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Abstract: Adverse weather conditions such as haze and snowfall can degrade the quality of captured
images and affect performance of drone detection. Therefore, it is challenging to locate and identify
targets in adverse weather scenarios. In this paper, a novel model called Object Detection in a Foggy
Condition with YOLO (ODFC-YOLO) is proposed, which performs image dehazing and object
detection jointly by multi-task learning approach. Our model consists of a detection subnet and a
dehazing subnet, which can be trained end-to-end to optimize both tasks. Specifically, we propose a
Cross-Stage Partial Fusion Decoder (CSP-Decoder) in the dehazing subnet to recover clean features
of encoder from complex weather conditions, thereby reducing the feature discrepancy between
hazy and clean images, thus enhancing the feature consistency between different tasks. Additionally,
to increase the feature modeling and representation capabilities of our network, we also propose
an efficient Global Context Enhanced Extraction (GCEE) module to extract beneficial information
from blurred images by constructing global feature context long-range dependencies. Furthermore,
we propose a Correlation-Aware Aggregated Loss (CAALoss) to average noise patterns and tune
gradient magnitudes across different tasks, accordingly implicitly enhancing data diversity and
alleviating representation bias. Finally, we verify the advantages of our proposed model on both
synthetic and real-world foggy datasets, and our ODFC-YOLO achieves the highest mAP on all
datasets while achieving 36 FPS real-time detection speed.

Keywords: UAV images; object detection; YOLO; foggy weather condition

1. Introduction

Object detection is an fundamental problem in computer vision and has numerous
practical applications, such as in autonomous driving [1], Pedestrian re-identification [2–5]
and UAV Aviation Inspection [6]. For example, object detection [7–9] can judge each identi-
fiable object and locate the position on the images, which assists an autonomous driving
perception system to navigate safely in complicated driving environments. However, due
to the influence of complex weather conditions, the degradation of image quality can
negatively impact feature extraction and analysis in object detection tasks. This also causes
detectors trained on clean datasets to fail on these degraded images, posing a threat to the
safety of autonomous driving. Therefore, improving the generalization performance of
detectors under complex weather conditions has become an attractive research problem.

In recent years, object detection methods [10–12] based on Convolutional Neural
Networks (CNNs) have achieved remarkable performance. However, these methods
only consider simple scenarios, when the environment is relatively harsh (e.g., fog and
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rain), their performance perform suboptimally. Figure 1a exhibits the detection results of
YOLOx [12], it can be seen that the missed detections are obvious in dense fog.

Figure 1. Comparing of the detection results of different methods in real-world foggy environments:
(a) YOLOXs, (b) IA-YOLO, (c) MS-DAYOLO, (d) the proposed method. The objects of interest,
including people, cars, motorbikes, buses, and bicycles, are highlighted in red, green, blue, dark
green, and purple, respectively (best viewed in color).

Recent, existing methods such as image dehazing [13,14] and image adaptation [15]
are used as a pre-processing step in detection methods to improve degraded image quality
or remove impurities in an image. However, improvements in image quality does not
always improve the performance of detection network [14]. As shown in Figure 1b, it can
be clearly observed that although the image adaptation detection method IA-YOLO [16]
suppresses the impact of specific weather condition on an image, but it also suffers from
useful information loss and causes false and missed detection in foggy weather, such as the
bicycle is falsely detected as a pedestrian (see purple bounding box) and the cars on the left
in this image are not fully detected.

Some researchers [17–19] regard the problem of object detection in a foggy weather as
a domain adaptation task, where the goal is to align the features of clean images (source do-
main) with those of degraded images (target domain) using domain adaptation techniques.
Since domain-adaptive methods usually focus on the distribution of data across different
domains rather than changes in object appearance and corresponding information loss,
these methods may not be able to fully exploit additional information in degraded images
that is beneficial for detection. As shown in Figure 1c, it is evident that MS-DAYOLO [19]
can only detect objects with salient features, while objects heavily occluded by fog cannot
be detected. In contrast, our approach can detect more objects with higher scores in foggy
images, as shown in Figure 1d.

To tackle the aforementioned challenges, we propose a multi-task Object Detection
method in a Foggy Condition with YOLO (ODFC-YOLO), which can simultaneously
perform object detection and image dehazing in a unified end-to-end trainable framework.
Our framework is composed of two subnets: a detection subnet and a dehazing subnet,
and the architecture is shown in Figure 2. Specifically, we first propose a Cross-Stage Partial
Fusion Decoder (CSP-Decoder) to effectively removes weather-related information from
the shared features, thereby strengthen the feature consistency across tasks. In addition,
to improve the feature modeling ability of our model, we also propose a Global Context
Enhancement Extraction (GCEE) module, which can establish the global context feature
long-range dependencies to extract extra beneficial information for detection from degraded
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images. Finally, we propose a Correlation-Aware Aggregated Loss (CAALoss) to train
our network in a way that averages noise patterns and tunes gradient magnitudes of
different tasks that implicitly enhancing data diversity and alleviating the representation
bias. Extensive experiments on several representative datasets show that our ODFC-YOLO
method obtains the best detection accuracy and maintains real-time performance compared
to other representative advanced detection methods.

