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Abstract: While recent advances in the field of neural rendering have shown impressive 3D recon-
struction performance, it is still a challenge to accurately capture the appearance and geometry of a
scene by using neural rendering, especially for remote sensing scenes. This is because both rendering
methods, i.e., surface rendering and volume rendering, have their own limitations. Furthermore,
when neural rendering is applied to remote sensing scenes, the view sparsity and content complexity
that characterize these scenes will severely hinder its performance. In this work, we aim to address
these challenges and to make neural rendering techniques available for 3D reconstruction in remote
sensing environments. To achieve this, we propose a novel 3D surface reconstruction method called
UniRender. UniRender offers three improvements in locating an accurate 3D surface by using neural
rendering: (1) unifying surface and volume rendering by employing their strengths while discarding
their weaknesses, which enables accurate 3D surface position localization in a coarse-to-fine manner;
(2) incorporating photometric consistency constraints during rendering, and utilizing the points
reconstructed by structure from motion (SFM) or multi-view stereo (MVS), to constrain reconstructed
surfaces, which significantly improves the accuracy of 3D reconstruction; (3) improving the sampling
strategy by locating sampling points in the foreground regions where the surface needs to be recon-
structed, thus obtaining better detail in the reconstruction results. Extensive experiments demonstrate
that UniRender can reconstruct high-quality 3D surfaces in various remote sensing scenes.

Keywords: 3D reconstruction; surface reconstruction; aerial images; rendering; implicit representation;
signed distance field

1. Introduction

Reconstructing 3D surfaces of a scene from multi-view imagery is one of the key
objectives of remote sensing and photogrammetry, as accurate 3D models have a wide range
of applications in fields such as urban planning, 3D GPS navigation, and environmental
simulation.

Given multi-view input images, traditional surface reconstruction frameworks [1–4]
first use structure-from-motion (SFM) [5] to estimate camera parameters and to reconstruct
sparse 3D points.Then, multi-view stereo (MVS) [4,6] is applied, to estimate dense depth
maps for each view, and then all the depth maps are fused into a dense point cloud. Finally,
the surface reconstruction method, e.g., Poisson surface reconstruction [7], is performed,
to reconstruct surface meshes from this point cloud. However, reconstructing complete
mesh surfaces from point clouds is challenging, due to the lack of geometric connectivity
information. This can lead to incomplete surfaces, particularly in weakly textured or sparse
view contexts [8,9]. Additionally, the multi-stage reconstruction pipeline, as opposed to an
end-to-end approach, may introduce cumulative errors and noise.
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The latest image-based photogrammetry technique, known as neural rendering [8,10–17],
employs continuous functions to represent the geometry and appearance of a 3D scene,
and it encodes these continuous functions, using neural networks. Additionally, it employs
differentiable rendering, to transform the 3D scene into an image, allowing for end-to-end
optimization of neural network parameters, by minimizing the disparity between the ren-
dered image and the input image. More specifically, there are two types of rendering man-
ners in neural rendering: surface rendering [8,15–17], and volume rendering [13,14,18–21].
Recent works have tended to use volume rendering to reconstruct 3D surfaces, because
it has stronger robustness and is less prone to getting stuck in local minima, compared to
surface rendering. However, compared to the impressive performance on indoor datasets,
such as DTU [22], high-quality 3D surface reconstruction using volume rendering still
remains challenging for remote sensing scenes. A major reason for this dilemma is that the
biases that exist in current volume rendering paradigms [13,14,21] are greatly amplified
when applied to remote sensing scenes. Furthermore, the view sparsity that characterizes
these scenes introduces serious geometric ambiguity.

To address these challenges, and to make neural rendering techniques available for
3D reconstruction in remote sensing, we propose our solution: UniRender, a 3D surface
reconstruction method that can achieve high-quality surface reconstruction performance
from aerial images. Given a 3D scene described by images, UniRender employs a signed
distance field (SDF) [23] to represent the geometry of the scene, and learns the SDF by
minimizing the difference between the rendered images and the input images. To achieve
precise surface positioning during rendering, we first analyzed the biases that exist in
current 3D surface reconstruction methods based on volume rendering [9,13,19,24] and
identify the causes of them. Based on this analysis, we designed an approximately unbi-
ased rendering scheme, by naturally unifying surface rendering and volume rendering
within a single rendering framework. With such a rendering scheme, UniRender effectively
eliminates biases and enables accurate surface position localization in a coarse-to-fine man-
ner. To address the issue of inherent geometric ambiguity in neural rendering, UniRender
integrates a geometric constraint mechanism that takes advantage of stereo matching. This
mechanism effectively enhances the quality of the reconstructed geometry. Furthermore,
to better reconstruct the details of the scene, UniRender adapts a novel spherical sampling
algorithm, which can locate the sampling points to the regions that need more attention. In
summary, our contribution are as follows:

1. A qualitative and quantitative analysis of the biases that exist in the current volume
rendering paradigm.

2. An approximately unbiased rendering scheme.
3. A novel geometric constraint mechanism.
4. A novel spherical sampling algorithm.

2. Related Work

In this section, we offer essential background information on the two primary factors
involved in learning 3D geometry from multi-view images using neural rendering: the 3D
scene representation and the rendering technique connecting it to 2D observations.

