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Abstract: This work reports an information-based landmarks assisted simultaneous localization
and mapping (InfoLa-SLAM) in large-scale scenes using single-line lidar. The solution employed
two novel designs. The first design was a keyframe selection method based on Fisher information,
which reduced the computational cost of the nonlinear optimization for the back-end of SLAM by
selecting a relatively small number of keyframes while ensuring the accuracy of mapping. The
Fisher information was acquired from the point cloud registration between the current frame and
the previous keyframe. The second design was an efficient global descriptor for place recognition,
which was achieved by designing a unique graphical feature ID to effectively match the local map
with the global one. The results showed that compared with traditional keyframe selection strategies
(e.g., based on time, angle, or distance), the proposed method allowed for a 35.16% reduction in the
number of keyframes in a warehouse with an area of about 10,000 m2. The relocalization module
demonstrated a high probability (96%) of correction even under high levels of measurement noise
(0.05 m), while the time consumption for relocalization was below 28 ms. The proposed InfoLa-
SLAM was also compared with Cartographer under the same dataset. The results showed that
InfoLa-SLAM achieved very similar mapping accuracy to Cartographer but excelled in lightweight
performance, achieving a 9.11% reduction in the CPU load and a significant 56.67% decrease in the
memory consumption.

Keywords: SLAM; keyframe selection; relocalization; lidar; accurate indoor localization

1. Introduction

The widespread utilization of mobile robots in factories and public spaces necessitates
the implementation of simultaneous localization and mapping (SLAM) algorithms in
applications characterized by large areas and substantial numbers of laser frames [1]. Two-
dimensional laser SLAM is increasingly favored due to the lower costs of the single-line lidar
and reduced computational requirements in comparison with 3D laser SLAM. However,
the current mainstream 2D laser SLAM algorithm (represented by Cartographer [2]) is
severely challenged in large area applications [3]. The main issues can be summarized
as follows:

(a). As the scale of working space expands, the computational cost for back-end
optimization increases substantially, bringing more challenges to the traditional keyframe
selection method. Hence, a novel keyframe selection method should be designed to deal
with a large number of laser frames.

(b). With the increase in running time, the drift of pose will be an inevitable problem,
leading to the failure of the pose estimation. Accurate relocalization is therefore necessary
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for quickly recovering from pose estimation failures and acquiring accurate global pose
estimation with the prior map. Therefore, a robust back-end is needed to correct the robot’s
pose, reduce the localization covariance, and update the global trajectory.

(c). The dynamic environment in the working space adversely affects the accuracy
and robustness of SLAM algorithms, making it crucial to prevent accidents such as colli-
sions. Consequently, there is a need to mitigate the impact of environmental changes on
localization and enhance the system robustness.

To overcome the above challenges, this work proposes the following strategies:
(1) To increase the localization accuracy and robustness and reduce map update errors

caused by highly dynamic scenes in industrial applications, landmarks are fused into the
point cloud map, and then the map is updated based on the match of landmarks.

(2) An efficient keyframe selection method, as is shown in Figure 1a, is proposed
according to the Fisher information between the current frame and the previous keyframe.
The traditional keyframe selection methods, such as time, angle, or distance threshold, are
no longer utilized in the proposed approach.
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Figure 1. (a) The process of keyframe selection: Initially, the Fisher information is computed between
the current frame and the latest keyframe. As the Fisher information gradually drops and the count
of low-information frames reaches a predefined threshold (referred to as the “information break”), a
new keyframe is chosen. (b) The overview of relocalization: A unique ID is assigned to each local
landmark map, which is then used to match with the global landmark map. This facilitates the
discovery of closed loops and enhances opportunities for relocalization.

(3) A unique graphical feature ID is designed as a global descriptor for place recogni-
tion. This ID is mainly used for matching the local map with the global one to acquire the
global pose, as is shown in Figure 1b. The proposed method enables the InfoLa-SLAM to
recover the pose rapidly when the robot gets lost.

The rest of the paper is organized as follows. Section 2 provides a comprehensive
review of keyframe selection and relocalization methods in SLAM. In Section 3, the structure
of the proposed InfoLa-SLAM is introduced, followed by the description of the novel Fisher
information-based keyframe selection method and the adaptive relocalization method.
Finally, InfoLa-SLAM is validated using laser scan data collected from two scenarios: one
with a wide corridor of about 600 m2 and the other a warehouse of about 10,000 m2.
The accuracy and lightweight performance of InfoLa-SLAM were also compared with
Cartographer, as is presented in Section 4.
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2. Related Work
2.1. Keyframe Selection

Keyframe selection methods allow the system to choose a set of representative frames
as keyframes to perform pose estimation and map construction between them. In general,
the keyframe selection criteria can be categorized into heuristic-based methods, information-
theoretic methods, and learning methods [4].

