity to undergo
proper evapotranspiration.

In this study, the annual variation in evapotranspiration and ecological water require-
ment basically conforms to the phenological law of oasis crops. Unlike other previous
studies, we observed that evapotranspiration experienced a “slump” phenomenon in April
2021. This phenomenon may be attributed to high air pressure and relative humidity on
the day when the satellite imagery was acquired in April. Additionally, artificial irriga-
tion activities and changes in crop planting structure could have contributed to abnormal
phenological periods. The total ecological water requirement (EWR) of grassland was sig-
nificantly higher compared with that of cultivated land and woodland, showing a “double
peak” trend with small peaks in early spring and early autumn. This can be explained
by the fact that grassland was the dominant land use type in the study area, covering
50.2% of the total area. Some perennial short-lived herbaceous plants in the grassland
completed their life cycle rapidly during the early spring warming period, while others
germinated again in autumn. On the other hand, there were few dense forests in the study
area, resulting in a relatively low total water consumption by the forest ecosystem. How-
ever, due to the well-developed root systems of trees, they had a strong capacity for water
absorption. As a result, the ecological water requirement per unit area of forest land was
relatively high.

Vegetation’s ecological water requirement and water resource stress exhibit seasonal
variations that can be attributed to factors such as water availability, temperature, and the
growth status of vegetation. During seasons with favorable water conditions, vegetation
tends to experience more robust growth due to the ample water supply. The expansion
of oasis agriculture further contributes to increased regional water consumption and
vegetation evapotranspiration, thereby intensifying the pressure on water resources [40].
During the transitional periods between wet and dry seasons, such as spring and autumn,
soil moisture is prone to drying out and evaporating. However, crops are in a critical growth
phase during these periods, and a substantial amount of water is required to support their
development and ensure a successful harvest. Consequently, the ecological water stress is
relatively high during these times. Winter poses unique challenges as extreme cold and
snowfall can result in frozen soil moisture or insufficiently stored moisture for crop growth.
Most plants enter a dormant state during this period. Crops such as winter wheat have the
potential to rely more on river water reserves.

4.2. Analysis of Driving Factors on ET, EWR, and EWS

In this study, vegetation’s EWR and EWS were estimated based on evapotranspiration
(ET and PET). Therefore, the factors that drove evapotranspiration also influenced EWR
and EWS. To analyze the correlation between meteorological parameters and land surface
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parameters with evapotranspiration, Pearson correlation analysis was conducted (Table 5).
Evapotranspiration is highly sensitive to climate change as it is influenced by various
meteorological parameters. Air temperature and sunshine hours, as weather-related fac-
tors, affect the rate of water vapor diffusion and the conversion of surface net radiation to
evapotranspiration. These two factors exhibit a significant positive correlation with evapo-
transpiration and are considered to be the most influential factors. Previous studies indicate
that the trend of global warming may lead to an increased requirement for evapotranspira-
tion from terrestrial ecosystems [38,40]. However, there are some studies that contradict
this view and propose the “evaporation paradox”, suggesting that evapotranspiration may
decrease with continued global temperature rise [41,42].

Table 5. The Pearson correlation coefficient (r) between evapotranspiration and different driving factors.

Driving Factors Index ET PET

Meteorological Parameters Air temperature 0.953 ** 0.906 **
Air Pressure −0.751 ** −0.599 **

Relative Humidity −0.057 ** −0.263
Wind Speed 0.387 0.534 *

Sunshine Hours 0.840 ** 0.925 **
Surface Parameters LST 0.930 ** 0.900 **

Emissivity 0.830 ** 0.858 **
Albedo −0.106 0.021
NDVI 0.839 ** 0.822 **
FVC 0.839 ** 0.826 **

Note: * (p ≤ 0.05), ** (p ≤ 0.01) indicates the level of significance.

Air pressure in this study showed a significant negative correlation with evapotranspi-
ration (r = −0.751, p < 0.01). There are two possible explanations for this observation. On
the one hand, higher air pressure requires more heat for vegetation transpiration and soil
evaporation [43]. On the other hand, leaf stomatal conductance suppresses the transpiration
rate as air pressure increases and CO2 concentration decreases [44]. Additionally, relative
humidity exhibited a negative correlation with evapotranspiration, which is consistent
with findings from related studies [38,45]. Relative humidity has a negative impact on
evapotranspiration in drier regions with low wind flow humidity. Although the corre-
lation between wind speed and evapotranspiration is relatively low, it can still play a
significant role in the evapotranspiration process when combined or balanced with other
meteorological variables such as air temperature [46].