In brief, our work makes the following contributions:

• We propose a multi-task learning architecture that simultaneously performs image
dehazing and object detection in foggy weather scenarios and allows for end-to-
end training.

• We propose a Cross-Stage Partial Fusion Decoder (CSP-Decoder) to remove weather-
related information and produce clean features, which can reduce the difference
between hazy and clean images.

• We propose a Global Context Enhancement Extraction (GCEE) module, which extracts
additional information from degraded images through the construction of global
context feature long-range dependencies, improving the robustness of the network as
well as the ability to handle complex weather conditions.

• We design a novel Correlation-Aware Aggregated Loss (CAALoss) to average noise
patterns and tune gradient magnitudes between different tasks to implicitly strengthen
data diversity and mitigates representation bias.

• We conduct extensive experiments to verify the superiority of our proposed ODFC-
YOLO over several state-of-the-art methods. Also, we provide a detailed analysis
and discussion to comprehensively study the robustness of our method in harsh
weather conditions.

Figure 2. The architecture of our ODFC-YOLO, which is an end-to-end multi-task learning-based
framework, which mainly includes a dehazing subnet and a detection subnet. It’s worth to mention
that the dehazing subnet only participates during training, which generates the clean images, but
these images are not used as input to the detection subnet in the inference time. The green dotted
line plus the orange dotted line indicates the dehazing subnet; the green dotted line plus the purple
dotted line indicates the detection subnet. CSP-Decoder: Cross-Stage Partial Fusion Decoder.

2. Related Works
2.1. Object Detection

Object detection is a well-studied vision task that aims to detect and locate objects of
interest in an image and classify them. As a popular subject, it can be divided into two main
types [20]: two-stage methods and one-stage methods.
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Two-stage methods: Two-stage methods [21–26] are designed as a coarse-to-fine pro-
cess that involves generating a large set of low-quality proposals, which are then refined
through further feature extraction and prediction. Early two-stage methods mainly used
handcrafted features, which made them difficult to develop and improve. With the advance-
ment of deep learning technology, Girshick et al. [21] introduced R-CNN and employed
Selective Search (SS) [27] to generate a number of candidate boxes called “proposals” and
then extracted features for each proposal using CNNs, followed by SVM classification.
Afterwards, Faster-RCNN [23] proposed a fully convolutional Region Proposal Network
(RPN) is utilized to generate fewer but higher-quality proposals, reducing detector complex-
ity while improving performance and speed. Although the region proposal mechanisms
boosts the performance of two-stage detectors, it also limits their inference speed.

One-stage methods: On the other hand, one-stage methods [10,12,28–32] aim to pre-
dict the detection results directly from the whole image without generating proposals,
which greatly simplify the pipeline of the detector, and achieve much faster inference
speed than two-stage methods. YOLO [29] was one of the first one-stage detectors, which
formulated object detection as a regression problem by directly predicting the classifi-
cation confidence and bounding box offsets for each object in the image. Subsequent
series of improvements based on YOLO have significantly improved detection speed and
accuracy [10,12,28,30,31].

Apart from this, some recent works have opened new avenues for object
detection [33–39]. For example, Ref. [35] exploited the frequency characteristics of transmit-
ted signals for radio frequency (RF)-based drone detection and classification. We propose a
novel machine learning (ML) framework for detecting and classifying ADr sounds from
a variety of sounds such as birds, airplanes, and thunderstorms in noisy environments.
Anwar et al. [36] proposed a novel machine learning (ML) framework for detecting and
classifying ADr sounds from a variety of sounds such as birds, airplanes, and thunder-
storms in noisy environments. Huang et al. [37] proposed a new method for object
detection in UAV images that the multi-agent detection network with unified foreground
encapsulation (UFPMP-Det), which clusters the sub-regions given by the coarse detector
and suppresses the background. Furthermore, Carion et al. [39] first proposed an end-to
end object detector based on Vision Transformer, called DETR (DEtection TRansformer),
which simplifies the detection pipeline and directly predicts one-to-one object sets using
bipartite matching. Subsequently, many DETR variants were proposed to improve the
performance of detectors. For example, Deformable-DETR [38] accelerates the convergence
of training with multi-scale features by improving the efficiency of the attention mech-
anism. Anchor-DETR [33] reduces the difficulty of query optimization. Lite-DETR [34]
improves detection performance by updating high-level features and low-level features in
an interleaved manner.

