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Abstract: This paper presents a novel version control system for point clouds, which allows the
complete editing history of a dataset to be stored. For each intermediate version, this system stores
only the information that changes with respect to the previous one, which is compressed using a new
strategy based on several algorithms. It allows undo/redo functionality in memory, which serves
to optimize the operation of the version control system. It can also manage changes produced from
third-party applications, which makes it ideal to be integrated into typical Computer-Aided Design
workflows. In addition to automated management of incremental versions of point cloud datasets,
the proposed system has a much lower storage footprint than the manual backup approach for most
common point cloud workflows, which is essential when working with LiDAR (Light Detection and
Ranging) data in the context of spatial big data.
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1. Introduction

A version control system (VCS) organizes and manages digital assets using incremental
change logs. It is usually implemented as a type of software that manages changes to
documents, typically textual information, among which software source code stands out.
The main functionality of a VCS is to revert a document or dataset to a previous version
(or revision), which is very useful in any complex information processing. It is also useful
for storing a history of changes for later reference and comparison. In addition, it usually
allows the forking of paths of versions (branches) for processing in parallel with different
editing processes and/or development teams, which can later merge versions. It is usually
implemented as an autonomous system that manages files independently, but it can also be
integrated into other systems, such as text editors and document-oriented tools, as well
as any type of data editor of any nature. The most advanced systems allow a document
or dataset to be shared by several users who make changes concurrently and remotely,
in addition to providing locking and protection mechanisms based on user privileges.
In any discipline where digital assets are created and edited, having intermediate versions
is essential to reverse operations carried out and keep a history of changes for analysis,
as well as to recover and merge old data with the latest version.

Software development and office data processing environments are the most common
for the use of VCSs. In most cases, they work with files and directories on disk, and are
optimized to work with text, being format agnostic. The other disciplines use much more
complex data than textual information, and managing different versions often involves
manual full copies of datasets, using different identifying labels. Some VCSs can auto-
matically handle binary data with no known semantics for the calculation of differences
(delta), such as Git [1], and Kart [2] for point clouds. Therefore, as in the previous case,
they store complete intermediate versions without any information about the changes
made. This applies to all binary data that cannot be identified as text, such as multimedia
data, Computer-Aided Design (CAD) models or point clouds (binary format). Non-textual
data-oriented systems are also known as Data Version Control, and are especially used in
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data analytics and research in disciplines such as engineering, physics, geology, biology,
medicine and social sciences, among others. Many of the datasets used change over time,
either with the addition of new data or through different editing processes. Data Version
Control allows operation on a specific state of data at a given time.

Point cloud models are a type of resource widely used in a multitude of decision-
making processes [3]. Nowadays, the capture of spatial information of the real environment
allows data to be obtained at different scales, from specific objects to large areas of terrain [4].
Due to its volume, this massive digital information from the real environment requires
geospatial big data technologies for its treatment [5–8]. The applications of point clouds are
diverse, such as CAD and Building Information Modeling (BIM), obtaining digital twins,
topographic surveys, infrastructure surveying, the inspection and control of industrial
facilities, interference detection, documentation for preservation, the restoration of cultural
assets, land management, precision agriculture, etc.

Our VCS proposal is valid for all types of point clouds. However, it is the LiDAR (Light
Detection and Ranging) data that benefit the most from it. LiDAR is the technology that
allows the greatest amount of 3D data to be obtained from the real environment. For this
reason, it is widely used in fields such as topography, civil engineering, environmental
engineering and archaeology. The processing of large volumes of 3D point information
implies a series of inconveniences related to its storage and transmission, as well as its
editing, visualization and analysis. Boehler et al. [9] identify some tasks and uses that
need accelerated processing. This includes topics such as modeling and simulation, feature
extraction from point clouds, topography change detection and environmental engineering,
among others. Therefore, in addition to efficient data storage, other processes such as effi-
cient editing, visualization [10,11] and segmentation [12–15] are also necessary. Managing
such a volume of data is challenging.

Having a version control system for point clouds allows large datasets to be worked
with safely since the entire history of changes is preserved (see Figure 1), and branches can
be generated for alternative workflows on the data. Based on what has been published so
far, there is no specific VCS proposed for point clouds stored in a compressed binary format
for minimal storage space that benefit from point semantics for calculating differences
(delta). This work presents a version control system for point clouds that allows the editing
history on a dataset to be stored with a minimal storage footprint. This system calculates
each intermediate version of the dataset and stores only the information that changes
with respect to the previous version. It allows keeping track of each of the operations
performed and allows the quick restoration of previous versions. It also allows undo/redo
functionality in memory, as well as incremental versions stored on a disk/server (many
interactive point cloud editing applications do not allow undo/redo actions). With this ap-
proach, version control is possible in an automated and optimized way, whereby expensive
operations such as denoising, filtering, colorizing, segmentation, etc., can be easily reversed
without having to manually replicate the entire dataset between editing operations.

The rest of this document is structured as follows: Section 2 reviews the relevant
previous work related to VCSs and point clouds. Section 3 introduces some foundations of
VCSs related to our system. Section 4 presents the details of the proposed system. Section 5
shows the results of the experiments carried out, as well as provides a discussion of the
results. Finally, Section 6 presents the conclusions and describes future work.
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Figure 1. Example workflow with a point cloud dataset.