2.1. Neural Implicit Representation

As mentioned in Section 1, traditional multi-view 3D reconstruction frameworks [1–4]
primarily rely on explicit representations, such as point clouds or depth maps, for modeling
3D scenes. These representations are plagued by issues like discretization and limited
resolution. By contrast, neural implicit representation [23,25,26] has emerged as an effective
solution for 3D geometry and appearance modeling. It leverages continuous implicit
functions encoded by neural networks, to represent 3D scenes. Due to its continuity and
ability to achieve high spatial resolution, this representation has been widely used. As
for learning-based methods, the most commonly used forms are the occupancy field [25]
and the signed distance field (SDF) [23].
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2.2. 3D Reconstruction with Differentiable Rendering

Unlike traditional photogrammetric techniques [3,4,6,27,28], which treat 3D recon-
struction as a cross-view feature matching problem, some approaches [8,13,14,17,19–21]
treat 3D reconstruction as an inverse rendering problem. They try to estimate the underly-
ing 3D geometry by iteratively rendering the 3D geometry and comparing the rendered
image to the input images. The key to this is differentiable rendering [17], which allows
the flow of error gradients formed by color differences between the rendered and input
images to be back-propagated, thus optimizing the underlying 3D geometry. Depending
on the rendering method, we divide these works into two categories: surface rendering
and volume rendering.

2.2.1. Surface Rendering

Surface rendering methods [8,15–17,29], such as IDR [8], utilize an SDF function
encoded by a multi-layer perceptron (MLP), to represent the geometry of a scene. This
derives the predicted color from the point where the ray intersects with the surface, which
serves as the final rendered color. Subsequently, the MLP is optimized, by using a render
loss computed from the rendered color and the color from the input images. However,
when propagating backward, the gradient exists only at the surface intersection, leading to
a confined spatial receptive field. As a result, these methods usually require mask inputs,
to provide additional geometric constraints. Otherwise, the optimization will easily fall
into local minima and will produce poor geometric reconstruction.

2.2.2. Density-Field-Based Volume Rendering

By contrast, volume rendering methods [13,14,18–21] derive the predicted color by in-
tegrating colors along the entire ray. Compared to surface rendering, which only optimizes
color at a single point, volume rendering benefits from a longer-distance spatial receptive
field. NeRF [21] is a typical volume rendering method, but is distinguished by its approach,
of treating a 3D scene as a combination of a density field and a color radiance field. It
approximates these two fields, using a five-dimensional function encoded by a multi-layer
perceptron (MLP). This function takes 3D coordinates and view direction as input and out-
puts corresponding to volume density and color. By minimizing the discrepancy between
the color of the input views and the color estimated through volume rendering using the
density field, the density field can learn the correct geometry to satisfy the color constraints
from the input views.

2.2.3. SDF-Based Volume Rendering

Despite NeRF [21]’s success in the task of novel view synthesis, the surfaces extracted
from the density field are usually noisy [18], and it is difficult to determine a suitable
density threshold, to extract the surface from the density field. Therefore, subsequent
improvements have attempted to represent scene geometry with an SDF function [23] and
have introduced an SDF-induced volume density σ = ψ(sd f ), to enable SDF-based volume
rendering [13,14]. This approach allows for the extraction of smooth surfaces from the zero
set of the SDF.

2.3. Issues Existing in Volume Rendering

Numerous experiments [13,14,24,30] have shown that SDF-based volume rendering
is highly beneficial for recovering surfaces from 2D images, especially for indoor datasets
like DTU [22]. However, achieving high-quality 3D surface reconstruction still remains
challenging for remote sensing scenes, because the biases inherent in current volume
rendering paradigms [13,14,21] are greatly amplified when applied to remote sensing
scenes. Furthermore, the view sparsity that characterizes these scenes introduces serious
geometric ambiguity. More specifically, the biases and ambiguities are as follows:

1. Color bias: Given a ray, volume rendering directly optimizes the color integration
along the ray rather than the surface color where the ray intersects the surface; there-
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fore, the estimated color at the surface, i.e., the surface-rendered color, may deviate
from the volume-rendered color. We note this color bias phenomenon is particularly
evident in remote sensing scenes, as shown in Figure 1 (2nd row, 2nd column and
3rd column). For methods that rely on color to optimize geometry, color bias will
inevitably erode their geometric constraint ability.

2. Weight bias: Take the volume rendering method NeuS [13], as an example. This
assumes that when approaching the surface along the ray, the weight distribution of
color used to compute the color integration will reach its maximum at the position
of the zero signed distance field (SDF) value, i.e., the surface position, as shown in
Figure 1 (1st row, 2nd column). This assumption often holds for datasets with close-up
dense views and simple geometry, such as a DTU dataset [22]. However, things are
different on remote sensing datasets, in which the position with the maximum weight
value usually deviates from the position with the zero SDF value, as shown in Figure 1
(2nd row, 2nd column). Such a weight bias phenomenon results in a misalignment
between color and geometry, and prevents volume rendering from capturing the
correct geometry.

3. Geometric ambiguity: For most neural rendering pipelines [11–14], the geometry
is only constrained by the color loss from a single view in each iteration, which
cannot guarantee consistency across different views in the direction of geometric
optimization, thus leading to ambiguity. When the input views become sparse,
this ambiguity increases and results in inaccurate geometry. For remote sensing
scenes, in which views are often sparse, this inherent ambiguity is undoubtedly a
challenging issue.

Figure 1. An illustration of NeuS [13]’s performance on different datasets. Compared to the indoor
dataset DTU [22], NeuS exhibits obvious color bias and weight bias on the remote sensing dataset
LEVIR-NVS [20], while the reconstructed surfaces suffer from numerous holes and poor quality.

Therefore, we aimed for a method that could incorporate both the unbiased character-
istic of surface rendering and the long-distance spatial receptive field of volume rendering.
UNISURF [18] has attempted to unify these two rendering methods. Its strategy is to first
take a coarse sampling and to estimate surface points from the sampling points, via root-
finding; it then takes a fine sampling around these surface points and performs volume ren-
dering. The sampling interval4k is controlled by the formula: 4k = max(4maxexp(−k, β),
4min), where k denotes the iteration number, β, and where 4max and 4min are prede-
fined hyperparameters. However, this manner of setting a sampling interval manually is
less robust. Therefore, we propose our solution. In brief, our solution is different from
UNISURF [18], as follows:
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1. UNISURF [18] represents the scene geometry by occupancy values, while we use SDF
representation and, thus, produce a higher-quality surface.