2.2. Image Dehazing

Image dehazing is a critical task in computer vision that aims to remove haze or
fog from images to improve their visual clarity and quality. Recently, significant efforts
have been made in developing effective dehazing methods. For example, Ye et al. [40]
designed a novel Separable Hybrid Attention (SHA) module and density map to effec-
tively capture the degradation caused by non-uniform distributions at the feature level.
Guo et al. [41] introduced the haze density prior as an absolute position embedding into
the transformer. Bai et al. [42] proposed a deep pre-dehazer to generate intermediate
consequences as reference images and explores the guidance information within these
images. Song et al. [43] modified the key structure of the Swin transformer to adapt image
dehazing. Lu et al. [44] proposed an enhanced parallel attention module to efficiently
handle an uneven haze distribution.
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2.3. Object Detection in Adverse Weather

Object detection in adverse weather conditions is a challenging task. One intuitive
method is to pre-process the degraded images using existing restoration methods, such
as image enhancement, dehazing and blurring methods, to remove weather-specific in-
formation. IDOD-YOLOV7 [45] proposed an image defogging module (IDOD), which
performs image enhancement and combined with YOLOV7 in a weakly supervised manner.
An alternative approach is to use multi-task learning to simultaneously address image
restoration and detection tasks, which can help alleviate the effect of adverse weather
information on the detection performance. Li et al. [46] proposed a joint architecture
network integrating the deblurring and detection modules for end-to-end processing, and
designed an interval iterative data refinement training strategy to facilitate the learining of
the deblurring module without supervision. Recent methods [17–19] attempt to improve
detector performance from the perspective of domain adaptation. Furthermore, some
studies [47–49] collected more datasets with complex weather conditions to improve the
robustness of detectors under such scenarios.

2.4. Multi-Task Learning

Multi-task learning methods [50–52] aimed to learn multiple related tasks simultane-
ously, benefiting other tasks through the knowledge gained from one task. One popular
method is the Task Relation Network [52] (TRN), which built explicit relationship between
tasks from a statistical perspective. However, TRN regards all tasks as equally related and
when a certain task has stronger correlations, it will cause gradients to a point in the wrong
direction. In this work, differing from the methods proposed in [52], our method establishes
implicit task relationships between different tasks to maintain feature consistency for better
joint optimization.

3. Methodology
3.1. Overview of the Proposed ODFC-YOLO

The main objective is to jointly optimize image dehazing and object detection tasks by
multi-task learning. ODFC-YOLO consists of two independent subnets that can seamlessly
exchange information and learn from each other during training. On the one hand, the
two subnets share the feature extraction network, and the proposed CSP-Decoder enhances
the consistency of shared features. On the other hand, the proposed novel Correlation-
Aware Aggregated Loss (CAALoss) can average noise patterns and tune gradient mag-
nitudes between different tasks to better capture the implicit correlations between tasks,
thereby implicitly enhancing data diversity and mitigating representation biases. Finally,
we chose the YOLOX-small (YOLOXs) detector as the basis of our detection subnet. In order
to improve the feature extraction capability of the detection network in severe weather
conditions, we also propose the GCEE module to obtain contextual long dependencies to
facilitate this purpose.

The overall structural pipeline of ODFC-YOLO is shown in Figure 2. Firstly, given
a foggy image as input, we split the image into equal-sized patches by a focus operation,
and then recombine the patches to strengthen image features. Then, a cross-stage partial
module [30] and multiple global context enhancement extraction modules are employed
to extract salient object representations, which are transferred to the Cross-Stage Partial
Fusion Decoder (CSP-Decoder) and neck module, which perform corresponding tasks
respectively. In this way, CSP-Decoder produces clean features and balances the roles
of subnets by optimization strategy, while the neck module combines shallow and deep
features to enrich the features. Finally, the detection head module benefits from the joint
learning framework to produces the more accurate scores, categories and locations of the
detected object. Remarkably, the dehazing subnet is only involved during training and
turned off during inference.
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3.2. Dehazing Sub-Network

In our proposed ODFC-YOLO, the dehazing subnet plays a crucial role in removing
haze from images, which is achieved by an encoder-decoder structure as depicted in
Figure 2. The detection subnet’s backbone network serves as the encoder to extract latent
features from the hazy image, while the proposed CSP-Decoder is utilized to remove haze
and restore clean image.

Due to the different update directions of these two tasks, the features extracted by
the backbone network may not be optimal for both tasks. To address this issue, we
propose CSP-Decoder that aims to decrease the discrepancies between the features extracted
by the backbone network for both tasks and improve the image dehazing performance.
Additionally, the dehazing subnet improves the range of the receptive field, which helps to
deliver the training data from low-quality domain to high-quality domain, thus effectively
suppressing the domain shifts (i.e., the inconsistency between the training domain and the
actual environment) that exists in the training images.