The influence of the geographical environment on evapotranspiration is determined
by surface heat transfer and vegetation characteristics. LST, emissivity, and NDVI ex-
hibit extremely high positive correlations in areas with high vegetation coverage, such
as forests (Figure 11). Conversely, these parameters show lower or even negative cor-
relations in sparse areas or those without vegetation areas, an observation that aligns
with previous research findings [10,47]. This can be explained by the fact that vegeta-
tion transpiration consumes more solar radiation and water compared with soil evap-
oration in humid areas [39]. In contrast, sandy areas or Gobi surfaces tend to heat up
quickly due to lack of vegetation, leading to the rapid evaporation of water stored in
capillary pores and crevices in the soil. However, the available water supply for evap-
oration is often insufficient. Albedo, which characterizes the surface reflection proper-
ties, is primarily influenced by surface type and cover [48]. In this study, albedo did
not show significant correlations when compared to other surface parameters. This
lack of significant correlation may be attributed to the uncertainties arising from the
nonuniform and highly heterogeneous characteristics of the underlying surface in the
study area.
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4.3. Suggestions for Water Resource Regulation

Desert oases are vital ecosystems that face unique challenges in managing water
resources due to their limited availability and fragile nature [14]. The EWR and EWS
indices constructed in this study are useful tools for identifying areas under high water
stress. They can guide decision-making processes, prioritize interventions, allocate water
resources effectively, and develop adaptive water management strategies. Based on the
research findings, the following suggestions are proposed for water resource regulation in
the Keriya River Basin:

i. Delineate water ecological protection zones and protect the ecological pattern of
vegetation. The results of the study showed that grasslands closer to the river expe-
rience lower water stress, while those farther away endure higher water stress, par-
ticularly in spring. Therefore, it is necessary to designate grassland areas with high
vulnerability as no-grazing areas and implement protection rather than restoration
for areas with severe water shortages [49]. Additionally, controlling the expansion
of cultivated land and the encroachment of deserts is essential to preserve grassland
ecological spaces. Delineate the red line for grassland protection and return farm-
land to grassland in due course. Furthermore, promoting salt and desertification
prevention, such as shelterbelt construction to minimize wind erosion and sand flow
into oases, is important for preserving water and soil quality within the watershed
and ensuring sustainable water resources.

ii. Optimize the agriculture, forestry, and animal husbandry structure of the basin
while promoting water-saving irrigation technology. The ecological water require-
ment in the Keriya River Basin follows the order of grassland > cropland > forest
land. Therefore, it is necessary to limit the scale of arable land and breeding activi-
ties while encouraging the development of forestry, orchards, and other planting
industries. Planting perennial pastures also can enhance the ecological carrying
capacity of animal husbandry [50]. To alleviate water pressure, the adoption of
high-efficiency water-saving irrigation technologies such as sprinkler irrigation and
drip irrigation should be promoted. Conservation tillage practices such as using
crop straw or plastic film to cover farmland during fallow periods can prevent
water loss [49].

iii. Adjust water use strategies and optimize water distribution plans. Tailored water
resource management and allocation strategies should be formulated based on the
spatiotemporal variations of water scarcity observed in desert oases. For example,
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measures should be taken to protect the ecological environment of rivers, prevent
excessive production and domestic water use from compromising ecological water
availability, and guarantee sufficient river water capacity. When allocating irrigation
water, more emphasis should be placed on ecological benefits, while the remaining
water can be allocated for socio-economic development. Strengthening the linkages
between surface water and groundwater is necessary, with priority given to fulfilling
ecological water demand during critical vegetation growth periods. In cases of
acute water shortages, measures such as reservoir adjustments and inter-regional
water transfers should be considered.

4.4. Strengths and Limitations of This Study

This study developed an ecological water assessment system that considers evapotran-
spiration data, providing an effective way to monitor ecosystem water resources. Previous
studies have often focused on a single aspect, such as water supply or demand, which fails
to capture the complex dynamics of water scarcity adequately [51]. In this study, we have
developed indicators, namely the ecological water requirement (EWR) and the ecological
water stress (EWS) index, to assess water scarcity in desert oases. These indicators distin-
guish themselves from traditional physical water stress assessment indicators by placing a
particular emphasis on the ecological perspective of water resources.