One of the traditional methods for keyframe selection, based on heuristics, involves
determining keyframes by setting a certain threshold to the translation and rotation of the
robot, e.g., in the work of Lin et al. [5] and Lio-Sam [6], when the change in the robot’s
pose exceeds the established threshold, the current laser frame is designated as a keyframe.
Similarly, SVO [7] depends on the distance between frames and time threshold to select
a keyframe. DSO [8] also selects a keyframe according to the changes of field of view,
occlusions, and exposure time of the camera. In addition, some other classical method
like ORB-SLAM [9] uses a fixed time interval as a criterion. Another heuristic-based
approach to keyframe selection utilizes the number of detected features as the criterion,
i.e., when the number or proportion of detected features in the current frame falls within
a predetermined threshold, a new keyframe is selected. For example, Qin et al. employ
this method to select keyframes in VINS-MONO [10]; a similar approach is also applied by
Harmat et al. [11]. Xie [12] further proposes a repetitive motion detection method to reduce
redundant keyframes due to the back-and-forth movement of the camera.

The most widely used Cartographer [2] creates a new submap when the mapped
location or size of the area has exceeded a certain threshold. Additionally, Cartographer
attempts to use distance and time threshold to select new keyframes. However, if Car-
tographer runs for an extended period of time, the number of submaps to be optimized
will increase, leading to a shortage of computational resources and a reduction in the
localization efficiency. Our system follows a similar approach, in which a keyframe is
selected to represent a portion of the overall map. However, when dealing with large-scale
scenes, such approaches can lead to an excessive number of keyframes, resulting in wasted
computational resources and reduced system performance.

Another approach to select keyframes is the information-theoretic approach, which is
based on more rigorous metrics. For example, Das et al. [13] propose a keyframe selection
method for multi-camera SLAM that uses entropy as a criterion. This information-theoretic
method uses the entropy of the distribution of feature points from each camera to determine
the keyframe. The selected keyframe represents the distribution of feature points in the
environment. Similarly, Davide Scaramuzza et al. [4] propose an entropy-based keyframe
selection method, which selects keyframes based on the uncertainty of the pose of the
keyframe bundle with respect to the current map. The method employs the concept of
differential entropy to estimate the uncertainty of the current pose and uses this information
to determine whether a new keyframe should be inserted. M-LOAM by Liu [14] uses the
information matrix to select a keyframe, i.e., when a new frame is acquired, M-LOAM
first extracts the feature points and edge points from the lidar data like LOAM [15] does,
then it aligns the feature points and edge points with the previous keyframe to estimate
motion. The information matrix is utilized to assess the quality of the pose estimation. If the
information matrix of the current frame falls below a predetermined threshold, the current
frame is selected as a keyframe. Following their work, the current InfoLa-SLAM also
adopts the information matrix for keyframe selection; however, our approach distinguishes
itself by considering not only the information derived from the current frame but also the
information acquired from all frames between the current frame and the previous keyframe.
By incorporating this additional information, we make more comprehensive and informed
decisions when selecting keyframes, leading to improved performance in various scenarios.

Furthermore, there are also research on how to use the learning method to select
keyframes. For example, Piao [16] proposes a keyframe selection method that utilizes
the IMU preintegration between two image frames to estimate the current pose, and the
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model weight is automatically updated by continuously learning whether the value of the
preintegrated IMU data and the result of the input frame is keyframe or not.

2.2. Relocalization

In addition to keyframe selection, relocalization (i.e., place recognition) is another one
of the most important problems in SLAM, which significantly affects accuracy and stability.
This module is necessary when a robot enters a previously mapped environment, as well
as when the robot gets lost in the course of moving. Current studies on relocalization can
be categorized into image-based [17–21] and lidar-based methods [22–28].

For place recognition, the descriptors are usually used to represent the geometric
profile of the point clouds or features in an image. BRIEF [21] is a feature descriptor that
is commonly used in visual SLAM, which generates binary codes by comparing pairs of
pixels to describe local features of the image. Similarly, 3D-SIFT [29] is another type of
descriptor for geometric features. The descriptor is constructed using a set of histograms of
oriented gradients (HOG), which are calculated by using a set of gradient orientations and
magnitudes computed from the points in the neighborhood. In addition, 3D-Harris [30] is
a feature detection algorithm and is used to identify distinctive points in an image. It is
based on the 2D Harris corner detection algorithm, which is used to identify corners in the
point cloud. The algorithm calculates a measure of the cornerness of each point based on
the curvature of the surface in the neighborhood and selects points with high cornerness as
interest points.