Our dehazing subnet is composed of an encoder, and our proposed Cross-Stage Partial
Fusion Decoder (CSP-Decoder). The encoder aims to extract latent features of the haze
image and our CSP-Decoder is responsible for reducing the effects of weather-specific
information on the extracted features, thus reducing the domain shift between the training
and application environments.

As shown in Figure 3, the CSP-Decoder contains five cross-stage partial layers, three
SKFusion layers, and four upsampling operations. The input image is reduced by 1/32
after passing through the backbone network, and the pixelShuffle layer is employed to
increase the feature resolution such that the output image resolution is kept the same
as the input image. The CSP-Decoder accepts outputs from four stages of the encoder
(denoted as f i

e , i ∈ [2, 3, 4, 5]). Among them, the shallow layers of f 2
e , f 3

e , and f 4
e from

encoder contain features of different resolutions respectively, which are beneficial for
enhancing deeper visibility features. The SKFusion layer [43] is used to fuse multiple
branch features and alleviate the gradient disappearance to facilitate the dehazing task.
Finally, the clean image is restored by a 1× 1 convolution operation. We attempt to replace
the cross-stage partial layers with GCEE module in CSP-Decoder, but it had no significant
effect on detector performance.

Figure 3. The architecture of Cross-Stage Partial Fusion Decoder (CSP-Decoder), which removes the
negative impact of degraded images on feature extraction and produces high-quality clean features.

It is worth noting that the primary objective of the dehazing subnet is not to pro-
duce clear images for the input of the detection subnet, but rather to enhance the feature
extraction capability of the backbone network through multi-task optimization.

To train the dehazing subnet, we apply L1 loss to the network:

Lre =
1
N

N

∑
i=1
||ŷi(x)− yi(x)||, (1)

where N refers to the number of training samples, ˆy(x) and y(x) express the estimated
clean image and corresponding ground-truth image, respectively. Actually, considering
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that complex loss functions will bring unnecessary training burden, we prefer to choose
simple L1 loss for better performance balance.

3.3. Detection Sub-Network

We choose YOLOX as our detection subnet, which boasts a lightweight architecture
while maintaining strong performance on various benchmark datasets. However, like many
other existing object detectors, YOLOX also suffers from performance degradation when it
encountering harsh weather conditions.

Our detection subnet is composed of three key components: backbone network, neck
module, and head module. The backbone network is based on the feature extraction archi-
tecture of YOLOV4 [30] and we replace the cross-stage partial module with our proposed
GCEE module to obtain better feature modeling capabilities. To augment the localization
capability of the feature representation, the neck module employs top-down feature fusion
and horizontal connections strategy, which improves the accuracy of detecting small objects
in hazy scenes. Lastly, the head module is designed to independently perform classification
and localization of objects at multiple scales.

Traditional Convolutional Neural Networks use deep module stacks to enhance the
receptive fields and extract contextual high-level semantic information. However, this
design is computationally expensive and may produce redundant features that do not
contribute to the final output. To this end, we propose the Global Context Enhanced
Extraction (GCEE) module, which is designed to expand the regional receptive field and
capture long-range contextual dependencies while improving computationally efficient.
The GCEE module enhance the representation capabilities of the detection subnet by selec-
tively extracting the most useful features, while reducing computation cost and avoiding
unnecessary feature generation.

In Figure 4, our GCEE module first uses two local awareness branches to increase
the influence regions, which improves the model’s ability to transform features. Next, we
gather information from different local perspectives to create global awareness features. To
establish long-range dependencies, GCEE module further enhances the original features
using an attention-like mechanism. Specifically, the context of the globally aware features
is calculated by the global interactions of all pixel values using pixel-level dot products
of linear units (1 × 1 convolutions and so f tmax layers). Furthermore, only two linear
projections and a LayerNorm layer are utilized to improve feature diversity. Finally, the
global awareness features are reweighted to the position of each context feature to obtain
complex and long-term global context dependencies. In this way, by associating the input
features with attention features that have long dependencies to perceive local objects, our
network can extract more information that is beneficial to detection due to its better feature
extraction ability, as demonstrated in Figure 5.

To train the detection subnet, we employ the loss function consisting of three parts,
which can be expressed as:

Lde =
λLreg + Lcls + Lobj

Npos
, (2)

where Lreg is the bounding box regression loss, which is calculated using IOU loss [53].
The coefficient factor λ is used to adjust the proportion of Lreg, and it is set to 5.0 in our
experiment. Lcls and Lobj are the classification loss and confidence loss, respectively, which
are calculated using binary cross-entropy loss (BCELoss). Npos refers to the number of
positive samples. Notably, only positive samples are used for calculation in Lcls and Lreg.
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Figure 4. The Global Context Enhanced Extraction (GCEE) module, which is a mechanism for improv-
ing the feature extraction capability of our model by building global feature long-range dependencies.