2. Previous Works

Typical text document-oriented VCSs allow management of the version history of
source code [16], documents and other assets [17]. The main goal is to allow the recovery
of old versions, which are usually labeled with metadata that indicate the type of change
made at each moment and its author [18]. Everything is usually stored in repositories,
which in some cases can be distributed [19]. Within each repository, there can be several
branches or parallel lines of edition or development. Each branch is usually assigned to a
work team or dedicated to a specific development or functionality, so that, in this way, a
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team can work in parallel on various parts of a project or an information system. There
is always a main branch from which other ones are derived (see Figure 2). Sometimes
a derived branch is used as an isolated compartment to experiment with a copy of the
resources without altering the main dataset. This is called sandboxing [20]. In addition to
the basic operation of restoring a previous version, a VCS normally allows the merging of
different versions belonging to different branches, as well as the merging of data from an
old version with the current version. General VCSs are the most widespread, with different
free software options, such as RCS [21], Git [1] or Subversion [22].

Time

Main branch

Figure 2. The branch structure in a VCS. There is always a main branch from which the rest are
created. A secondary branch can also be the origin of another branch.

When working with non-text assets, VCSs can still be effective. In fact, in development
environments and office documents, there are usually resources of all kinds that cannot
be edited as text. The main problem is that these types of files cannot be easily treated
incrementally for the management of intermediate versions, so the solution is to store full
assets. This has two drawbacks: (a) the nature of the changes made is not known, and (b) a
complete copy has to be stored for each delta, which for very large datasets is normally
unfeasible. In order to solve this, it is necessary to consider the internal structure of the
assets. This leads to the creation of VCSs tailored for specific types of data. The most
important aspects are the operations for calculating the differences between two states of
an asset, recovering a previous version using registered deltas (rollback), and the merging
of two versions into one.

In this sense, there are VCS proposals for specific data with semantics different from textual
information. Therefore, there are systems adapted to topics such as Model-Driven Software
Development [23], 3D modeling [24], CAD modeling [25], Building Information Modeling [26]
or image editing [27]. As for point clouds, there are no specific systems that allow the storing
of intermediate versions efficiently, so the only alternative is to use systems such as Git, which
store the data completely in each version. Moreover, many of the point cloud editing programs
do not even have any undo/redo functionality, so it is not possible to reverse the changes made
at any time. This forces users to continuously store backup copies of datasets so that they can
revert to a previous version when using long workflows such as that depicted in Figure 1.

The storage of point clouds on disk is important in the design of a specific VCS. Cur-
rently, there are several file formats that can be used for this purpose, both for storing
genetic point clouds and for specific LiDAR data. The most common options are various
ASCII formats (non-standards), the LAS format of the ASPRS (American Society for Pho-
togrammetry and Remote Sensing), its compressed variant LAZ [28], SPD [29], Autodesk
Recap RCP-RCS, Leica PTX, Faro FLS-FWS, PCD, HDF5, E57 and POD, and other 3D data
formats such as STL, OBJ or PLY. Formats that allow data compression are more suitable,
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especially when large datasets must be stored [28,30,31]. In this work, we used the LAZ
format for storing point clouds [28]. It achieves a very efficient compression, is one of
the best lossless formats for LiDAR data from a storage-oriented perspective and above
all allows the integration of the proposed VCS into existing systems that already use this
format to store the datasets. As well as file storage, the other most popular option is to
use databases [7,32–34]. Other works dealing with mass storage in secondary memory,
on the network or in the cloud are [35–39]. In general, most point cloud users do not tend
to organize their datasets in the most automated and efficient way possible.

3. Version Control Foundations

This section presents the most relevant concepts of a VCS related to our proposal. First,
the data structure used to relate the different versions of a dataset is a directed acyclic graph
(DAG). From the user’s perspective, it can be perceived as a directed tree with a bifurcation
or branch for each data editing path, but since merging of multiple branches is allowed, it is
usually loosely defined as a tree with merged nodes (see Figure 2). Revisions occur in order
using identifying numbers or timestamps. A version is always based on a previous one,
with the exception of the first one (the root). In the simplest case, there is only one branch
or path, although more branches can be defined by cloning any version. As mentioned
above, this is used so as to have alternate copies of the data for parallel editing processes
that do not alter a given branch.

At any given time, two versions can be merged into one. This operation is performed
with the most recent versions of two branches. They are merged into a single one, where
that remaining is usually the main one. However, this depends on the nature of the editing
process of the dataset (see Figure 2). This is the most complex operation of the VCS since
it is necessary to have some semantics or a method for choosing which data will remain
in the case of duplicates. Typically these semantics are application-dependent, and thus,
multiple variants of the merge operation may be required.

All VCS data must be available to users. There are several ways to organize informa-
tion, whether in a file system or database, and in a local, centralized or distributed way.
Each dataset is managed through a repository or depot, which stores all the versions and
the associated metadata, including the graph structure. Users usually have a local version
called the working copy. This version can be uploaded as new to the VCS using the commit
(push) operation, which generates a new version in the VCS. Moreover, the latest version
can be downloaded to the client using the update (pull) operation, which overwrites the
local data. In addition, it is possible to go back to a previous version available in the VCS
by means of a rollback (revert), overwriting local data. In this case, a complete revert of the
working copy will throw out all pending changes on the client.

