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Abstract: Deep learning has achieved significant success in various synthetic aperture radar (SAR)
imagery interpretation tasks. However, automatic aircraft detection is still challenging due to the
high labeling cost and limited data quantity. To address this issue, we propose a multi-stage domain
adaptation training framework to efficiently transfer the knowledge from optical imagery and boost
SAR aircraft detection performance. To overcome the significant domain discrepancy between optical
and SAR images, the training process can be divided into three stages: image translation, domain
adaptive pretraining, and domain adaptive finetuning. First, CycleGAN is used to translate optical
images into SAR-style images and reduce global-level image divergence. Next, we propose multilayer
feature alignment to further reduce the local-level feature distribution distance. By applying domain
adversarial learning in both the pretrain and finetune stages, the detector can learn to extract domain-
invariant features that are beneficial to the learning of generic aircraft characteristics. To evaluate the
proposed method, extensive experiments were conducted on a self-built SAR aircraft detection dataset.
The results indicate that by using the proposed training framework, the average precision of Faster
RCNN gained an increase of 2.4, and that of YOLOv3 was improved by 2.6, which outperformed other
domain adaptation methods. By reducing the domain discrepancy between optical and SAR in three
progressive stages, the proposed method can effectively mitigate the domain shift, thereby enhancing
the efficiency of knowledge transfer. It greatly improves the detection performance of aircraft and
offers an effective approach to address the limited training data problem of SAR aircraft detection.

Keywords: convolutional neural network (CNN); domain adaptation; aircraft detection; synthetic
aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) can provide all-day all-weather ground observation
and has drawn considerable attention in various fields, such as maritime surveillance,
agricultural survey, and disaster monitoring. With the rapid development of SAR technol-
ogy and the substantial increase in radar platform numbers, more and more high-quality
SAR data are generated, leading to an increasing demand for SAR image interpretation
algorithms. Between the applications, aircraft detection in high-resolution SAR images
aims to precisely locate all the airplanes in the image automatically and plays a critical
role in airport management. However, due to the complex airport background and low
intuitiveness of aircraft in SAR images, precisely detecting aircraft in SAR images is still a
challenging task.

Represented by the constant false alarm rate (CFAR) [1], traditional object detection
methods [2–4] mainly focus on the modeling of clutter distribution and threshold extraction,
which highly rely on the scattering intensity of objects and perform poorly under complex
backgrounds. In contrast, neural networks can automatically learn to extract useful se-
mantic features from data without designing handcrafted features. With the accumulation
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of image data and the development of high-speed computation hardware, deep learning
methods have shown great potential in computer vision, and various object detection
methods using convolutional neural networks (CNN) have been designed, which can be
divided into two categories: two-stage detectors [5–8] and one-stage detectors [9–14]. To
extract precise object features, two-stage detectors first generate region proposals that tend
to contain objects, which are further analyzed to obtain final classification and localization
results. On the contrary, one-stage detectors directly predict object bounding boxes based
on grid regions. Compared to two-stage methods, one-stage detectors are faster and can be
trained end-to-end, drawing more and more research attention.

On this basis, CNNs have been applied to various SAR image object detection tasks,
including vehicles [15,16], ships [17–19], bridges [20], etc. Among these tasks, the detection
of SAR aircraft is complex and challenging due to the complex background and scale
heterogeneity of aircraft. Therefore, numerous studies have been put forward to improve
aircraft detection performance. For instance, to achieve better aircraft description ability
and detect complete targets, He et al. [21] used two parallel networks and a constraint
layer to utilize the depth characteristics and component structure of airplane targets.
Diao et al. [22] introduced a CFAR-based aircraft pre-locating algorithm to generate high-
quantity region proposals. Wang et al. [23] employed airport runway masks to remove
false alarms and designed a weighted feature fusion module, achieving higher detection
accuracy. Guo et al. [24] proposed a scattering enhancement strategy and an attention
pyramid network to detect SAR aircraft precisely. Zhao et al. [25] designed a multibranch
dilated convolution module to extract discrete backscattering features of aircraft and
achieved better detection performance. Kang et al. [26] put forward an innovative scattering
feature relation network (SFR-Net) to enhance the relationships among the scattering
points of aircraft and guarantee the completeness of aircraft detection results. To extract
multiscale features of the aircraft and suppress background noise, Chen et al. [27] designed
an efficient pyramid convolution attention fusion module and a parallel residual spatial
attention module, which achieved improved detection accuracy. From the research above,
it can be drawn that most studies are focused on designing specialized network structures
and complex detection procedures. Through customized design, the discrete and weak
aircraft features can be effectively extracted, and the detection accuracy can be significantly
improved. However, besides network structure, the training process, which helps the
network to learn to extract representative target features and to distinguish targets from the
background, also plays a critical role in the final detection performance. To train a reliable
CNN detector, a large amount of labeled data is always required. Nonetheless, different
from optical images with high data accessibility, SAR images are usually more difficult
to obtain and interpret. For aircraft detection tasks, due to the discrete scattering point
form of aircraft and the background interference of airport buildings, target annotation has
a higher difficulty, and the construction of a large-scale SAR aircraft detection dataset is
more arduous and time-consuming, which impedes the detector’s training process and
decreases detection performance. Therefore, it is necessary to focus on how to effectively
learn generic aircraft characteristics with limited training samples.