In addition, various descriptors can be utilized in lidar-based SLAM. Shutong Jin [22]
proposes a lidar-based place recognition descriptor called SectionKey, which incorporates
both semantic and geometric information to address the challenge of place recognition.
The concept of Sectionkey is composed of three distinct components, i.e., the number of
semantic clusters, the number of transitions, and the relative topological distance. These
components work together to provide a comprehensive representation of the Sectionkey,
which is then utilized to select a new keyframe. Similarly, Scan Context [27] is a non-
histogram-based global descriptor for 3D lidar scans. It starts by extracting semantic
information from the segmented image or point cloud to identify static main objects based
on their average coordinates. Rings are drawn around each main object, further divided
into sectors to form a grid. The 3D point cloud is projected onto a plane, and the average
height within each grid cell generates a matrix representation. The RingKey is derived
from row averages, while the SectorKey is obtained from column averages. Utilizing the
RingKey provides rotational invariance for extracting candidate frames. Subsequently,
the SectorKey calculates similarity scores between objects in the candidate frames and the
current frame, based on their deviation (yaw angle), to select a new keyframe.

Additionally, recent advancements in computer vision have led to the development of
feature descriptors based on deep learning techniques. These descriptors are generated
with neural network architectures to learn how to extract features from large datasets of
images or point clouds. One example of a deep learning-based descriptor is the SIFT-
CNN [31], which is developed from SIFT. Another example is the PointNet [32] descriptor,
which is a deep learning-based descriptor for 3D point clouds. PointNet has also been used
in tasks such as object recognition and scene segmentation.

3. Methodology
3.1. System Overview

As is shown in Figure 2, InfoLa-SLAM processes real-time lidar point cloud data
through a structured architecture. This mechanism initially identifies a keyframe in order to
construct a submap from the input. Subsequently, areas of high echo intensities, arising from
reflectors, are detected and conserved as landmarks within the submap. The system then
executes point cloud registration to estimate the relative pose, serving as the prediction of
an extended Kalman filter (EKF). Correspondingly, landmarks in each frame are identified
and matched with those of the preceding keyframe, thereby updating the EKF. This is
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followed by the execution of loop closure detection and global optimization, which leverage
the poses of the keyframes. In circumstances involving tracking loss or when prior map
knowledge is available, relocalization is performed. The system receives real-time lidar
point cloud and outputs real-time robot pose and map, enabling accurate localization
and mapping in dynamic environments. The novel approach to keyframe selection and
relocalization will be elaborated in the subsequent parts.
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Figure 2. The structure of the lidar-based InfoLa-SLAM.

3.2. Keyframe Selection Strategy

In this section, the novel keyframe selection strategy proposed in this work is intro-
duced. To begin with, it is necessary to provide a clear and concise explanation of the
related statistical background as follows.

Assume that X is an independent, identically distributed and discrete random variable.
X1, . . . , Xn are a set of samples from X, and x1, . . . , xn are the observed values. They obey a
probability distribution f (x; θ), where θ is a parameter vector. The way to estimate θ is to
maximize the likelihood L(x; θ) with respect to θ, i.e., a maximum likelihood estimation
(MLE). The likelihood function is constructed as follows:

L(θ; x) = ∏n
i=1 f (xi; θ). (1)

Take the logarithm of the likelihood function to acquire the log-likelihood function.
Next, take the derivative of the log-likelihood function with respect to θ, which is defined
as the score function as follows:

s(θ) = ∇log L(θ; x). (2)

According to [33], Fisher information is defined as the covariance of the score function.
If θ is represented as a vector, the Fisher information takes the form of a matrix as follows:

I(θ) = E
[
(s− E(s))(s− E(s))T

]
= E

[
∇log L(θ; x)∇log L(θ; x)T

]
.

(3)
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This matrix represents the reliability of the estimation of θ. The expected value of the
score function, E(s), can be shown to be zero under certain regularity conditions [34]; see
details in Appendix A Equation (A2). Additionally, it can be rigorously established that the
Fisher information matrix, I, is equal to the negative expectation of the Hessian matrix for
the log-likelihood; see details in Appendix A Equation (A5).