Modifications that are uploaded to a repository in a VCS are typically not processed
immediately, especially on server-hosted systems. In addition, the operations that are
performed on a working copy of the dataset do not affect the VCS until the commit
function is performed since they are two separate operations. This is for efficiency reasons,
and commit operations are usually performed from time to time. Therefore a commit can
include many modifications in the local copy of the dataset. During updates, the repository
is locked so that other users cannot interfere with the operation. If there are several
simultaneous commits, they are serialized and conflicts that may occur are resolved with
mechanisms that depend on the VCS and the type of assets. Some VCSs also allow per-
user asset locking, although this is uncommon. The commit and update operations are
considered atomic since they must leave the repository in a consistent state if the operation
is interrupted, analogous to database transactions.
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4. Our Approach to Point Cloud Version Control

Our proposal for VCS consists of a system that allows the storage of versions of point
cloud datasets in an optimized way. The VCS architecture may vary, and for the developed
prototype, a local file-based system is chosen, using LAZ for point data storage. The data
structure for version management is the directed acyclic graph described before, and the
actions that can be performed are the usual ones in common VCSs, with some exceptions
related to the limiting semantics of point cloud data. As mentioned in Section 2, the most
important operations to adapt a VCS to a specific type of asset are calculating deltas or
differences between two point clouds, performing a rollback using previous version deltas
and the merging of two versions into one. To carry out the design and implementation of
the proposed system, some aspects are taken into account that impose some limitations.

• Modifications to point clouds can be made from the same software that uses the VCS
(managed modifications) or from external third-party tools (unmanaged modifications).
The difference is that with an integrated tool, the nature of the changes that occur at
each point are always known, while with third-party tools, it is necessary to use a
difference calculation algorithm for inferring change information (Section 4.1). This is
especially important for the coordinates of the points. If there is any unmanaged mod-
ification in them from a third-party tool, it is impossible to know if a point has moved
in space. The consequence in the VCS is that a point deletion is recorded, followed by
the creation of a new one (when actually they are the same point). The only drawback
is the loss of metadata associated with the change operation for documentation pur-
poses. Moreover, version delta data tend to compress a bit less. This is explained in
Section 4.3.

• Given a point with multiple attributes, it is considered to have changed when any of
its attributes or its position have also changed. As explained above, the 3D coordinates
of the point cannot be considered when performing unmanaged operations; that is,
when third-party software has been used.

• There are two options for working with deleted points: (a) mark the points as deleted
and keep them, and (b) actually delete the points. The LAZ format used in the
prototype allows points to be marked as deleted, so our system offers both options.
It should be noted that with the proposed VCS, deleted points can be selectively
recovered from previous versions and merged with the latest version. This is a special
operation that is not available in conventional VCSs since it uses point-cloud-specific
semantics. It is always more efficient to effectively delete the points (this is the option
used in the tests) since otherwise, in successive versions, they must be processed
and stored.

• To calculate the differences (delta) between two point clouds, the file format used
must preserve the order of the points since it is necessary to reference them by their
indices in external metadata files.

• The latest version of each dataset should be ready for direct use. This implies that
changes must be stored not as increments over the previous version but as decrements
over the next version. This affects the data that are stored for the description of each
delta, as well as the rollback algorithm (see Figure 3).

The following sections present the details of the operations developed for the calcu-
lation of point cloud differences, and the storage of the delta data of each version, which
allow rollbacks and point cloud merges to be carried out. These are the operations adapted
to the semantics of point clouds that allow having a VCS optimized for these types of data.
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Figure 3. Sets of points involved in basic editing operations.

4.1. Calculation of Point-Level Cloud Differences

Calculating point cloud differences is the process used to infer the resulting changes
from editing operations that have been carried out. It can be used for standalone point
clouds and also for more complex datasets distributed in several point clouds stored in
different files. In any case, given two point clouds or datasets, A and B, where A is the
previous state of the data, and B is the current state of the data, the algorithm determines
the following sets of points:

• Points in A that are not in B. This implies that those points have been removed.
• Points in B that are not in A. This implies that those points have been created or loaded.
• Points in A that are also in B, but with some attributes with a different value. This

implies that the properties of those points have been modified.
• Points in A that are also in B, with all their attributes unchanged. This implies that

those points have not been edited and are exactly the same as before.

In order to calculate the differences between A and B at a point level, it is necessary to
obtain different sets of points that meet the conditions described above. That is, the set of
points from A that are not included in B, the set of points from B that are not included in
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A and the points that are included in both clouds. It is also necessary to determine if the
attributes of those points are the same in A and B, or if there are differences.

When the version control system is integrated into the same software that makes
the changes, tracking them is relatively easy to do, since what changes and the result are
known. These managed operations are discussed in Section 4.4. Here we present the case
in which it is unknown what operations and changes have occurred between two stages
of a point cloud editing process. These unmanaged operations can be performed in some
circumstances, the most relevant being the use of third-party software (e.g., LAStools). This
is very important since heterogeneous workflows in disciplines such as Remote Sensing
involve the use of multiple unrelated programs and tools.

The most important part of the algorithm consists of finding the points of one cloud
in the other. We assume that both clouds do not always have the same number of points,
nor do their points have the same position in their respective memory arrays. Therefore,
to determine that a point from one cloud is in the other, it must be found using its spatial
coordinates. This generally implies that a point in A is also in B if there are two points in
A and B that have the same spatial coordinates. These points are considered to be linked
during the difference calculation algorithm, and are considered as different states of the
same point. In this regard, the following issues should be noted. The numerical precision
used to represent the 3D coordinates of the points is decisive to verify if points of different
clouds occupy the same position in space. Whether using 32-bit or 64-bit precision, two
points can be infinitesimally close and thus be considered two states or versions of the
same point. It has been observed that many programs slightly alter the coordinates of the
points after performing some operations, or after a file saving process that implies some
transformation or change of the 3D coordinates to a local coordinate system. It is very
common to use a global coordinate origin with 64-bit precision, and relative coordinates
of points to that origin as 32-bit numbers. This situation can produce a situation where
two points that are semantically the same cannot be linked. In this case, the algorithm will
record a deletion of the point from A and the creation of the point from B. Although no
information is lost, and version control still works correctly, the chance to mark a point
as unchanged is lost. Unmodified points are not stored in the delta data, being the main
reason for the decrease in the size of the stored files. To solve this problem of uncontrolled
deviation of the point coordinates, a threshold value (epsilon) is used for the point coordinate
comparison operator. This value must conform to the numerical precision used to store the
data. In many programs, this can be easily controlled.