2. UNISURF [18] makes a transition from volume rendering to surface rendering by
gradually narrowing the sampling intervals during optimization. But the sampling
interval is manually defined and controlled by hyperparameters, such as iteration
steps, while our method spontaneously completes this transition along with the
convergence process of the networks.

3. Preliminaries

Given a set of calibrated multi-view images, our goal is to reconstruct 3D surfaces
of the scene. As a by-product, realistic views can also be achieved. An overview of our
approach is shown in Figure 2. Since we employ an SDF function to represent the geometry
of the scene, in this section we review the fundamentals of SDF-based volumetric rendering,
so that we can better demonstrate our analysis in later sections.

Figure 2. An overview of UniRender. Given a ray that passes through a pixel, UniRender first
samples points along the ray, then estimates the values of those points. With the SDF values, it
interpolates the surface intersection point along the ray. After interpolating, it estimates the colors
of all the points. Finally, a weighted sum of these colors is computed, as the estimated pixel color.
During training, various constraint mechanisms are used, to optimize the MLP networks.

3.1. Scene Representation

Let the set Ω ∈ R3 represent the space occupied by objects like trees and buildings,
and let S represent the boundary of the occupied space, i.e., the earth surface. We model
the entire space, including occupied and unoccupied, with the signed distance field (SDF)
function f , which maps a spatial position p ∈ R3 to a scale value,

f (p) = (−1)IΩ(p) min
q∈S
‖p− q‖2, IΩ(p) =

{
1, i f p ∈ Ω
0, i f p /∈ Ω,

(1)

where IΩ(·) is an indicator function of the space Ω. This allows the surface S of the scene
to be represented by the zero-level set of function f ,

S =
{

p ∈ R3| f (p) = 0
}

. (2)
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In addition to geometry, the scene appearance is represented by a function c:
R3 × R3 → R3 that maps a spatial position p ∈ R3 and a view direction v ∈ R3 to a
color value:

c(p, v) = RGB. (3)

Finally, we use the same network architecture as IDR [8], i.e., different multi-layer
perceptrons (MLPs) are used to encode functions f and c. Specifically, functions f and c are
encoded by MLP networks Fθ and Cψ, respectively, as shown in Figure 2. This architecture
facilitates the deconstruction of geometry and appearance.

3.2. Paradigm of Volume Rendering

Given a pixel and a camera position o, we denote the ray emitted by the camera and
passing through the pixel as p(t) = o+ tv, t ≥ 0, where v is the unit direction vector of
the ray and t is the depth along the ray starting at o. With volume rendering, the color
observed at the pixel along the direction v can be estimated by color integration,

C(o, v) =
∫ ∞

0
w(t)c(t)dt, (4)

where c(t) = c(p(t), v) is the color estimated by function c at point p(t) along the view
direction v, and w(t) = w(p(t)) is the color weight at point p(t) along the ray. And w(t) is
computed by the standard volume rendering Formula ([21]),

w(t) = T(t)σ(t) (5)

T(t) = exp(−
∫ t

0
σ(u)du), (6)

where σ(t) = σ(p(t)) is the volume density at point p(t), and where T(t) is the so-called
accumulated transmittance along the ray. For simplicity, we ignore intermediate variables,
and we write c, w, σ as functions of t.

3.3. SDF-Induced Volume Density

To capture the SDF representation of the scene geometry via volume rendering, it is
necessary to build an appropriate connection between the SDF value f (t) and the volume
density σ(t). We employ the same strategy as NeuS [13], i.e., deriving the volume density
σ from the SDF via

σ(t) = ψ( f (p)) = max(− φs( f (p(t)))
Φs( f (p(t)))

, 0), (7)

where Φs(x) = (1 + e−sx)−1 is a Sigmoid function, and φs(x) = (se−sx)/(1 + e−sx)2 is
a logistic density distribution and also the derivative of Φs(x), while s−1 is a trainable
standard deviation that should tend to zero as the networks converge.

In Figure 3, we illustrate the relationship between the SDF value f (t), the volume
density σ(t), and φs(t) when the ray intersects a single plane. It can be seen that as
parameter s−1 decreases, the gradient of the volume density near the surface steepens,
and φs(x) contracts towards zero. Since color weight w(t) differs only by a factor from
φs(t), i.e., w(t) = |cosθ|φs(t), reducing s−1 leads to a more concentrated distribution of the
color weight near the surface, where θ is the angle between the ray and the surface.
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Figure 3. An illustration of the SDF value f (t), volume density σ(t), and φs(t) when the ray intersects
a single plane.

4. Method
4.1. Unified Rendering Scheme

As mentioned in Section 2.3, biases in volume rendering will lead to inaccurate geom-
etry. Let us briefly analyze these biases, before describing our solution in detail. Given the
sampling points P =

{
p(ti)|tn ≤ ti ≤ t f , i ∈ {1, 2, ...n}

}
sampled along the ray p(t) that

is passing through a pixel, and the corresponding depth range of the sampling [tnear, t f ar],
the volume-rendered color of the pixel can be achieved by the discrete counterpart of
Formula (4):

Cvolume = C(o, v) =
n

∑
i=1

w(ti)c(ti). (8)

We assume that the first intersection point of the ray and the surface is p(t∗), i.e.,
f (p(t∗)) = 0. Then, the surface color at p(t∗) along the direction v, i.e., the surface
rendering color can be expressed as

Csu f ace = c(t∗). (9)

With Formulas (8) and (9), the color bias between the volume-rendered color and the
surface color can be derived as

4c = Cvolume − Csur f ace

=
n

∑
i=1
i 6=j

w(ti)c(ti) + w(tj)c(tj)− c(t∗)

=
n

∑
i=1
i 6=j

w(ti)c(ti) + (w(tj)− 1)c(tj) + c(tj)− c(t∗)

= 4weight + c(tj)− c(t∗)

= 4weight +4disc.