I = −E
[
∇2log L(θ; x)

]
= −E

[
Hlog L(θ;x)

]
. (4)

The second derivative of the log-likelihood function, i.e., the Fisher information matrix,
is always multiplied by −1 to ensure that the Fisher information is a positive quantity
because the Fisher information matrix provides the curvature of the log-likelihood function
near its maximum. In addition, the Hessian matrix provides a local approximation of the
Fisher information at the MLE. Thus, in MLE, the information matrix is often treated as the
Hessian matrix as follows:

I(θ) ≈ H(θ). (5)

Additionally, it has been proved that based on the assumptions of asymptotic normal-
ity, consistency, regularity conditions, and independence of the data, the covariance matrix
of the estimator is approximately equal to the inverse of the Fisher information matrix
according to [33,35].

Σθ = I(θ)−1 ≈ H(θ)−1. (6)

For the keyframe selection strategy, the registration between two laser frames is
modeled as an independent and identically distributed discrete random variable, Y. This
variable is assumed to follow a specified probability distribution

Y ∼ N(µ, Σ), (7)

where µ = (δx, δy, δθ) is a mean value vector of pose estimation, and Σ is the covariance
matrix. The calculation of the lidar pose can be formulated as an MLE. In order to estimate
the parameters µ and Σ, we formulate a nonlinear optimization problem and iteratively
converge the formula to the target values through linearization. In this work, the nonlinear
optimization problem is formulated with a residual function f (µ) according to the distance
between corresponding points di in the registration.

f (µ) = di, (8)

where di represents the distance of each corresponding point pair. The optimization
problem can be described as

µ* = arg min F(µ) = arg min∑n
i=1 f (µ). (9)

In this study, the Gauss–Newton method is employed to solve this nonlinear opti-
mization problem, and through this method, the Hessian matrix with respect to µ can be
obtained. Meanwhile, as was discussed before, the Hessian matrix can be considered as
the Fisher information matrix. Thus, the Fisher information matrix contains the result of
this optimization, which is useful in keyframe selection because it takes the correlation of
consecutive scans into account. Therefore, Fisher information can be a powerful tool in
keyframe selection.

To measure the Fisher information from the Fisher information matrix, we consider it as
a linear transformation of the standard normal distribution. The Fisher information matrix
is a real symmetric matrix, with eigenvalues reflecting the scale and eigenvectors reflecting
the rotation. We define the information value (IV) as the sum of the Fisher information of the
sample, using the eigenvalue vector λ of the Fisher information matrix.

IV = tr(I) = ∑n
i=1 λi, (10)
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where I is the Fisher information matrix, and the average information value (AIV) is the
average Fisher information of the sample

AIV =
IV
n

, (11)

where n is the number of the corresponding point pairs.
The average information value is a measure to quantify the Fisher information in the

registration between the current laser frame and the previous keyframe. A larger average
information value indicates a smaller registration error. On the other hand, if the value is
low, or even close to zero, it means that the error of the alignment is large. In our keyframe
selection strategy, the following definitions are provided, as shown in Figure 3.
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Figure 3. An illustration of keyframes (yellow), tracking frames (red), missing frames (blue), and
information breaks. The classification of the frames is based on the Fisher information value ob-
tained through the registration (ICP). The selection of the keyframes, represented by the yellow
boxes, is contingent upon the occurrence of information breaks, caused by a significant number of
missing frames.

Tracking frame: The average information value of the registration between the cur-
rent frame and the previous keyframe is significantly greater than zero. The tracking
frame indicates that there is a strong correspondence between the current frame and the
previous keyframe.

Missing frame: The average information value is close to zero. The missing frame
indicates that there is little correspondence between the current frame and the previous
keyframe, resulting in little Fisher information being obtained from the registration.

Information break: When the number of missing frames exceeds a predetermined thresh-
old, this is defined as an information break. This situation indicates that the Fisher informa-
tion between the current frame and the previous keyframe cannot be acquired anymore.

At last, as demonstrated in Figure 3, our strategy checks whether there is an informa-
tion break. If the information break occurs, the current laser frame is selected as a keyframe.
This method has been demonstrated to be both efficient and lightweight.