Figure 5. Visualization of regions of attention for our Global Context Enhanced Extraction (GCEE) module.

3.4. Correlation-Aware Aggregated Loss

Due to the different data distributions and noise patterns of multiple tasks, we weight
the relative contribution of each task such that they have equal importance, and add
abnormal noise to improve the generalization ability of our model. The CAALoss is
calculated as:

Lcaa = λ1Lde + λ2Lre + ε, (3)

where Lde is the object detection loss and Lre refers to the dehazing loss. The weighting
factors λ1 and λ2 are utilized to balance the importance of these two terms. To further
improve the model’s ability to handle outliers, a small amount of noise is added to the
loss function, which is denoted as ε. This noise term is calculated as ε = 0.02 ∗ λ1 + λ2, so
that the model is not too sensitive to outliers. Using a unified loss function with different
weighting factors allows the network to focus on reconstructing clean features, while taking
into account the importance of the detection task. The best performance was observed
experimentally for λ1 = 0.2 and λ2 = 0.8.

4. Experiments

To estimate the performance of our ODFC-YOLO with other advanced detection
methods in severe weather conditions, we conduct extensive qualitative and quantita-
tive experiments experiments and our network is trained using VOC-Foggy dataset. The
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Foggy Driving dataset [49], VisDrone [6] UAV aerial photography dataset and Real-world
Task-driven Testing Set (RTTS) [14] are used for testing sets. All experiments are con-
ducted using the Pytorch framework and run on 2 NVIDIA GeForce RTX 3090 GPUs for
better performance.

4.1. Datasets

Considering the limited number of publicly datasets available for object detection
under severe weather conditions, inspired by the Liu et al. [16], we generate a synthetic
foggy dataset, called VOC-Foggy by adding haze to the PASCAL-VOC dataset. The
atmospheric scattering model is used to generate the foggy images, and it is mathematically
represented as follows:

I(x) = J(x)e−βd(x) + A(1− e−βd(x)), (4)

where I(x) refers to the hazy images and J(x) is the clean images, the global atmospheric
light component, denoted by A, which is set to 0.5. e−βd(x) represents the atmospheric
transmission coefficient, β is set to 0.01 ∗ i + 0.05, and i can take an integer between 0 and 9.
The value of d(x) is given by:

d(x) = −0.04 ∗ ρ +
√

max(row, col), (5)

where ρ denotes the Euclidean distance between the current position and the center pixel,
and row and col correspond to the number of rows and columns in the image, respectively.

Table 1 presents the total number of images and instances per class for the used dataset.
The RTTS dataset contains annotated real-world haze images 5 categories (cars, people,
bused, bicycles, motorcycles), with a total of 4322 images. It is currently the largest real-
world foggy object detection dataset. The Foggy Driving dataset consists 101 annotated
images that depicting real-world foggy driving scenarios with 8 categories (car, bus, train,
truck, bicycle, person, rider and motorcycle). In order to maintain the consistency of our
experiments, we only select the same 5 categories for testing in the Foggy Driving dataset
as in the RTTS dataset.

Table 1. For statistics on the total number of images and the number of instances per class for
all datasets used, including voc-fog-tv (VOC-Foggy-train), voc-fog-ts (VOC-Foggy-test), RTTS and
FoggyD (Foggy Driving dataset). We select only five classes from the dataset: car, person, bus, bicycle
(bic), motorcycle (motc).

Dataset Images Person Bic Car Bus Motc Total

voc-fog-tv 8111 13,256 1064 3267 822 1052 19,561
voc-fog-ts 2734 4528 377 1201 211 325 6604
RTTS 4322 7950 534 18,413 1838 862 29,577
FoggyD 101 269 17 425 17 9 737

4.2. Training Settings

We employ the SGD optimizer with an initial learning rate of 1× 10−2 to train our
proposed ODFC-YOLO model. The total training epochs and batch size are to 100 and 32,
respectively and the learning rate is adjusted dynamically during training using a cosine
annealing decay strategy. Additionally, we do not use image augmentation techniques,
commonly used in YOLO-based models, since these techniques would increase the difficulty
of reconstructing images for the dehazing subnet, resulting in poor performance of the
object detector. We set the image size for training and testing to 640× 640 pixels.
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4.3. Compare with SOTA Methods

We compare our method with several advanced methods, including: (1) “dehaze
+ detect” pre-processing methods, which use a dehazing algorithm as a pre-processing
step, followed by a detector such as YOLOX. We choose four representative dehazing
methods, including DCP [54], AOD-Net [55], GCA-Net [56], and FFA-Net [57], all of which
are trained on the ITS dataset [14]; (2) DS-Net [50] based on multi-task learning; (3) MS-
DAYOLO [19] based on domain adaptation; (4) IA-YOLO [17] based on image adaptation.
We retrained all the compared methods (except for the pre-processing methods) on the
VOC-Foggy-train dataset. It is noteworthy that we trained YOLOX and our ODFC-YOLO
from scratch without using any pre-trained weights.