(10)

This formula indicates that the color bias 4c can be interpreted as the sum of 4weight
and4disc. Where4weight is the weight bias mentioned in Section 2.3 and is caused by an
unreasonable weight distribution,4disc is a bias introduced by discrete sampling, tj is the
depth of the point p(tj), and p(tj) is the point closest to the surface point p(t∗) in the point
set P.

To eliminate these biases, we propose a novel rendering scheme that unifies volume
rendering and surface rendering. Specifically, we achieve this through (1) interpolated
volume rendering, (2) weight regularization, and (3) unified color constraints.
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4.1.1. Interpolated Volume Rendering

To eliminate 4disc, we first start with the camera position o and move along the
direction v. While moving, we find the first pair of adjacent sampling points that satisfies
the condition

f (p(ti)) f (p(ti+1) < 0, (11)

and we denote them as p(tj) and p(tj+1), which means the two adjacent sampling points
closest to the surface. Given p(tj) and p(tj+1), the first intersection point of the ray and the
surface p(t∗) can be approximated as p(t̂∗) by linear interpolation:

p(t̂∗) = 0 + t∗

t∗ =
f (p(j))tj+1 − f (p(tj+1))tj

f (p(tj))tj+1 − f (p(tj+1))tj
.

(12)

Subsequently, we add the point p(t̂∗) to the point set P, to obtain a new point set
P′ = P ∪ p(t∗), and we use P′ to produce the final volume rendering color:

C′volume = C′(o, v) =
n

∑
i=0

w(ti)c(ti) + w(t̂∗)c(t̂∗). (13)

As C(t, v) is updated to C′(t, v),4c will also be updated to

4′c = C′volume − Csur f ace

=
n

∑
i=1

w(ti)c(ti) + w(t̂∗)c(t∗)− c(t∗)

=
n

∑
i=1

w(ti)c(ti) + (w(t̂∗)− 1)c(t∗) + c(t̂∗)− c(t∗)

= 4′weight + c(t̂∗)− c(t∗)

= 4′weight +4interp.

(14)

This formula indicates that 4weight and 4disc are updated to 4′weight and 4interp, respec-
tively, after interpolation, where4interp is a bias caused by linear interpolation and is at
least two orders of magnitude smaller than4disc.

4.1.2. Weight Regularization

To alleviate the updated weight bias 4′weight, we propose Lweight, to regularize the
weight distribution:

Lweight =
n

∑
i=1

w(ti)|ti − t∗|. (15)

Lweight aims to penalize anomalous weight distributions, such as those that are far from
the surface but have large weight values, thus indirectly driving the weight distribution
to shrink towards the surface. Theoretically, as w(t) tends to δ(t− t̂∗), a delta distribution
centered at t̂∗,4′weight will tend to zero, and volume rendering will produce the same result
as surface rendering.

Incidentally, Mip-NeRF 360 [31] employs a regularization loss function called Ldist,
which is similar to Lweight. However, Ldist is calculated by a double integration. For a ray
with n sampling points, Ldist’s time complexity is O(n2), while Lweight’s is O(n).

4.1.3. Color Constraints

With C′volume, the color loss of volume rendering can be defined as

Lvol =
∣∣C′volume − CGT

∣∣, (16)
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where CGT is the true color value at the pixel through which the ray p(t) passes.
Based on previous interpolation operations, the surface-rendered color is readily

available, i.e., Csur f ace = c(t∗). We use it to produce another color loss:

Lsur f =
∣∣∣Csur f ace − CGT

∣∣∣. (17)

In fact, Lsur f not only optimizes the color at the surface, but also implicitly includes
the constraint ∑n

i=1 w(ti) > 0.
Ultimately, the color loss of our framework is defined as

Lcolor = Lsur f + Lvol . (18)

4.2. Geometric Constraints

To alleviate the geometric ambiguity described in Section 2.3, we introduce (1) photo-
metric consistency constraints [27], and (2) point constraints, to supervise the learned scene
geometry on the SDF representation.

4.2.1. Photometric Consistency Constraints

Let the view to be rendered be the reference view Ir, and let its neighboring views
be the source views {Ii|i ∈ {1, ..., m}}. If the ray p(t) and the pixel Ir(x) in the reference
view it passes through are given, we can find the surface intersection point p(t̂∗), as de-
scribed in Section 4.1.1. And, once p(t̂∗) is found, its projections in the source views
{Ii(xi)|i ∈ {1, . . . , m}} can be located by a homography matrix Hi,

xi = Hix

Hi = Ki(RiRT
r −

Ri(RT
i ti − RT

r tr)nT

d
)K−1

r ,
(19)

where Kr and Ki, and Rr and Ri, and ti and tr are the internal calibration matrices, rotation
matrices, and the translation vectors of the views Ir and Ii, respectively. Note that n and d
come from the plane tangent to the surface at the point p(t̂∗):

nT p(t̂∗) + d = 0. (20)

Formula (19) actually describes the relationship between the projections of point p(t̂∗)
in different views. In addition, this relation can be extended to pixel patches. If X and Xi
are the patches centered at x and xi, respectively, then we have Xi = HiX.

Intuitively, if p(t̂∗) is indeed a surface point, then its projections in different views
should be consistent. Therefore, we construct a loss function, to supervise the surface we
find by measuring the photometric consistency between X and Xi.