3.3. Adaptive Relocalization

As is shown in Figure 4, place recognition is necessary when the robot initializes in
an unknown environment or gets lost while moving. Inspired by SectionKey and Scan
Context for feature description, a unique graphical feature identifier (ID) is designed for
each landmark detected in both the local and global maps, as illustrated in Figure 5. This
identifier serves as the basis for the match between two maps. The graphical feature ID is
constructed according to specific rules, which will be described in detail as follows.
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Figure 4. Illustration of matching of the landmarks between local map and global map. (a) Local and
global frame overlap. (b) The local frame deviates from the global frame because of some factors like
noise (δx, δy, δθ), and a failure in EKF update occurs, which requires the relocalization module to
calculate the transformation between the two frames to acquire the global pose.
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Figure 5. Local landmark map is matched with the global one, as shown in (a). Each landmark on
both the local and global maps is assigned a unique graphical feature ID, shown in (b), which is
constructed by considering the presence or absence of direction vectors within a set of predefined
intervals surrounding the landmark. A, B, C, D represent the detected landmarks.
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(1) Given a set of landmarks z1, . . . , zn in the local map, we calculate all the direction
vectors of each pair of landmarks. This is performed within the 2D local coordinate system.

−→zizj =
(
xi − xj, yi − yj

)T , i 6= j; i, j = 1, . . . , n. (12)

Then the angle of direction vector can be calculated as

αj = arctan
yi − yj

xi − xj
. (13)

(2) In polar coordinates we divide the surrounding area of the landmark zi into
N = 360

θ pieces, as is shown in Figure 5, where θ is the angle resolution. Assume Sk
zi

means
the k-th piece of landmark zi, and each piece is represented by

Sk
zi
= (θ · (k− 1), θ·k], k = 1, . . . , N, (14)

where k is the index of the piece.
(3) Let IDzi represent the complete graphical feature ID of landmark zi. Assume each

interval can only contain at most one direction vector. If the angle of direction vector αj

falls within the interval Sk
zi

, IDk
zi

is then marked as 1; otherwise, it is set to 0. By recording
the presence or absence of the direction vector in each interval, the graphical feature ID of
the landmark zi is obtained, which is only composed of 0 and 1.

IDk
zi
=

{
1, αj ∈ Sk

zi
,

0, else.
(15)

For example, if the direction vector −→z1z3 falls within the interval S4
z1

, ID4
z1

is then
marked as 1. In this way the graphical feature ID of landmark zi is as follows:

IDzi = 0 0 0 1 0 0 0 1 . . . . . . 0 0 0 1 0︸ ︷︷ ︸
N

. (16)

(4) The graphical feature ID of each landmark IDzi can be calculated with (15). An
OR operation is taken to form the complete graphical feature ID of the graph IDz, where z
represents a graph composed of the landmarks. This complete graphical feature IDz is a
representation of the landmarks graph on the map.

IDz = IDz1 ∨ IDz2 ∨ . . . . . . ∨ IDzn . (17)

The complete graphical feature ID of a map IDz can be calculated by four steps:
(1) Determine the direction vectors for current landmark with respect to the surround-

ing landmarks;
(2) Divide the surrounding area into a number of intervals following (14) at the center

of the current landmark;
(3) Mark the corresponding interval according to the direction vector with 0 or 1 to

acquire the graphical feature ID of one single landmark;
(4) Combine the graphical feature ID of each landmark as (17) to form the complete

graphical feature ID of the graph.
However, it is not practical to match with all landmarks on the global map, because

a large number of possible combinations would exhaust the computational resources.
To address this, an adaptive design with two filters is proposed. In the global map,
the selection of landmarks is limited to a specific search region. And the number of
selected landmarks decreases as the distance from the center landmark increases because
the detected landmarks on the local map must be within the range of lidar. To filter out the
mismatch in advance, two filters are proposed:
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(1) The first filter calculates the area of the graph made up of the landmarks in the
local map, ensuring that the corresponding area of the graph in the global map does not
deviate significantly;

(2) The second filter calculates the distance from the centroid of the graph in the local
map to each landmark point, ensuring that the corresponding distances in the global map
do not deviate significantly.

These improvements accelerate the match by reducing the number of candidates that
need to be considered. In addition, this approach is highly robust to noise because of
the design of (14). The following experiments have shown that it can tolerate noise from
sensors or errors in the pose estimation.

Once a match is found, an optimization process is used to solve the rough transforma-
tion between the local and the global frame. This rough transformation is then used as the
initial guess of the iterative closest point (ICP) registration between the global and local
point clouds to refine the current pose estimation.