With the above considerations, it is not possible for two different points to share
the same 3D coordinates. This situation is unlikely to arise due to the typical numerical
precision used to represent point coordinates and the nature of 3D scanning processes.
As explained above, it is more common for the opposite to occur. However, if it does, one
of the two points must be displaced in space by a minimum distance above the precision
threshold (epsilon) used to differentiate the coordinates of the points. Otherwise, only
one of the coincident points in space can prevail. Usually, points do not move in the
space between two states of a point cloud, which is common in disciplines such as Remote
Sensing. If this occurs with modifications made with third-party programs, the registered
operations will be the deletion of one point and the creation of another, in the same way
that occurs when numerical precision problems arise. However, with managed editing
operations, the link between the previous and current point states is implicit, and it is
not necessary to use the algorithm for calculating the differences between point clouds
because they are already known.

Taking all of the above into account, the algorithm for calculating the differences
between two point clouds is as follows. For each point in cloud B, a point with the same
coordinates is searched in cloud A. If this point is found, it is linked to the point in B
and they are considered the same. Then, it is checked if their properties are the same or
different. Each of the possible cases determines whether each point in B is new (was not
in A), modified (was in A but with different properties) or unmodified (was in A with the
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same properties). Initially, all points from A are considered as deleted because they are not
expected to be in B. This state is changed every time a point from B is found in A, so points
from A that are not in B are simply not processed and their deletion state does not change
because the algorithm only iterates over the set of points from B.

The main performance bottleneck of the algorithm is the method of finding a point in a
cloud using its coordinates. This is well known in the literature, and spatial data structures
are used to index the data and speed up the process [3,38,40–43]. The kd-tree is one of the
most widely used spatial data structures for searching points, both in 2D and 3D. This
approach is more suitable for finding the k-nearest neighbors of a point (kNN), and is used
for our method. We use kNN with k = 1 to find only the nearest point. As previously
stated, there may be precision issues that cause the coordinates of the points to vary slightly
when going from the state specified by cloud A to that specified by cloud B. To correctly
link these points, the epsilon threshold value below which two points are considered equal
is used. Subsequently, it is verified as to whether the attributes are also the same, and in
such a case, it is concluded that the point has not been modified. The correct epsilon value
depends on the precision used to store the dataset.

4.2. Rollback Data Storage

The naive approach for storing changes to a dataset would consist of storing the data
of a specific version that varies from the previous one. In this way, to obtain the final
result, it would be enough to accumulate the modifications stored in the VCS in order. This
approach works in the same way as a program (a sequence of commands) that produces a
final result. However, although the modification sequence is very easy to build, it has a
major drawback. To obtain the latest version, which is the most used for access and editing,
all stored modifications must be accumulated. This means that the longer the change
history, the more computationally expensive it is to obtain the latest version. One of the
objectives of any version control system is to have the latest version available at all times
for direct access. To achieve this, the data describing the modifications must be expressed
not as increments over the previous version but as decrements over the next version. This
approach is followed in most version control systems, including our proposal.

Therefore, for each intermediate version of a point cloud dataset, it is necessary to
store the changes that must be made to that version in order to obtain the previous one.
This information is divided into two data files: a file with the points that must be used,
and a rollback command file that contains information about the origin of the data that
must be used in each rollback operation. Additionally, for the latest version available, there
is a file that includes some information about version control management, such as some
statistics and the number of the current version, to locate the files of the previous version
without having to thoroughly scan the file system.

As shown in Figure 4, each of the operations that can be performed on a version of
a point cloud dataset implies a series of sets of points to be created, deleted or modified.
For each version, there is a rollback point cloud file (RPCL) to perform the transition to the
previous version (if any). This file is stored in a standard format for point clouds. In the
developed prototype, we use the LAZ format since it provides advanced data compression,
which is ideal for storing the historical data in version control. This is because it takes
advantage of spatial coherence to perform a coordinates delta compression, so it produces
files with the smallest possible storage footprint. Therefore, this file stores a point cloud
with all the necessary attributes, including custom fields supported by the LAZ format.
In fact, it can be loaded and rendered at any time to check it. These points are used to
perform a rollback, and it is the command file that saves the information on how to carry
out the process, which is explained next.
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Original point cloud New point cloud version

Rollback Rollback

RPCL RCMD

Pointsitoibeimodified

Pointsitoibeiadded

Pointsitoibeideleted

Figure 4. Sets of points to be added, deleted or modified for an operation stored in RPCL and RCMD
files in the VCS.