Specifically, we use normalization cross-correlation as the photometric consistency
metric between patches, and this can be computed by

NCC(X, HiX) =
Cov(X, HiX)√

Var(X, HiX)
, (21)

where Cov and Var denote covariance and variance, respectively. To deal with occlusions,
the 4 best NCC scores in {NCC(X, HiX)|i ∈ {1, ..., m}} are selected, for calculating the
final photometric consistency loss [24]:

Lphoto =
∑4

i=1 1− NCC(X, HiX)

4
. (22)
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4.2.2. Point Constraints

Consider that current neural rendering pipelines require images with known camera
poses that are typically estimated from structure-from-motion (SFM) [5]. Actually, SFM
also reconstructs sparse 3D points. Although these points inevitably suffer some noise,
they still have some accuracy. Meanwhile, since we are using an end-to-end framework,
the noise can be corrected, to a certain extent, during optimization. Therefore, we use
these reconstructed points prec to supervise f directly. For those scenes with sparse input
views, e.g., the LEVIR-NVS scenes described by 21 images, since the time cost of executing
MVS is cheap and can be limited to 10 min, we proceed to execute MVS [6] and use its
reconstructed points as prec:

LSDF = ∑
p∈prec

1
N
| f (p)|, (23)

where N is the number of points that prec contains. If we assume that any point p in prec
is on the real surface, and that the SDF function f does capture the surface correctly, then
f should satisfy f (p) = 0, p ∈ prec. Therefore, LSDF encourages f to fit the coordinate
distribution of prec.

Because the points generated by MVS [6] are oriented, we regard the normals of these
points as additional geometric clues, and we use them to constrain the predicted normals
computed with automatic differentiation on function f :

Lnorm = ∑
p∈prec

1
N

∣∣∣∣ ∇p( f (p))
‖∇p( f (p))‖2

− n(p)
∣∣∣∣. (24)

4.3. Spherical Sampling

Because many BlendedMVS scenes contain a lot of background information (such as
the sky), modeling the background is necessary. As NeRF++ [32] did, we divide the scene
space into an inner-sphere space and an outer space. The inner-sphere space is responsible
for modeling the foreground and it is represented by the functions of f and c described
in Section 3.1, while the outer space is responsible for modeling the background, and it is
represented by a density-based neural field.

When sampling points, previous works first sampled in a sector space and then
assigned the sampling points in the inner-sphere space to the function f , and the rest to
the density-based neural field. Since the number of sampling points on each ray is fixed,
this approach actually reduces the sampling points in the inner space and increases the
sampling points in the outer space. This goes against our intention of allocating the main
attention to the foreground, because we are primarily concerned with the quality of the
surface reconstruction in the inner space. Therefore, we propose to sample directly in the
inner space, as shown in Figure 4b. Specifically, we achieve this by finding the depths of
the intersections where the ray enters and exits the inner space, as shown in Algorithm 1
and Figure 4c.

Algorithm 1 Spherical sampling algorithm

Input: the camera position o, i.e., the starting point of the ray
the view direction v along the ray
the spatial origin position o′

the radius of the inner space r
Output: the depth range to sample along the ray [tn, t f ]

1: Calculate the projection length of the vector o− o′ in the ray direction: l = |(o− o′)v|.
2: Calculate the length of the right-side BC of the right triangle4ABC: h = (r2 − l2)1/2.
3: Calculate the length of the right-side CD of the right triangle4ABC: d = (r2 − h2)1/2.
4: Determine the sampling range along the ray [tn, t f ]: tn = l − d, t f = l + d.
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Figure 4. (a) The sector sampling space used by most methods, (b) the spherical sampling space that
we use, (c) the illustration of Algorithm 1.

Implementation Details

Similar to [8,13], the functions of f and c are encoded by an 8-layer and a 4-layer MLP
with 256 hidden units, respectively, while the function r is encoded by the same network
structure as [8]. We sample 2048 rays per batch. For each ray, we first sample 32 points
uniformly and then sample 96 points hierarchically. We train our model for 50k iterations
with about 5 h on a single NVIDIA RTX3090 GPU.

The overall loss we use during training is defined as

L = Lcolor + αLweight + βLphoto + LSDF + γLnorm + λLE, (25)

where LE is the Eikonal regularization [33] for regularizing the gradients of the SDF function.
In our experiments, we empirically set α = 0.1, β = 0.2, and γ = λ = 0.1, to control the
contribution of each loss to the error gradient. The patch size used to compute Lphoto was
5× 5, which was smaller than the patch size of 11× 11 used in most methods, since we
found that using a large patch size might cause occlusions in remote sensing scenes.

After training, we use the marching cube algorithm [34] at 5123 resolution, to extract a
triangular mesh from the function f .

5. Experiments
5.1. Exp Setting
5.1.1. Dataset

Our method was evaluated on two datasets: BlendedMVS and LEVIR-NVS. Views of
these two datasets are shown in Figure 5.

The BlendedMVS [35] dataset is a large-scale dataset designed to evaluate the perfor-
mance of 3D reconstruction algorithms. We selected eight scenes captured in UAV view
from the low-resolution BlendedMVS dataset, to test our method. The number of images in
each scene ranged from 75 to 472, and the resolution of each image was 768 × 576.

The LEVIR-NVS [20] dataset includes 16 remote sensing scenes, and its views resemble
satellite views that are taken from high angles. We evaluated our method’s performance on
all scenes; each scene contained only 21 RGB images with a resolution of 512 × 512 pixels,
thus leading to a limited range of visual field variations.
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Figure 5. An illustration of (a) the BlendedMVS dataset and (b) the LEVIR-NVS dataset. More details
about these two datasets can be found in Appendix A Figures A1 and A2. Each red dot in the figure
represents a camera.

5.1.2. Baseline

Three typical scene reconstruction solutions were compared to our approach, including
the traditional MVS method, COLMAP [6], the neural-volume-rendering-based method,
NeuS [13], and the neural-multiplanar-representation-based method, ImMPI [20].