One effective solution is to use transfer learning, i.e., utilizing knowledge from other
tasks to improve SAR aircraft detection performance. For instance, optical images can
indicate ground objects using the visible and near-infrared portions of the electromag-
netic spectrum. Compared to SAR images, optical images can depict fine-grained object
information at a high resolution. As optical images capture similar visual appearances to
human eyes, target annotating in optical images is more intuitive and low-cost, making the
process of dataset construction more simplified and efficient. In remote sensing scenarios,
SAR and optical images are two different renderings of the same ground object, and there
exists an inner connection between them. Therefore, transferring knowledge from optical
images for SAR image interpretation is feasible and practical. Li et al. [28] proposed to
use the pretrained weights from optical images to boost ship detection performance under
limited data. Bao et al. [29] designed a complementary pretraining method to transfer



Remote Sens. 2023, 15, 4614 3 of 20

the characteristics of optical ships to SAR images. However, while optical images mainly
contain target contour and texture details, SAR images reflect targets as discrete strong
scattering points and inevitably generate speckle noise. Transferring these domain-specific
characteristics from one domain to the other may decrease the performance and cause
negative transfer, making knowledge transfer difficult and inefficient.

To overcome the discrepancy between the two domains and to achieve a better transfer
effect, domain adaptation (DA) is widely studied by researchers. As a specific type of
transfer learning, domain adaptation aims to improve the effectiveness of source domain
knowledge on a related target domain with the same task. Specifically, domain adaptation
focuses on learning a type of mapping that can map the source and target domains into a
common space, such that the knowledge learned on the source domain can also be applied
to the target domain [30]. For instance, Ganin et al. [31] combined domain adaptation and
deep feature learning within one training process by using adversarial learning. Chen
et al. [32] focused on improving the cross-domain robustness of object detection through
feature-level and instance-level distribution alignment. Saito et al. [33] proposed a novel
method for detector adaptation based on strong local alignment and weak global alignment.

The above domain adaptation methods provide a practical solution for overcoming
domain discrepancy and achieving efficient knowledge transfer. Given this perspective,
some researchers have put forward domain adaptation methods to transfer knowledge
in optical images to SAR images. For instance, to eliminate the need for a large labeled
dataset in SAR image classification, Rostami et al. [34] proposed to transfer knowledge from
the related easy-to-label Electro-Optical domain by minimizing the feature distribution
distance between SAR and optical domains. Chen et al. [35] proposed a pixel-level and
feature-level domain adaptation approach to achieve heterogeneous SAR target recognition.
To take advantage of optical labeled data and bridge the gap between optical and SAR
images, Song et al. [36] designed a two-stage transfer learning framework for SAR ship
recognition. For SAR ship detection, Shi et al. [37] put forward an unsupervised domain
adaptation framework based on progressive transfer by transferring knowledge from the
optical domain and achieved competitive performance. These works demonstrate the
effectiveness of transfer learning from optical images for SAR image interpretation tasks.
However, due to high target complexity and low data quantity, domain adaptation methods
for SAR aircraft detection remain a complete void.

When transferring learning from optical aircraft detection to SAR aircraft detection,
due to the significant domain discrepancy, it is difficult for the detector to directly learn
generic aircraft characteristics without specific optimization. Specifically, the divergence can
be divided into two levels: global-level and local-level. Global-level divergence describes
the overall image style, e.g., image brightness and contrast. For example, compared to
optical images, SAR images usually have a dark background and high contrast, as shown
in Figure 1. This is caused by different scattering characteristics of different ground objects.
Additionally, there exist local-level divergences such as different object shapes and textures.
One typical instance is that aircraft in SAR images show a discrete scattering point form
and vary dramatically with different incident angles. As depicted in Figure 2, the outline of
aircraft in SAR images is not clear, and the appearance of aircraft with different incident
angles can be completely different, while aircraft in optical images are complete and stable
with different incident angles. Such divergences could affect the transfer effect when the
detector learns these domain-specific characteristics. Therefore, to address this issue and
improve SAR aircraft detection performance, we propose a multi-stage domain adaptation
training framework to reduce the global-level and local-level divergences between optical
and SAR domains. Detailed contributions are summarized as follows:

1. A multi-stage domain adaptation training (MDAT) framework is proposed in this
paper. The training procedure includes three stages, i.e., image translation (IT),
domain adaptive pretraining (DA-P), and domain adaptive finetuning (DA-F), to
gradually reduce the discrepancy between optical and SAR domains. To the best of



Remote Sens. 2023, 15, 4614 4 of 20

our knowledge, it is the first work that focuses on improving SAR aircraft detection
performance by efficiently transferring knowledge from optical images.