The rollback command data (RCMD) are a vector of numbers encoding information about
which points should be used to restore a previous version of a point cloud and the origin of
those points (see Figure 5). For each version, the VCS stores only the points that change
from the previous version. Therefore, to complete the rollback operation, the algorithm
uses points from the current version cloud, and points from the RPCL. The RCMD has
information to perform a copy command for each point to be restored (see Figure 5). Each
command indicates whether the origin of the point to be restored is in the cloud of the
current version or in the rollback one. Point cloud editing operations that resulted in point
deletion or modification will produce restore commands from the RPCL, while created or
unmodified points between versions will produce copy commands from the current point
cloud. In addition, the command includes the point index in the point cloud array specified
as the source, in order to make the copy. This method is very fast, but it is not optimal in
terms of storage. In the next section, an algorithm for optimizing the space used by this
data file is presented.

RPCL

RCMD
Modifiedipointsiareirestored Newipointsiareidiscarded

Deletedipointsiareirestored

Current point cloud version

Unmodifiedipointsiareikept

Previous point cloud version

Figure 5. An RCMD file stores references to points that are stored in an RPCL file and in the current
point cloud version file. A rollback operation reads the data from the RCMD and takes the referenced
points from the RPCL and the current version file to generate the previous version of the point cloud.
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4.3. Rollback Command Data Compression Algorithm

RCMD data can be compressed using a combination of several strategies. One of
the most notable aspects when generating a vector of point restore commands is that
many of them form groups of referenced indices that are consecutive, either references to
points in the RPCL or in the current version cloud. This can be used to perform compact
encoding based on a Run Length Encoding algorithm (RLE) [44]. RLE produces compact
representations of elements that are often repeated. An example can be seen in Figure 6.
This algorithm works very well when there are a large number of sequences of equal values,
which usually occurs with data that have low entropy [44]. The main problem with classic
RLE is that in the worst case, when the longest sequence of equal values is 1, the encoded
data become twice the size of the original, which defeats the purpose of data compression
(see Figure 6). To avoid this, we use an adapted RLE algorithm (A-RLE from now on) that is
based on a compact coding oriented both to isolated points and to sequences of consecutive
points (point strips).

a a a a a b b b a a a a c c c c

a 5 b 3 a 4 c 4

Basic RLE

a c a b a c

Basic RLE
(worst case scenario)

a 1 c 1 a 1 b 1 a 1 c 1

Figure 6. Basic RLE example.

Table 1 shows the bit codes used for RCMD data encoding. Each point restore com-
mand can consist of one or two codes. The first code always includes a bit indicating the
source of the data to be restored, 0 for RPCL and 1 for the current version point cloud.
The rest of the bits in the first code as well as the entire second code depend on whether a
restore command is coded for a single point or for a point strip:

• Point strip restore command. Bits 27 to 30 (4 bits) of the first 32-bit code are set to
the value 1111, leaving the first 27 bits available to indicate an index sequence length
code; that is, the length of a point strip. A second 32-bit code stores the index of
the first point of the strip to be restored. The maximum length of a point strip is
approximately 134 million points. If a larger strip is detected, it will be divided into
several consecutive ones with their respective restore commands.

• Single point restore command. The first 31 bits of the first and only 32-bit code directly
specify the index of the point to restore. Bits 27 to 30 (4 bits) cannot contain the
value 1111, as this would be indicative of a point strip restore command. The highest
value allowed for these bits is 1110, which together with the rest of the bits of the
31-bit code, allows an indexing range of up to approximately 2 billion points, which,
logically, will be the maximum number of points for each point cloud that the VCS
can manage.

Table 1. 32-bit codes used for A-RLE rollback command data encoding.

Flags Size Values

Data origin 1 bit 0 = RPCL; 1 = current
version point cloud

First number is a block length 31 bits Upper bits = 1111, effective
range = [0–134,217,727]

First number is an array index 31 bits Upper bits 6= 1111, effective
range = [0–2,013,265,919]

It should be noted that with this A-RLE coding scheme, in the worst case (all point
indices are non-consecutive), the number of codes to produce is the same as the number
of points to restore, while basic RLE produces twice as many codes. Thirty-two-bit and
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64-bit precision can be used for codes in the prototype implementation. Sixty-four-bit codes
greatly increase the maximum number of points in a single point cloud. However, 32-bit
limits are more than sufficient for working with typical datasets because data partitioning
is a common strategy for handling big data. It is more efficient to split larger clouds into
smaller ones and use 32-bit codes than to use such large clouds with 64-bit codes. It is
important to note that the partitions of the datasets into smaller point clouds must be
non-overlapping, which is what our system does.

After the A-RLE encoding approach is used on rollback data, RCMD is further com-
pressed using the Deflate algorithm, which is a lossless data compression method that uses
a combination of LZ77 and Huffman coding [44,45]. LZ77 is a coding method based on dictio-
nary, while Huffman coding uses variable-length codes based on entropy. This combination
of three lossless compression algorithms makes it possible to achieve optimal compres-
sion ratios. Section 5 includes a comparison of the results with various combinations of
compression algorithms for RCMD files.

4.4. Managed Editing Operations

In Section 4.1, a method is presented to obtain the changes between two states of
a point cloud. This algorithm can be used by the version control system for all stages
in a dataset editing process. However, when the operations are performed in the same
software that performs version control, additional information can be used to optimize the
process and make it much more efficient, both in performance and in the compression of
the resulting data. We call these operations managed editing operations since their result is
fully controlled, unlike those carried out with third-party software.