For COLMAP [6], the parameter trim was set to zero, when reconstructing the meshes.
For NeuS [13], we also sampled 2048 rays per batch, and we set the number of iterations

to 50k, while leaving other settings unchanged.
For ImMPI [20], we only evaluated its performance on the LEVIR-NVS dataset, because

it does not consider the problem of handling scenes that contain background elements, such
as sky and vistas, which are common in the BlendedMVS dataset. Additionally, we used
two versions of ImMPI [20] during comparison. One version, denoted as ’ImMPI∗’, was
first pre-trained on WHU [36] and then trained with 11 views. The other version, denoted
as ’ImMPI†’, was not pre-trained, but was trained using all 21 images.

5.1.3. Evaluation Metrics

Similar to MVSNet [37], we evaluated the surface reconstruction performance by both
the distance metric [22] and the percentage metric [38]. Assuming that S1 represented the
ground truth points and that S2 represented the points sampled from the reconstructed
surface, the chamfer distance from S1 to S2 was considered as the evaluation metric for
reconstruction accuracy (Acc):

Acc = dCD(S1, S2) =
1
|S1| ∑

x∈S1

min
y∈S2
‖x− y‖2. (26)

The charmful distance from S2 to S1 was considered as the evaluation metric for
reconstruction completeness (Comp):

Comp = dCD(S2, S1) =
1
|S2| ∑

x∈S2

min
y∈S1
‖x− y‖2. (27)
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The overall score was defined as the mean of accuracy and completeness. The per-
centage metric measured accuracy and completeness in a similar manner, by introducing a
distance threshold, and it evaluated the overall performance by F-score.

5.2. Results

We first compared the surface reconstruction results on BlendedMVS, which are
shown in Figure 6 and Table 1. It can be observed that the reconstructed surfaces from
COLMAP [6] were noisy, while NeuS [13] struggled with capturing accurate geometric
structures using only color constraints. By contrast, UniRender achieved a balance between
precise geometry and smooth surfaces.

Table 1. Quantitative surface reconstruction results on the BlendedMVS dataset. More details are
shown in Appendix A Table A1.

Method
Distance Threshold = 0.5

Acc↓ Comp↓ Overall↓ Acc↑ Comp↑ F-Score↑

COLMAP 0.182 0.284 0.233 78.62 77.53 72.33
NeuS 0.334 0.292 0.313 46.37 59.79 50.86

UniRender 0.156 0.098 0.127 82.70 96.86 88.87

Figure 6. Quantitative surface reconstruction results on the BlendedMVS dataset.

Then, we performed similar experiments on the LEVIR-NVS dataset, and the results
are shown in Figure 7 and Table 2. In contrast to the BlendedMVS dataset, the scenes
in LEVIR-NVS had sparse views, which caused a relative decline in COLMAP [6]’s per-
formance, particularly in marginal regions. NeuS [13] seemed to adapt better to the
LEVIR-NVS dataset, but it performed poorly in near-ground regions.
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Figure 7. Qualitative surface reconstruction results on the LEVIR-NVS dataset.

Table 2. Quantitative surface reconstruction results on the LEVIR-NVS dataset. More details are
shown in Appendix A Table A2.

Method
Distance Threshold = 0.5

Acc↓ Comp↓ Overall↓ Acc↑ Comp↑ F-Score↑

COLMAP 0.202 0.211 0.207 86.79 91.15 88.79
NeuS 0.255 0.258 0.256 62.68 81.43 68.50

UniRender 0.174 0.192 0.183 90.39 95.17 92.50

We also show the depth estimation results on the LEVIR-NVS dataset in Table 3 and
Figure 8, in which the mean absolute error (MAE) was used as the evaluation metric. It
can be seen that both imMPI∗ and imMPI† had a large MAE, but that the imMPI† without
pre-training had the largest MAE. NeuS struggled with scenes, such as the square. And,
except for Unirender, all the methods had difficulty estimating accurate depth information
for the facades of high-rise buildings.

Table 3. Quantitative depth estimation results on the LEVIR-NVS dataset. Here, ImMPI ∗ was first
pre-trained on the WHU dataset and then fine-tuned with 11 views from the LEVIR-NVS dataset.
ImMPI † was directly trained using all 21 views of the LEVIR-NVS dataset.

ImMPI ∗ ImMPI † NeuS UniRender

MAE↓ 0.832 1.027 0.650 0.254

Given that UNISURF [18] is a work similar to UniRender, we further compared the
3D reconstruction results between them. As illustrated in Table 4 and Figure 9, it was
evident that UNISURF [18] significantly lagged behind UniRender, in both numerical
metrics and visualization.

Table 4. Quantitative surface reconstruction results of UNISURF and UniRender.

Scene

Distance

UNISURF UniRender

Acc↓ Comp↓ Overall↓ Acc↓ Comp↓ Overall↓

scene1 of BlendedMVS 0.593 0.583 0.587 0.265 0.325 0.295
scene02 of LEVIR-NVS 0.543 0.509 0.526 0.268 0.275 0.271
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Figure 8. Visualization of the MAE between true and estimated depth: the darker the color, the greater
the error.

Figure 9. Qualitative surface reconstruction results of UNISURF and UniRender.

5.3. Discussion
5.3.1. Biases Elimination Verification

To study the effectiveness of our method for bias elimination, we used NeuS [13] as the
baseline, and we conducted experiments on the LEVIR-NVS dataset with different settings:

• (a) using a sampling strategy that first sampled 64 points uniformly and then sampled
64 points hierarchically.

• (b) using a sampling strategy that first sampled 32 points uniformly and then sampled
96 points hierarchically.

• (c) replacing the rendering scheme of NeuS [13] with our proposed rendering scheme,
and using the same sampling strategy as (b).