Traditional water stress assessment indicators, such as water resource utilization rate,
water poverty index, and per capita water consumption, are commonly utilized in regions
abundant in water resources [29,51]. They primarily emphasize the water scarcity resulting
from high human demands. In contrast, our indicator focuses more on natural or artificial
ecosystems whose main ecological water consumption is vegetation transpiration and soil
evaporation. This approach offers a more accurate understanding of the balance between
freshwater demand and supply within an ecosystem, enabling us to identify areas at risk of
water stress. This is crucial for maintaining the ecological health and biodiversity of water-
limited regions. This study also has significant data acquisition and processing advantages.
By using satellite remote sensing technology, geographic information systems, and model
simulations, we can obtain high-resolution spatial information on evapotranspiration
and water requirement and stress. This approach provides a more accurate and timely
assessment than traditional methods that rely only on field measurements or statistical
extrapolation [14].

By demonstrating the effectiveness of our method in desert oases, we believe it can
be applied to similar arid regions facing water scarcity challenges, such as West African
Sahara Desert oases, Middle East Arabian Peninsula oases, and Xinjiang Tarim Basin
oases [49]. This study also has wide application potential in the fields of water ecological
protection zoning, land use planning, climate change impact assessment, water resources’
management and monitoring, and global ecosystem management [52–54]. For example,
quantitative analysis of water ecological stress can assist in delineating the boundaries
of ecological protection areas, prioritizing the conservation of hotspots and vulnerable
regions. By analyzing the EWR and EWS of different land use types (such as urban areas,
agricultural areas, and natural habitats), it can also guide regional planning and equitably
allocate water resources to ensure rational use in various sectors. Inputting historical and
forecasted meteorological data can assess the impact of climate change on water resources
and help policymakers adopt adaptive strategies to mitigate the impact of climate change
on water availability.

The findings of this study on desert oasis water resource management can serve
as a valuable reference for similar regions globally. With appropriate adjustment and
improvement, the method can be applied to promote ecological protection and sustainable
development worldwide. However, there are challenges when applying this method in
other research settings, such as data collection and model validation issues. The SEBS
and downscaling model used in this study rely on data-driven factors, but high-quality
imagery and meteorological observation data may not be available in some regions. Model
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parameter variability, such as landscape heterogeneity and roughness parameterization,
may also lead to uncertainty in results [21]. Additionally, factors such as climate change
and human activities such as irrigation can add uncertainty to evapotranspiration and
water resource stress [55]. Hence, users need to consider the applicability of the method to
the local environment of their study area.

5. Conclusions

This study evaluates the vegetation’s EWR and EWS in the oases in the middle reaches
of the Keriya River Basin using ET and PET. This provides valuable insights for formulating
water resource management and regulation policies in desert oases. The SEBS model
demonstrates good accuracy in simulating ET, and the downscaling analysis of MOD16A2-
PET data through random forest shows good agreement with the original data products.

The annual variation trends of ET and PET remain relatively stable, with their peak pe-
riods corresponding to the vegetation growth season. ET is highest in August and lowest in
December, whereas PET reaches its maximum value in July and minimum in January. Differ-
ent vegetation types have varying levels of ecological water requirement. The total EWR of
each vegetation type, ranging from high to low, is as follows: grassland > cropland > forest.
Conversely, the EWR per unit area shows the opposite law to the total EWR. The ecological
water stress in the study area varies noticeably with seasons. Grassland exhibits the great-
est ecological water stress, and the four seasons of spring, summer, autumn, and winter
correspond to four levels of EWS: water plentitude, mild water shortage, moderate water
shortage, and severe water shortage. The water area experiences the least water stress, with
all seasons categorized as water plentitude in such zones.

Constrained by vegetation characteristics and water supply, both ET and PET, as well
as EWR and EWS, exhibit significant temporal and spatial differences. Areas with higher
vegetation coverage and better water conditions display stronger evapotranspiration and
EWR, while experiencing lower EWS. Both climatic conditions and surface environment
can influence evapotranspiration, which consequently affects EWR and EWS. Air temper-
ature and LST have the most significant effects on evapotranspiration (r > 0.9, p < 0.01).
Sunshine hours, emissivity, and NDVI are all significantly and positively correlated with
evapotranspiration, while air pressure exhibits a significant negative correlation. Human
activities can also introduce interference and impact the accuracy of assessing EWR and
EWS. Therefore, future research should focus on conducting more accurate assessments of
ecological water requirement and water stress at the basin scale in a way that takes into
account these various factors.
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