In our proposal, optimizations are made for version control related to several types of
common operations in the workflow with point clouds. In these cases, it is always known
what changes have been made to each point, and its status is tracked. These cases allow
bypassing the point cloud differences algorithm, replacing it with a simpler process. It
also allows grouping points in memory to increase RCMD data compression with some
operations (using longer point strips):

• Add points. New points are added to a cloud or dataset. In this case, the new points
will have consecutive indices following the indices of the pre-existing points. This
produces a single strip of unmodified points and a single strip of new points, so the
rollback command data will be a few bytes in size.

• Delete points. A selection of points is removed from the current version of the point
cloud or dataset. In this case, the main advantage is that the point cloud comparison
algorithm is not needed to locate the deleted points. For the resulting cloud version,
the points will be compacted into the new array and the indices will change. However,
the new index for each point in the resulting cloud is known.

• Change points’ attributes. The attributes of a selection of points are changed. In this
case, it is not necessary to use the point cloud comparison algorithm either. In addition,
it is known in advance that there are no changes in the indices of the points.

• Sort points. Points are reordered in the array in memory without altering their
coordinates or their attributes. However, the indices change and must be recorded in
an RCMD. The reordering of points can be performed by various criteria. The most
relevant is ordering points in 3D to increase compression with formats such as LAZ,
which take advantage of spatial coherence to perform a coordinates delta compression.
The relative coordinates of a given point with respect to the previous one (in 3D space)
will have smaller magnitudes and therefore a lower entropy, which increases the
efficiency of the compressor. Sorting 3D points is usually conducted using Hilbert or
Morton space filling curves using a spatial data structure, such as quadtree or octree.
Logically, reordering with 3D spatial criteria entails a change in the indices of the
points in the array where they are stored, which must be recorded in the RCMD.



Remote Sens. 2023, 15, 4635 13 of 23

4.5. Unmanaged Editing Operations

Section 4.4 shows the case in which the modifications to the point clouds are carried
out by the same software. This allows having the necessary information about the status of
each of the points after each editing operation. When the modifications are made using
third-party software, this information is not available since the changes that have been
carried out on the points are unknown. In this case, points from different versions on the
VCS that have different spatial coordinates cannot be considered as the same point (that
has been moved). The consequence is that a point deletion is recorded, followed by the
creation of a new one. Metadata associated with the change operation cannot be stored
for documentation purposes. Moreover, delta version data tend to occupy slightly more
memory. With unmanaged operations, the algorithm presented in Section 4.1 must be used
to obtain the changes between two states of a point cloud.

4.6. The Undo/Redo Stack

The undo and redo operations are very common in any type of editing software,
from word processors to 3D modelers or video editors. The undo option allows us to
return to the situation prior to performing the last editing operation, while the redo option
involves redoing an operation reversed by an undo. Figure 7 shows an example. This
functionality is closely related to the VCS. In fact, it can be considered a specific type of
it, with only one branch and whose data are not usually stored in secondary memory.
The usual data structure to implement the undo/redo functionality is a stack. In our
proposal, the undo/redo stack becomes relevant for two reasons. First of all, some point
cloud editing applications (especially LiDAR-based) do not have this type of functionality.
Second, having the undo/redo option indirectly optimizes operating version control in
interactive applications. Moreover, performing a rollback with information stored in
memory is very fast.

1 2Operation 1 Operation 2 Operation 3

1 3Operation 1 Operation 2 Operation 3

3Operation 1 Operation 2 Operation 32

1 3Operation 1 Operation 2 Operation 3

UNDO

UNDO

REDO

1

3
Operation 1 Operation 2

Operation 3

2 4Operation 4

3

2

1

2

Figure 7. Undo/redo example. When the result of a new operation is pushed to an intermediate
node, all nodes above it in the stack are removed (in this case, node 3 when performing operation 4
from state 2).
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The VCS is optimized by using the undo/redo functionality as an in-memory cache
of operations not stored on disk (see Figure 8). When an operation is performed, it is
logged into the undo/redo stack, and while the user continues working, a background
CPU process compresses and stores the data on disk for version control. In this way, the
system remains interactive as long as possible. This is important since saving the different
versions of the edited point clouds to disk can be very slow. However, to perform an undo
operation, the process would have to be completed before allowing other actions, thus
blocking the user interface.

VCS branch

OP 1 OP 2User application
undo/redo stack

OP 4 OP 5 OP 7OP 3 OP 6 OP 8

Figure 8. The undo/redo functionality as an in-memory cache of operations not stored on disk by
the VCS. This allows having a version history per editing session, and storage of only the relevant
versions in the VCS.

5. Results and Discussion

This section presents the results of several experiments showing the performance of
the proposed VCS in general, as well as the RCMD file compression algorithm in particular.
The tests were carried out on a Intel i7-8700 3.2 GHz PC (12 logical processors) with 32 GB
RAM. The prototype was implemented in C++17. Cloud Compare [46] was used for
rendering some figures and as an external tool for generating versions of the datasets
for testing.

We used two datasets for the experiments (see Figure 9). The goal was to have
data from airborne lidar and terrestrial lidar, with different point densities and spatial
distributions. Both the complete versions and specific subsets were used for the tests.
The first dataset is a part of the Manhattan Island from NY City [47] (2017, WGS84 Zone
center −74.002447E, 40.708918N, 4.42 km × 2.27 km, 325 M points in a single LAZ file).
The second dataset is the Stanford 3D Indoor Scene Dataset (S3DIS) [48], which is divided
into 6 areas with 271 rooms. A single LAZ file version of area-1 (44M points) was used.

To compare the new system with the classical approach, each dataset was merged into
a single file for stress testing. Splitting into files and tracking changes on a per-file basis is a
strategy that can also be applied to the manual backup approach, recording only the files
that have changed and leaving the rest of the dataset intact.