4. Experiments

A series of experiments were performed to qualitatively and quantitatively analyze
the proposed methods and system. For this work, laser scan data were collected from two
scenarios using a low-cost and short-range single-line lidar: one with a wide corridor of
about 600 m2 and the other a warehouse of about 10,000 m2. The lidar was horizontally
mounted on the top of the robot to obtain a wide field of view. The landmarks were
cylinders with highly reflective surfaces, with a diameter of 10 cm and a height of 30 cm.
To mitigate potential topological ambiguities, landmarks should be prearranged irregularly.
This is because our proposed relocalization method was based on the topological structure
of landmarks. A regular arrangement could reduce the distinctiveness between landmarks,
thus affecting the accuracy of the localization. In addition, if landmarks are viewed
from different directions, the method remains effective, but the performance may be
different according to the shape of landmarks. The cylindrical shape for landmarks is
recommended to ensure consistent visibility of their centers from multiple viewpoints. The
implementation was carried out in C++ programming and executed on a laptop with an
Intel i7-11800H CPU, running Ubuntu Linux. No parallel computing was utilized, and
computation was solely performed using the CPU.

4.1. Keyframe Selection

To validate the effectiveness of the proposed keyframe selection method, Figure 6
illustrates the variations in the average Fisher information between the current frame and
the previous keyframe. Notably, this figure showcases two information breaks, which
trigger the selection of new keyframes. When the average Fisher information approaches
zero, it indicates a missing frame. Once the number of missing frames exceeds a predefined
threshold, an information break is detected, leading to the selection of a new keyframe. In
the experiments conducted in this paper, the optimal threshold for triggering an information
break was set at a fixed value of 30, meaning an information break was detected when
the count of missing frames accumulated to 30. This threshold can be adjusted based on
specific environments; for instance, in compact scenarios, a higher threshold can be set.
Furthermore, the figure also illustrates that as the pose of the current frame deviated away
from the previous keyframe, the average Fisher information of the registration progressively
approached zero, indicating a decreasing correlation between the two frames.

A comparative study of the proposed keyframe selection method and traditional
keyframe selection method was performed in a 600 m2 corridor that contained 2750 laser
scans without loop closure. The traditional keyframe selection method studied here was
based on the distance, angle, or time threshold. As is shown in Figure 7, under similar
localization and mapping performances, the proposed method selected 12 keyframes, while
the traditional method chose 23 keyframes. Therefore, the proposed method reduced the
number of redundant keyframes by 47.83%. Figure 7b demonstrates the ground truth
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map of the corridor, where the landmarks and some obstacles are marked. Compared
with the ground truth, the RMSE values of the maps with the proposed method and
the traditional method were 0.31 and 0.51, respectively, as is shown in Table 1. During
the robot’s movement, vibrations were inevitable. Since the single-line lidar was rigidly
connected to the robot and scanned only a single plane, there would inevitably be some
abnormal frames, such as those caused by unstable lidar leading to tilted and discontinuous
scans. In traditional methods that use fixed motion changes or time intervals to select
keyframes, many keyframes are often extracted because it is unknown whether the current
frame is important. This can result in abnormal frames being chosen as keyframes, and all
subsequent frames will be registered to this faulty keyframe, leading to the accumulation
of errors. This is why the accuracy appears worse in traditional methods. The proposed
method evaluated the correspondence between the current frame and the last keyframe
and did not easily select a new keyframe unless there was an information break. This
avoided the error accumulation caused by choosing many abnormal frames as keyframes,
leading to more accurate pose estimations.
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Figure 6. Curve of average Fisher information values acquired by registration of the current frame
with the previous keyframe. The curve demonstrates a decrease in average Fisher information value
as the distance between the current frame and previous keyframe increases, until it approaches zero.
A large number of missing frames, indicated by low average Fisher information values, result in
information breaks and prompt the selection of a new keyframe.
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Figure 7. (a) An about 600 m2 corridor where the laser frames were collected, with the landmarks
shown in the yellow dashed square. (b) The ground truth of the map. The red dots represent the
landmarks. The shaded areas represent some obstacles, which are marked with pictures. (c,d) A
comparison of the map with the proposed Fisher information-based keyframe selection method and
the traditional method (based on the distance, angle, and time threshold). The number of selected
keyframes in (c) is much less than that in (d).

Table 1. Relative error of maps reconstructed with the proposed and traditional keyframe selec-
tion methods.