As described in Table 2, our proposed ODFC-YOLO outperforms other compared
methods and obtains the highest mAP on the VOC-Foggy-test dataset, especially brings
8% improvement over YOLOXs. This indicates that our proposed method can improve
the detection performance in severe weather conditions by jointly learning. Specifically,
our method outperforms all compared methods in three out of five categories except the
results obtained in a person and bus categories. The main reason is that in order to reduce
the training complexity of the dehazing subnet, we did not employ data augmentation
technology, thus sacrificing the diversity of training samples and affecting detection subnet
performance. We also see that ODFC-YOLO surpasses all multi-task learning approaches.
Although TogetherNet [51] obtains competitive results in two out of five categories, our
method still outperforms it and achieves a 2% improvement in mAP. This proves that
enhancing the feature consistency of different tasks is more conducive to the improvement
of detection performance.

Table 2. Performance comparisons of our ODFC-YOLO with other advanced detection methods on
the RTTS dataset. The mAP (mean Average Precision) used to evaluate object detection performance.

Methods Person Bicycle Car Motorbike Bus mAP

YOLOXs(arXiv’21) [12] 80.81 74.14 83.63 75.35 86.40 80.07
YOLOXs*(arXiv’21) [12] 79.97 67.95 74.75 58.62 83.12 72.88
AOD-YOLOXs*(ICCV’17) [55] 81.26 73.56 76.98 71.18 83.08 77.21
DCP-YOLOXs*(TPAMI’10) [54] 81.58 78.80 79.75 78.51 85.64 80.86
GCA-YOLOXs*(WACV’19) [56] 81.50 80.89 84.18 78.42 77.69 80.53
FFA-YOLOXs*(AAAI’20) [57] 78.30 70.31 69.97 68.80 80.72 73.62
MS-DAYOLO(ICIP’21) [19] 82.52 75.62 86.93 81.92 90.10 83.42
DS-Net(TPAMI’21) [50] 72.44 60.47 81.27 53.85 61.43 65.89
IA-YOLO(AAAI’22) [16] 75.14 67.84 76.91 57.91 67.61 72.03
TogetherNet(CGF’22) [51] 87.62 78.19 85.92 84.03 93.75 85.90
BAD-Net(TPAMI’23) [46] - - - - - 85.58

ODFC-YOLO(Ours) 86.67 88.83 91.16 86.60 86.85 88.02

In order to assess the robustness of our proposed method on real-world scenarios,
we evaluated it on two challenging datasets: the RTTS and Foggy Driving datasets. The
evaluation of performance is based on the mean average precision (mAP) metric, and the
outcomes of the compared methods are depicted in Tables 3 and 4. We can obtain a similar
conclusion to the previous section that our method acquires the highest mAP on these
two datasets.

To provide an intuitive understanding of the detection performance of various meth-
ods, we also visualize the detection results of our model and other representative methods
on the Foggy Driving (Figure 6) and RTTS (Figure 7) datasets. We can observe that our
method can detect a greater quantity of objects with higher accuracy even in challenging
scenarios with dense fog, which is attributed to our designed architecture that considers
both global context information and local spatial detail. It can also observe from Figure 7
that although the image-adaptive method IA-YOLO [16] can detect a certain number of
targets, it is still struggles with identifying hidden objects in dense fog. In addition, our
model also maintains excellent detection performance on low-light images without training
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on professional dataset, as shown in Figure 8. It can be found that ODFC-YOLO can adapt
to different lighting conditions, which is crucial for target detection in various scenarios.

Figure 6. Detection results of our ODFC-YOLO and other advanced detection methods on Foggy Driv-
ing dataset. Obviously, the proposed ODFC-YOLO can detect more objects with higher confidence.

Table 3. Performance comparisons of our ODFC-YOLO with other advanced detection methods on
the RTTS dataset.

Methods Person Bicyle Car Motorbike Bus mAP

YOLOXs 80.88 64.27 56.39 52.74 29.60 56.74
YOLOXs* 76.28 60.44 64.73 50.06 24.86 55.04
AOD-YOLOXs* 77.26 62.43 56.70 53.45 30.01 55.83
GCA-YOLOXs* 79.12 67.10 56.41 58.68 34.17 58.64
DCP-YOLOXs* 78.69 67.99 55.50 57.57 33.27 58.32
FFA-YOLOXs* 77.12 66.51 64.23 40.64 23.71 52.64
MS-DAYOLO 74.22 44.13 70.91 38.64 36.54 57.39
DS-Net 68.81 18.02 46.13 15.15 15.44 32.71
IA-YOLO 67.25 35.84 42.65 22.52 17.64 37.89
TogetherNet 82.70 57.27 75.31 55.40 37.04 61.55

Ours 79.63 68.71 74.26 68.41 34.23 62.05

Figure 7. Detection results of our ODFC-YOLO and other advanced detection methods on real-world
foggy dataset (RTTS).