5.1. A-RLE Algorithm

Before presenting the results of the VCS in general, this section shows the results of
the performance tests carried out with the different compression algorithms considered
for RCMD files: RAW (without compression), Deflate (RCMD is compressed without
encoding with A-RLE), A-RLE and A-RLE+Deflate (see Figure 10). For these tests, point
change simulation operations were carried out in the S3DIS dataset (area 1) with the aim of
verifying the influence on the storage footprint of each compression algorithm regarding:
(a) the total number of points processed, and (b) the average length of the strips of points
in RCMD restore commands.
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Figure 9. Datasets used in the experiments. Top: Manhattan dataset (325 M points); bottom: S3DIS
dataset area-1 (44 M points).

Multiple versions with different numbers of points were used. However, only two
are shown in Figure 10, as the rest produce nearly identical results. As can be seen
when comparing both graphs, the number of points does not affect the scalability of the
compression algorithms. On the other hand, the length of the point strips does have an
effect on our A-RLE as expected. To simulate the generation of point strips in each test,
a normal distribution was used with the mean centered on the target average strip length
(represented on the x-axis of Figure 10), with a standard deviation of 30% of that target
value. The alternation between groups of modified and unmodified points was forced.
The average of the total modified points is always around 50%.
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Figure 10. Efficiency of compression algorithms used to encode RCMD files. The y-axis shows values
of storage space used in MB. The x-axis shows the average point strip length for each experiment.

As can be seen, larger point strips produce more compact commands that are much
more compressed with the A-RLE algorithm. Although this simulation presents unrealistic
conditions, the influence of the length of the point strips on the RCMD restore commands
can be seen. In real cases, this depends on the type of editing that is performed on the point
datasets. For example, a noise filtering operation tends to produce short strips (2–4 points),
while erasing by large polygonal areas tends to generate larger strips. It should be noted
that unmodified points also generate strips of points for the RCMD. When modifications
affect only a few points in the cloud edited, few large strips are generated, resulting in an
RCMD that is compressed to a few bytes. For all the above, it is shown that the approach
proposed for the compression of RCMD data (A-RLE + Deflate) is the most efficient.
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5.2. Overall VCS Performance

To test the overall efficiency of the VCS, several tests were performed. First of all,
specific tests were carried out to determine the difference between manual storage of
complete intermediate versions (RAW) and the use of the VCS. To do this, the impact on
the storage footprint of each operation is analyzed separately. From the point of view of
calculating intermediate versions (deltas), the operations that can be performed on a point
cloud dataset can be grouped into two: the creation and alteration of points. Within the
alteration of points are included the modification of attributes and the elimination of points.
That is, it is necessary to take into account only the points that will be stored in the RPCL of
a version in the VCS. As introduced in Section 4.2, unaltered points and new points are
stored in the current point cloud version, which is always ready to be used directly.

Figure 11 shows the results of delta files storage tests for point modification operations,
which are the ones that produce the point clouds for the intermediate versions. The point
adding operation does not produce any point storage in VCS delta files, only references on
the RCMD file, which for this type of operation is negligible in size. Consequently, the most
interesting results are those associated with point alteration operations. Figure 11 shows
the influence of the number of points modified in each test on the size of the generated
delta files. This number of points is displayed as a percentage of the total points in the
dataset. The storage used as a result of each test is expressed as a percentage of the storage
used by the full versions of the point clouds (RAW). In addition, the minimum, maximum
and average values resulting from testing various configurations of consecutive point strips
are shown. The graphs show the results for two datasets stored in a single file. As can
be seen, the number of points is related to the amount of memory used in the delta files,
as expected. It can also be seen that for smaller datasets, there is more variation depending
on the presence of more or less point strips. This affects the compression of the RCMD files,
which with smaller datasets have a greater relative weight over the total storage. The main
conclusion is that the VCS has the same storage cost as the manual backup approach (RAW)
when all the points are modified, which is logical since it must store all data that change
between versions. However, with less modified points, the storage footprint is reduced
substantially. Furthermore, it must be remembered that the operation of adding points has
almost zero cost over delta files since only minimal information is stored in the RCMD
but nothing in the RPCL.

In addition to the above, tests were carried out with more realistic scenarios using
third-party applications for verifying the efficiency of the VCS in real-world conditions.
However, it must be said that the results are indicative since it greatly depends on the type
of processing that is carried out on the data, the number of points to be edited, the number
of versions registered in the VCS, etc. Figure 12 and Table 2 present the results of a test
where several modification operations are carried out. First, an operation is performed to
load new points into the dataset. Then, a filtering is performed, which is a global denoising
operation based on the Statistical Outlier Removal method. Four manual point removal
sessions are carried out to delete extraneous points, echoes and scan deviations. A global
automatic classification is then performed, followed by four manual classification sessions
to correct errors of the automatic classification. Finally, a branch is created using a point
extraction based on point classification values. Then, a final subsampling operation is
applied. Table 2 shows the number of points involved in each operation, as well as the
percentage with respect to the total points of the latest version of the dataset at each moment.
Table 3 shows the execution times for storing delta versions into the VCS. As expected,
the proposed VCS consumes more computing time to calculate the delta versions since
it performs operations that are not carried out with the RAW approach. The Unmanaged
diff column refers to the calculation time for differences between point clouds, which only
applies to unmanaged operations.
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Figure 11. Influence of the number of points modified on the size of the generated delta files. The
x-axis shows the percentage of modified points out of the total points in the dataset. The y-axis shows
values of storage space used as the percentage of the full versions of the dataset (RAW).