• (d) adding all the geometric constraints based on (c).

As the results show in Figure 10, (a) unsurprisingly produced obvious color bias and
weight bias during rendering, and outputted a low quality surface with many holes, while
(b) showed that simply changing the sampling strategy did not help eliminate biases and
that the reconstructed surface remained poor. Gratifyingly, with the unbiased rendering
scheme, (c) significantly reduced the biases, while the holes in the reconstructed surface
were filled, and buildings’ outlines were improved. Finally, with the geometric constraints,
(d) further tended the weight distribution to a delta function, and details such as shrubs
were shown on the reconstructed surface.
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We also show the SDF distribution and textured surfaces with settings (a,d) in Figure 11.
Comparing (a,b) and (c,d), it can be seen that the proposed rendering scheme not only
produces reasonable colors at surfaces, but also facilitates the fitting of the SDF distribution
to the remote sensing scenes. Because of the remote sensing scenes, we wish the SDF
distribution to have only one zero value in the vertical direction.

Figure 10. An illustration of the bias elimination effect with different settings. In (a,b), the weight
and density distributions are scattered, whereas in (c,d), the weight distribution approximates a delta
function and the density distribution approximates a step function.

Figure 11. The SDF distribution and textured surfaces with different settings. Where positive level
sets are in blue, negative level sets are in red, and the zero level sets are depicted by gray lines.
(c,d) show a consistent trend of decreasing SDF values from above to below the surface, aligning with
our SDF modeling assumption. That is, above the surface, the SDF should be >0, and below it, <0.
Conversely, (a,b) appear to depict land as floating objects.



Remote Sens. 2023, 15, 4634 17 of 22

5.3.2. Optimization of the Parameters s−1

As described in Section 3.3, s−1 is a trainable parameter, which controls the slope of
the density distribution near the surface and also is the standard deviation of the weighting
distribution. In addition, it reflects how well the networks fit a scene. When training is
complete, the smaller the parameter, the steeper the slope of the density function around
the surface, and the more the weight distribution tends towards a delta distribution. This
indicates that the network fits the scene better. Figure 12 illustrates the degree to which
NeuS [13] and UniRender are optimized for parameter s−1.

Figure 12. An illustration of parameter s−1 and its corresponding density distribution and weight
distribution near the surface. When the SDF network mis-estimates the position of the surface (when
the normalized space is restored to the true scale of the scene, the error may be magnified hundreds of
times), a loose weight distribution may smooth out the error, through color integration (or weighted
summation) operation, thus failing to produce an effective error gradient. By contrast, a compact
weight distribution can accurately reflect the error.

5.3.3. Ablation Study

To evaluate the effectiveness of the individual modules that we propose, we conducted
further ablation studies on the BlendedMVS dataset. We adapted NeuS [13] as the baseline,
and we selectively added these modules to it. As shown in Figure 13, the baseline produced
severely distorted geometric surfaces with large holes. Model A produced smooth and
continuous surfaces, but only approximated the real geometry. Model B showed an effective
enhancement to the geometric quality, but it also produced redundant surfaces and holes.
Model C yielded a reconstructed surface with no obvious geometric errors. However,
Model D provided a more detailed result. In summary:

• The unified rendering scheme tends to produce smooth and continuous surfaces,
and improves geometric accuracy to some extent.

• The geometric constraint mechanisms are effective in improving the quality of geo-
metric reconstruction.

• The spherical sampling strategy can facilitate the capture of detail.

One point worth noting is that although Mode A was optimal, in terms of the numerical
results in Table 5, its visualization results were not as good. A reasonable explanation for
this contradiction is that there were plenty of redundant surfaces located on the back of
the visible surfaces in all cases, except for Model A, as shown in Figure 14. The redundant
surfaces severely reduced the Acc value for all the models, except Model A, while Model A
produced a relatively clean surface, thus resulting in a lower overall value.
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Figure 13. An illustration for ablation study.

Figure 14. The SDF distribution with different ablation models.

Table 5. Quantitative results on ablation models.

Method Unified
Rendering

Geometric
Constraints

Sphere
Sampling Acc↓ Comp↓ Overall↓

Baseline 0.19959 0.01143 0.10551
Model A X X 0.08909 0.00666 0.04787
Model B X X 0.12987 0.00163 0.06575
Model C X X 0.11727 0.00171 0.05949

Full model X X X 0.10151 0.00154 0.05153

6. Conclusions and Outlook
6.1. Conclusions

We present UniRender, a novel 3D surface reconstruction method with neural render-
ing. In this work, we first analyzed the biases in current volume rendering methods, and
we developed an approximately bias-free rendering scheme that unifies volume rendering
and surface rendering through a natural transition. Then, we introduced several multi-
view geometric constraints into the rendering pipeline, to improve its ability for capturing
accurate geometry. Finally, a spherical sampling algorithm was proposed, for allocating
more attention to the space with which we were concerned. Extensive experiments on
different remote sensing datasets showed that UniRender outperforms other types of 3D
surface reconstruction methods by a wide margin.

The main significance of this work is that it identifies the biases that exist in the current
volume rendering branch and it proposes a unified rendering strategy to address them.
This rendering strategy can be seamlessly integrated into other 3D rendering frameworks,
offering universal applicability. Additionally, this work introduces new ideas for jointly
optimizing multi-view geometric constraints within neural rendering. Finally, extensive ex-
periments demonstrated the effectiveness of the proposed method and they also promoted
the application of neural rendering in remote sensing.
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6.2. Outlook

Similar to other neural rendering methods, it takes several hours to train our model
for each scene. This is because forward inference and backpropagation for each spatial
coordinate point by MLPs consume a significant amount of computational power. Some
recent advancements in computer vision have tried to expedite the rendering process,
through voxel-based architecture [39,40]. Although these techniques were not originally
designed for 3D reconstruction and remote sensing scenarios, they hold significant promise
of alleviating the current time-consuming challenges.