Method Area Error (Relative) Point Error (Relative) RMSE

InfoLa-SLAM 6.44% 1.97% 0.31
Traditional method 9.97% 6.34% 0.51

To further evaluate the performance of the keyframe selection strategy in large areas,
we tested its performance in a 10,000 m2 warehouse, as is shown in Figure 8a. Since ground
truth was not available in the warehouse, only a qualitative comparison was made between
the two reconstructed maps. As is shown in Figure 8b,c, under very similar mapping
performances, the proposed approach generated a map using 59 selected keyframes, while
the traditional method utilized 91 keyframes, achieving a significant reduction of 35.16% in
the number of keyframes. These findings underscored the effectiveness of the proposed
approach in minimizing keyframe redundancy. Thus, by achieving the same mapping
result with fewer keyframes, the proposed method can reduce the computational cost
for SLAM.
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Figure 8. A 10,000 m2 logistics warehouse where the dataset was collected (a–c) is a comparison of
the proposed keyframe selection method and a traditional method. Landmarks fused with the point
cloud and trajectory map are shown on the left, and those without the point cloud are presented on
the right. The green dashed rectangle in (b) represents the shelves of warehouse.

4.2. Relocalization

To evaluate the performance of the relocalization module, the warehouse dataset was
used. In order to simulate the pose estimation failures, noise was deliberately introduced
to three positions, depicted by the dashed blue circles in Figure 9a,b.
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Figure 9. Result of the proposed relocalization method. Without relocalization (a) and with relo-
calization (b), the red line represents the real-time localization, the dashed blue line represents the
correct trajectory, and the dashed blue circles represent three artificial added offsets.

It can be seen in Figure 9a that online localization drifted dramatically without relocal-
ization. Conversely, the proposed relocalization was able to acquire an accurate global pose
in a very short period, resulting in a track that mostly aligned with the correct trajectory
(Figure 9b). It demonstrated the effectiveness and accuracy of the relocalization module in
estimating the global pose, even when subjected to artificial perturbations.

To evaluate the sensitivity of the proposed relocalization module to the measurement
noise from sensor, we conducted experiments to assess its successful match probability and
time consumption under different levels of measurement noise, as is shown in Figure 10.
When the level of measurement noise was lower than 0.05 m, nearly all of the local map
could be matched with the global one with a success rate of 96%. The time consumption for
the relocalization module was within 28 ms. This indicated that the proposed relocalization
method was highly reliable and efficient even under high levels of measurement noise.
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Figure 10. The impact of measurement noise on the relocalization module. When the measurement
noise is less than 0.05 m, almost all local map is correctly matched with the global one. The time
consumption is within 28 ms.
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4.3. Lightweight Performance

In order to assess the lightweight performance of InfoLa-SLAM, extensive testing was
conducted using the corridor dataset, and a comparative analysis was performed against
the widely used Cartographer. In Cartographer, the default configuration was employed,
with the “use_landmarks” and “use_pose_extrapolator” options set to true. Both systems
were subjected to the same dataset and demonstrated similar mapping results. When
compared with the ground truth, as is shown in Table 2, the proposed system exhibited a
modest area error of 2.9% relative to the ground truth, whereas the Cartographer presented
an area error of 5.5%. Furthermore, the root mean square error (RMSE) of the proposed
system was 0.39, as opposed to 0.49 for Cartographer. The mapping of both systems is
shown in Figure 11.

Table 2. Comparison of relative error of maps reconstructed by the proposed InfoLa-SLAM and
Cartographer.

Metric InfoLa-SLAM Cartographer

Area error (relative to GT) 2.9% 5.5%
RMSE 0.39 0.49
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InfoLa-SLAM, which incorporates an extended Kalman filter (EKF) process supple-
mented with easily detectable landmarks, guaranteed efficient and precise pose estimation.
Additionally, the novel approach to keyframe selection effectively reduced redundancy,
alleviating the computational burden of global optimization predicated on keyframes.
Coupled with the innovative global descriptor, efficient and precise loop closure detection
was achieved.

As a collective result of these improvements, InfoLa-SLAM outperformed Cartogra-
pher in both CPU load and memory usage, as detailed in Table 3. InfoLa-SLAM showcased
a lower average CPU load of just 7.98%, in comparison with the Cartographer’s 8.52%.
Moreover, the reduced variance and peak CPU loads of our system indicate its stability
and efficient resource allocation, suggesting its superiority in handling real-time computa-
tional tasks. Similarly, InfoLa-SLAM exhibited superior memory efficiency with an average
memory usage of 0.55%, while Cartographer’s memory usage averaged at 1.23%. The
variance and peak memory usage were also notably reduced in InfoLa-SLAM, showcasing
its ability to optimize memory allocation. The CPU load and memory usage during the
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runtime of both systems are shown in Figure 12. Based on these results, it can be seen
that InfoLa-SLAM’s lightweight character ensures efficient utilization of resources, making
it well-suited for applications in resource-constrained environments or devices with low
processing capabilities.