Remote Sens. 2023, 15, 4617 12 of 18

Figure 8. Detection results of our method and representative image adaptation methods (IA-YOLO)
in low-light conditions.

Table 4. Performance comparisons of our ODFC-YOLO with other advanced detection methods on
the Foggy Driving dataset.

Methods Person Bicycle Car Motorbike Bus mAP

YOLOXs 24.36 27.25 55.08 8.04 44.79 33.06
YOLOXs* 26.58 23.67 56.22 6.74 41.87 32.49
AOD-YOLOXs* 26.15 33.72 56.95 6.44 34.89 32.51
GCA-YOLOXs* 27.96 34.11 56.36 6.77 34.21 33.77
DCP-YOLOXs* 22.64 11.07 56.37 4.66 36.03 31.56
FFA-YOLOXs* 19.22 21.40 50.64 3.69 43.85 28.74
MS-DAYOLO 21.52 34.57 57.41 18.20 46.75 34.89
DS-Net 26.74 20.54 54.16 7.14 36.11 29.74
IA-YOLO 20.24 19.04 50.67 8.11 22.97 25.70
TogetherNet 30.48 30.47 57.87 14.87 40.88 36.75

Ours 35.69 35.26 59.15 16.17 45.88 38.41

4.4. Experimental Results on the VisDrone Dataset

We select the VisDrone [6] UAV aerial photography dataset for showcasing the advan-
tages of our model. Employing the same equal.4 approach, we introduce haze to aerial
images. The outcomes are prominently display in Figure 9, where the focus lies on detect-
ing objects within fog-laden scenes, including both daytime and nighttime aerial images
in foggy conditions. A discernible observation emerges from the results: the YOLOXs
model encounters count of missed detections due to the occlusive nature of the fog. In
stark contrast, our proposed model excels in object detection, even amid such obstructive
atmospheric conditions. Notably, our model not only improves object detection rates but
also effectively distinguishes foreground objects from background elements, showcasing
its robust performance.
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Figure 9. The detection results of the VisDrone dataset under different scenes.

4.5. Comparison on Rainy Images

To verify the generalization ability of our model in other severe weather conditions,
we choose the RainCitySpaces [48] dataset to evaluate our model’s performance. Compared
to the Rainy WCity [47] dataset, RainCitySpaces is widely used for object detection task
in rainy day and has more train images. We randomly choose 2500 images for training
and 450 images for testing, and focus on detecting the same five object categories as in
previous experiments.

The comparison results of our ODFC-YOLO with YOLOXs [12], GCA-YOLOX [56],
IA-YOLO [16], MS-DAYOLO [19] and TogetherNet [51] on the RainCitySpaces dataset are
presented in Table 5 and our method achieves the highest mAP. The second column of
Table 5 lists the detection results without retraining on the dataset. Our method obtains
6.99%, 5.72%, 27.29%, 2.05% and 7.14% improvements over YOLOXs, GCA-YOLO, IA-
YOLO, MS-DAYOLO and TogetherNet, respectively. In addition, the performance is
significant improved after retraining the model. Figure 10 shows the detection results of all
compared methods, we can see that our method can detect more objects under the rainy
and foggy weather conditions, indicating its stronger generalization potential without
specialized training.

Figure 10. Detection results of our ODFC-YOLO and the other advanced detection methods without
retrained on the RainCityscapes dataset.



Remote Sens. 2023, 15, 4617 14 of 18

Table 5. Performance comparison of our ODFC-YOLO with other detection methods on the RainCi-
tyscapes dataset. The mAP (mean Average Precision) used to evaluate object detection performance.

Methods Without-Retrained retrained

YOLOXs [12] 35.49 40.62
GCA-YOLOXs [56] 36.76 39.15
IA-YOLO [16] 14.52 15.32
MS-DAYOLO [19] 40.43 44.37
TogetherNet [51] 35.34 39.14

Ours 42.48 48.20

5. Ablation Study
5.1. Effects of Different Components in ODFC-YOLO

To further investigate the contribution of individual components and its internal
structure in our ODFC-YOLO model, Table 6 reports a set of ablation experiments on the
RTTS dataset with the same experimental configuration. We consider different variants
of the model such as CSP-Decoder* (without SKFusion layer), CSP-Decoder, and Global
Context Enhancement Extraction (GCEE) module. By reassembling components in different
ways, we are able to determine the optimal model performance.