Moreover, UniRender currently does not have the ability to perform large-scale surface
reconstruction. This is because the fidelity of scene reproduction by MLPs with finite
parameters decreases as the scene’s scale increases. This is akin to representing a scene with
a fixed-size image, where larger scenes result in lower spatial resolution images. Therefore,
constructing neural rendering models for large-scale scenes remains a significant challenge.
Fortunately, recent approaches, like Mega-NeRF [41] and Block-NeRF [42], have suggested
a potential solution: partitioning a large scene into multiple sub-blocks and employing
multiple models to process these sub-blocks in parallel.

In summary, building a faster framework with large-scale processing capability is our
future endeavor.
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Appendix A

Figure A1. The scenes in the Blended MVS dataset that we used in our work, from left to right and
from top to bottom, are scene1 to scene8, respectively. The visualization of the camera position can be
found in the main text, in Table 5.

https://github.com/SunshineWYC/ImMPI
https://github.com/SunshineWYC/ImMPI
https://github.com/YoYo000/BlendedMVS
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Figure A2. All the scenes in the LEVIR-NVS dataset, from left to right and from top to bottom, are
scene00 to scene15, respectively. The visualization of the camera position can be found in the main
text, in Table 5.

Table A1. Quantitative surface reconstruction results on the BlendedMVS dataset. A summary of
this table is shown in the main text, in Table 1.

Scene

Distance

COLMAP NeuS UniRender

Acc↓ Comp↓ Overall↓ Acc↓ Comp↓ Overall↓ Acc↓ Comp↓ Overall↓
scene1, 5bf18642c50e6f7f8bdbd492 0.2087 0.2763 0.2425 0.2765 0.2207 0.2486 0.1751 0.1046 0.1398
scene2, 58eaf1513353456af3a1682a 0.2281 0.5860 0.4071 0.2933 0.2613 0.2773 0.1975 0.1252 0.1613
scene3, 5b558a928bbfb62204e77ba2 0.2581 0.3027 0.2804 0.5262 0.5168 0.5215 0.2427 0.2086 0.2256
scene4, 5b6eff8b67b396324c5b2672 0.1746 0.6420 0.4083 0.3049 0.2608 0.2829 0.1276 0.0708 0.0992
scene5, 58c4bb4f4a69c55606122be4 0.0951 0.0020 0.0485 0.1995 0.0114 0.1055 0.1015 0.0015 0.0515

scene6, 5bd43b4ba6b28b1ee86b92dd 0.0996 0.0267 0.0631 0.0044 0.0035 0.0039 0.0031 0.0023 0.0027
scene7, 5b62647143840965efc0dbde 0.2200 0.1599 0.1899 0.5461 0.5257 0.5359 0.2000 0.1245 0.1623
scene8, 5ba75d79d76ffa2c86cf2f05 0.1739 0.2826 0.2282 0.5253 0.5393 0.5323 0.2008 0.1476 0.1742

mean 0.1823 0.2848 0.2335 0.3345 0.2924 0.3135 0.1560 0.0981 0.1271

Table A2. Quantitative surface reconstruction results on the LEVIR-NVS dataset. A summary of this
table is shown in the main text, in Table 2.

Scene

Distance

COLMAP NeuS UniRender

Acc↓ Comp↓ Overall↓ Acc↓ Comp↓ Overall↓ Acc↓ Comp↓ Overall↓

scene00, Building#1 0.2900 0.3456 0.3178 0.5010 0.6288 0.5649 0.2648 0.3249 0.2948
scene01, Church 0.2261 0.2151 0.2206 0.1859 0.1959 0.1909 0.1616 0.1666 0.1641
scene02, College 0.3011 0.2722 0.2867 0.3658 0.3515 0.3587 0.2681 0.2748 0.2714

scene03, Mountain#1 0.0894 0.0954 0.0924 0.0822 0.0981 0.0901 0.0907 0.1123 0.1015
scene04, Mountain#2 0.0895 0.1151 0.1023 0.0744 0.0943 0.0843 0.0730 0.0977 0.0854
scene05, Observation 0.2570 0.2218 0.2394 0.3362 0.2865 0.3114 0.2005 0.1608 0.1806
scene06, Building#2 0.2851 0.2784 0.2817 0.2912 0.2554 0.2733 0.2698 0.2753 0.2725

scene07, Town#1 0.2334 0.2368 0.2351 0.2964 0.2211 0.2588 0.1762 0.1581 0.1671
scene08, Stadium 0.1634 0.1572 0.1603 0.2320 0.1909 0.2114 0.1377 0.1543 0.1460
scene09, Town#2 0.1608 0.1749 0.1679 0.3309 0.3684 0.3497 0.1539 0.1753 0.1646

scene10, Mountain#3 0.0835 0.1037 0.0936 0.0729 0.0885 0.0807 0.0692 0.0861 0.0776
scene11, Town#3 0.1818 0.1479 0.1648 0.1669 0.1248 0.1459 0.1633 0.1403 0.1518
scene12, Factory 0.2566 0.3111 0.2839 0.3917 0.4597 0.4257 0.2395 0.2953 0.2674

scene13, Park 0.1791 0.2448 0.2119 0.3356 0.3233 0.3294 0.1941 0.2628 0.2284
scene14, School 0.1875 0.1910 0.1892 0.2016 0.2164 0.2090 0.1532 0.1567 0.1549

scene15, Downtown 0.2593 0.2748 0.2671 0.2153 0.2273 0.2213 0.1835 0.2405 0.2120

mean 0.2116 0.2027 0.2072 0.2582 0.2550 0.25664 0.1926 0.1749 0.1838
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