As can be seen in Figure 12, the storage footprint is much smaller in the VCS than with
the RAW approach. It can be argued that some of the editing operations need not generate
a complete new version of the dataset. For example, manual point removal sessions could
be compacted into one. However, it must be taken into account that many of the operations,
especially those carried out interactively, have a very high working time, so not having
previous versions can mean a high cost in case of errors. In addition, the proposed system
allows for undo/redo stack management, as presented in Section 4.6. This means that fast
operations can generate intermediate versions in the memory of the computer, allowing
data to be restored in the event of an error, without using VCS storage. It should also be
mentioned that it is possible at any time to compact several VCS incremental versions into
a single delta increment, in order to reduce the storage footprint on consolidated versions.
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Figure 12. Storage used for a workflow of the Manhattan dataset (325M points). The increase in the
storage footprint in each operation (delta size) is indicated in red. The details of the operations are
described in Table 2.
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Table 2. Storage used for a workflow of the Manhattan dataset (325M points).

RAW VCSOperation Type Points % Points Inc (MB) Total (MB) Inc (MB) Total (MB)

Insert new points New 41.33 M 12.7% 1750.63 3501.25 <0.01 1750.63

Noise filter Change 26.04 M 7.1% 1932.65 5615.92 280.53 2213.18

Intensity-based colorization Change 366.76 M 100% 2708.39 9100.05 1932.65 4921.57

Manual point deletion Delete 4.11 M 1.1% 2683.58 11,758.82 60.04 4956.80

Manual point deletion Delete 2.90 M 0.8% 2665.91 14,407.06 43.55 4982.68

Manual point deletion Delete 11.51 M 3.2% 2595.08 16,931.30 155.12 5066.96

Manual point deletion Delete <0.01 M <0.01% 2595.08 19,526.38 <0.01 5066.96

Automatic classification Change 348.24 M 100% 2595.11 22,121.53 2595.08 7662.08

Manual point reclassification Change 11.84 M 3.4% 2519.72 24,565.86 113.07 7699.76

Manual point reclassification Change 51.47 M 15.3% 2181.89 26,409.91 421.20 7783.13

Manual point reclassification Change 14.53 M 5.1% 2086.74 28,401.50 149.59 7837.57

Manual point reclassification Change 2.97 M 1.1% 2066.38 30,447.52 27.94 7845.16

Point extraction (new branch) Branch 213.14 M 79.7% 2031.83 32,479.35 2031.83 9876.98

Subsampling Delete 144.17 M 30% 1206.30 34,891.94 785.61 11,868.89

Table 3. Execution time for delta operations for a workflow of the Manhattan dataset (325M points).

RAW VCSOperation Type Points % Points Last Version Unmanaged Diff Delta Last Version

Insert new points New 41.33 M 12.7% 118.481 s 152.111 s 0.474 s 100.123 s

Noise filter Change 26.04 M 7.1% 108.133 s 171.510 s 31.691 s 102.983 s

Intensity-based colorization Change 366.76 M 100% 109.903 s 184.606 s 113.112 s 107.748 s

Manual point deletion Delete 4.11 M 1.1% 110.365 s 189.984 s 5.082 s 105.110 s

Manual point deletion Delete 2.90 M 0.8% 105.988 s 192.948 s 3.710 s 103.910 s

Manual point deletion Delete 11.51 M 3.2% 101.674 s 197.074 s 13.368 s 100.667 s

Manual point deletion Delete <0.01 M <0.01% 102.930 s 189.990 s 0.802 s 101.910 s

Automatic classification Change 348.24 M 100% 103.475 s 192.723 s 110.279 s 101.446 s

Manual point reclassification Change 11.84 M 3.4% 100.775 s 196.411 s 9.922 s 98.799 s

Manual point reclassification Change 51.47 M 15.3% 85.978 s 182.331 s 33.0812 s 82.671 s

Manual point reclassification Change 14.53 M 5.1% 80.087 s 160.793 s 13.893 s 78.517 s

Manual point reclassification Change 2.97 M 1.1% 81.077 s 157.523 s 2.676 s 80.275 s

Point extraction (new branch) Branch 213.14 M 79.7% 258.448 s 161.532 s 0.450 s 136.973 s

Subsampling Delete 144.17 M 30% 69.013 s 343.423 s 114.627 s 94.799 s

6. Conclusions and Future Work

This paper presents a VCS for point clouds that allows the complete editing history of
a dataset to be stored with a minimal storage footprint. This allows changes to be controlled
during the life cycle of the point cloud dataset. For each version, this system stores only
the information that changes with respect to the previous one. The data required for the
incremental (delta) data are compressed using a strategy based on the Deflate algorithm
and the proposed A-RLE. It also allows undo/redo functionality in memory, which serves
to optimize the operation of the VCS. In addition to automated management of incremental
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versions of point cloud datasets, the system has a much lower storage footprint than the
manual backup approach for most common point cloud workflows.

For future work, we plan to incorporate various improvements in our proposal. In-
termediate version management could be optimized by making it possible to store partial
point data; that is, only the attributes that change, instead of the entire points. Other
point cloud formats for storage should be tested that allow partial descriptions of points
(in addition to LAZ). Specific protocols for concurrent multi-user editing could also be
incorporated to allow the blocking of editing by zone of the datasets, as well as resolving
conflicts with simultaneous editing of the same points.
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