Table 3. Comparison of CPU Load and Memory Usage: InfoLa-SLAM vs. Cartographer.

Metric InfoLa-SLAM Cartographer

CPU load (mean) 7.98% 8.52%
CPU load (variance) 1.29 12.5

CPU load (peak) 11.0% 20.0%
Memory usage (mean) 0.55% 1.23%

Memory usage (variance) 0.0001 0.037
Memory usage (peak) 0.57% 1.56%
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5. Conclusions

This work reported an information-based landmarks assisted SLAM, named InfoLa-
SLAM, with a novel keyframe selection method based on Fisher information and an efficient
adaptive relocalization method based on the unique graphical feature ID of the landmarks
map. The experimental results showed that InfoLa-SLAM with these two novel designs
exhibited enhanced stability and lightweight performance.

The keyframe selection method, leveraging Fisher information in point cloud regis-
tration, enabled the precise and comprehensive assessment of correspondence between
the current frame and the previous keyframe. The experimental results demonstrated its
effectiveness, achieving a 35.16% reduction in redundant keyframes in a warehouse of
10,000 m2 and a 47.83% reduction in a corridor of 600 m2.

The adaptive relocalization method introduced a novel global descriptor known as
the graphical feature ID, facilitating precise and rapid matching between the local and
global maps. The approach demonstrated the capability to swiftly estimate the global pose
when the prior landmarks map was available. The sensitivity analysis under measurement
noise revealed a high success rate of 96% in matching local and global maps, particularly
when the measurement noise was below 0.05 m. Furthermore, the relocalization module
showcased impressive computational efficiency, with execution times of less than 28 ms.

Furthermore, InfoLa-SLAM outperformed Cartographer in terms of lightweight per-
formance, with a 9.11% reduction in the CPU load and a significant 56.67% decrease in
memory consumption under a very similar mapping accuracy. These results highlight
the practical significance and potential of InfoLa-SLAM for real-world applications in
resource-constrained environments.
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Appendix A

1. Proof of E(s) = 0

The following proof shows that the first-order derivative of the log-likelihood, i.e., the
score function, has an expectation of 0.

First the score function is

s(θ) = ∇log L(θ; X) (A1)

The expectation of score function with respect to the L(θ; x) is

EL(θ;x)[s(θ)] = EL(θ;x)[∇log s(θ)] =
∫
∇log L(θ; x)L(θ; x)dx

=
∫ ∇L(θ;x)

L(θ;x) L(θ; x)dx =
∫
∇L(θ; x)dx = ∇

∫
L(θ; x)dx = 0

(A2)

Above the gradient is with respect to the θ.

2. Proof of I = −E
[

Hlog L(θ;x)

]
= −E

[
∇2L(θ; x)

]
The following proof shows that the information Matrix I is equal to the negative values

of the expectation of the Hessian matrix for the log-likelihood.
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The Hessian matrix of logarithmic likelihood is given by the Jacobian matrix of its
gradient

Hlog L(θ;x) = J
(
∇L(θ;x)
L(θ;x)

)
= ∂

∂θ

(
∇L(θ;x)
L(θ;x)

)
=

HL(θ;x)L(θ;x)−∇L(θ;x)∇L(θ;x)T

L(θ;x)L(θ;x)

=
HL(θ;x)L(θ;x)
L(θ;x)L(θ;x) −

∇L(θ;x)∇L(θ;x)T

L(θ;x)L(θ;x)

=
HL(θ;x)
L(θ;x) −

(
∇L(θ;x)
L(θ;x)

)(
∇L(θ;x)
L(θ;x)

)T

(A3)

Expectation on the Hessian matrix is

EL(θ;x)

[
Hlog L(θ;x)

]
= EL(θ;x)

[
HL(θ;x)
L(θ;x) −

(
∇L(θ;x)
L(θ;x)

)(
∇L(θ;x)
L(θ;x)

)T
]

= EL(θ;x)

[ HL(θ;x)
L(θ;x)

]
− EL(θ;x)

[(
∇L(θ;x)
L(θ;x)

)(
∇L(θ;x)
L(θ;x)

)T
]

=
∫ HL(θ;x)

L(θ;x) L(θ; x)dx− EL(θ;x)

[
∇log L(θ; x)∇log L(θ; x)T

]
= H∫ L(θ;x)dx − I(θ) = 0− I(θ) = −I(θ)

(A4)

Thus, we have
I(θ) = −EL(θ;x)

[
Hlog L(θ;x)

]
(A5)
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