Table 6. Ablation study of different combination strategies of the proposed modules are performed
on the RTTS dataset. Decoder represents the version of CSP-Decoder with SKFusion module, and
Decoder* without SKFusion module.

Modules Base Variants Variants Variants Variants Variants

Decoder* w/o ! w/o w/o ! w/o
Decoder w/o w/o ! w/o w/o !

GCEE w/o w/o w/o ! ! !

mAP 56.74 59.06 59.76 57.76 60.65 62.05

Given that the SKFusion module has demonstrated excellent performance in image
restoration, we add it to our proposed ODFC-YOLO model to enhance the effect of the
decoder. The experimental results demonstrate that the addition of the SKFusion module
to CSP-Decoder significantly improves our model’s performance. It can be seen that
each component of our ODFC-YOLO contributes to the improvement of the detection
performance. The proposed CSP-Decoder boosts the performance by 2% mAP over the
base model. Additionally, the GCEE module also enhances the performance by 1% mAP
without the CSP-Decoder. As expected, our network achieves state-of-the-art results when
both modules are combined, indicating that the combination of the two modules can extract
cleaner features.

5.2. Loss Function

In our proposed ODFC-YOLO, we employ a multi-task learning paradigm to optimize
the network by assigning different roles to the dehazing and detection tasks. We report
the impact of different combinations of loss weights on detection performance in Table 7.
Experimental results demonstrate that reducing the proportion of detection loss Lde leads
to an improvement in the network’s performance. This is because the values of Lde
are much larger than those of the dehazing loss Lre, which causes the network to be
dominated by the detection subnet, preventing the dehazing subnet from producing clean
features. By reducing the proportion of detection loss, the overall loss value is also reduced,
helping the network converge. Additionally, the addition of noise ε improves the model’s
generalization ability. After conducting extensive experiments, we determined that the
optimal loss weights are λ1 = 0.2 and λ2 = 0.8.
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Table 7. Ablation study with different weight assignments for detection loss and dehazing loss. mAP*
represents the detection performance applying the loss function without ε.

λ1&λ2 ε mAP* mAP

0.7&0.3 0.314 56.01 55.63
0.6&0.4 0.412 57.35 57.83
0.4&0.6 0.608 58.82 59.98
0.3&0.7 0.706 59.82 60.65
0.2&1.0 1.004 58.89 60.66
0.2&0.8 0.804 61.02 62.05

5.3. Inference Time

In our model, we introduce a multi-task joint learning approach to simultaneously
localize and classify degraded images. Table 8 lists the average runtime and Frames
Per Second (FPS) metrics for various advanced detection methods. It is observed that
our method only needs 0.026 s to infer a hazy image. Despite the additional subnet
and convolutional layers in our network, the dehazing subnet does not participate in
the inference process, allowing our model to maintain a high detection speed while still
achieving better performance than other methods.

Table 8. Detection speed comparison of the proposed ODFC-YOLO with different advance detection
methods.

Method Run Time FPS

YOLOXs 0.018 55.6
DCP-YOLOXs 1.238 0.8
MS-DAYOLO 0.037 27.0
DS-Net 0.035 28.6
IA-YOLO 0.039 25.6
TogetherNet 0.031 35.1

ODFC-YOLO(Ours) 0.026 36.5

6. Conclusions

In this paper, we adopt a multi-task learning architecture that simultaneously performs
image dehazing and object detection in foggy weather scenarios. By jointly optimizing
these tasks, our approach can effectively improve object detection performance by lever-
aging the complementary nature of image dehazing and object detection. The proposed
method effectively addresses the problem of object detection in foggy weather scenarios by
using a Cross-Stage Partial Fusion Decoder (CSP-Decoder) to alleviate the discrepancy in
feature region offset and the interference of foggy features on feature extraction, as well as
a Global Context Enhancement Extraction (GCEE) module to extract additional informa-
tion beneficial to detection from degraded images by building gobal feature long-range
dependencies and enriching the content of output features. Furthermore, we design a
Correlation-Aware Aggregated Loss to achieve optimal detection performance by averag-
ing noise pattern and tuning gradient magnitudes between different tasks. Finally, through
extensive experiments on synthetic and real-world fog datasets, our model surpasses the
existing state-of-the-art method by 0.5 mAP on the RTTS dataset and by more than 1.6 mAP
on the Foggy Driving dataset. Impressively, our model outperformes the previous best
method by a remarkable 9.07 mAP points. Furthermore, our approach maintains real-time
inference efficiency and achieves a commendable performance rate of 36.5 FPS. In future
work, we plan to explore additional methods for improving detector performance in foggy
weather, and apply our approach to real-world applications.
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