2. To reduce the global-level image divergence between optical and SAR domains,
CycleGAN [38] is adopted in the first stage to employ image-level domain adaptation.
By translating optical images with aircraft targets into corresponding SAR-style ones,
the overall image divergences can be effectively eliminated.

3. Additionally, multilayer feature alignment was designed to further reduce local-level
divergences. By using domain adversarial learning in both the pretrain and finetune
stages, the detector can extract domain-invariant features and learn generic aircraft
characteristics, which improves the transfer effect and increases SAR aircraft detection
accuracy.
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Figure 2. SAR aircraft samples with different incident angles.

The rest of the paper is arranged as follows. In Section 2, the overall structure and
detailed improvements of the proposed method are described. Then, Section 3 provides
the experiment dataset and evaluation metrics. Section 4 shows the results as well as the
corresponding analysis. After that, a comprehensive discussion regarding the results is
presented in Section 5. Lastly, the conclusion is drawn in Section 6.

2. Materials and Methods

In this section, the proposed multi-stage domain adaptation training framework is
introduced in detail. As a note, the source domain is denoted as

{
XOpt, YOpt

}
, where XOpt

denotes optical images, and YOpt is the corresponding aircraft labels. The target domain is
denoted as {XSAR, YSAR}, where XSAR denotes SAR images and YSAR is the corresponding
aircraft labels. Our purpose is to boost aircraft detection performance in SAR images by
transferring knowledge from optical images.
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2.1. Structure of Detection Networks

This paper proposes a multi-stage domain adaptation training framework for effec-
tively training detection networks to achieve better SAR aircraft detection performance,
which is straightforward and can be easily employed on various detection networks. To
prove the effectiveness of the proposed training framework, two representative detectors,
i.e., Faster RCNN [7] and YOLOv3 [10], were adopted for evaluation. In this section, the
structure of the two detectors is introduced in detail.

2.1.1. Faster RCNN

Faster RCNN is the most commonly used two-stage detection network. It mainly
consists of three components: a backbone network for feature extraction, a region proposal
network (RPN) for predicting regions of interest (RoI), and a fully connected network (FCN)
for RoI feature classification and regression. First, the backbone network takes the original
image in and generates high-level feature maps that contain global semantic information
regarding the contents of the image. Next, the features are sent into the RPN, which is a
fully convolutional network, and it predicts a huge amount of high-quality region proposals
that may contain the target to be detected. The corresponding feature of the region proposal
in the feature maps is extracted with a pooling operation. Finally, the region proposal
feature is used in the FCN for final classification and regression. While training the network,
both the region proposals generated by the RPN and the final detection results generated
by the FCN need to be optimized. Therefore, the training loss of Faster RCNN can be
formulated as:

LDet = LRPN_reg + LRPN_cls + LFCN_reg + LFCN_cls (1)

where LRPN_reg and LRPN_cls are the bounding box regression loss and the objective clas-
sification loss for RPN, respectively, and LFCN_reg and LFCN_cls are the regression and
classification loss for final detection results, respectively. To achieve better performance, we
used ResNet-50 as our backbone and adopted a feature pyramid network (FPN) behind the
backbone to extract multi-scale feature maps with strong semantics. More implementation
details can be found in [39].

2.1.2. YOLOv3

YOLOv3 is a one-stage detector that is a fully convolutional network and directly
predicts final object detection results. To obtain object bounding boxes, the input image
is divided into grids with a fixed size, and each grid generates three bounding boxes that
are responsible for potential objects within the grid. Multi-scale prediction is adopted
to deal with objects with various scales. The network structure can also be divided into
three parts: a Darknet-53 backbone, an FPN neck, and three detection heads. Darknet-53
utilizes successive convolutional blocks with residual skip connections to extract multi-
level features. After that, FPN is introduced to fuse low-level feature maps that contain
strong localization information with high-level feature maps that have strong semantic
information, building a feature pyramid with strong semantics throughout. Finally, three
detection heads are used to generate object proposals in three scales, and the training loss
can be expressed as:

LDet = Lcls + Lcon f + Lxy + Lwh (2)

where Lcls, Lcon f , Lxy, and Lwh are the classification loss, confidence score loss, bounding
box offset loss, and bounding box size loss, respectively.

2.2. Overall Framework of MDAT

In the prominent transfer learning method for deep neural networks, i.e., the pretrain–
finetune (PF) framework, the model weights trained with the source domain are utilized as
the parameter initialization of the target domain. Specifically, the pretrain stage focuses
on learning generic target characteristics from the source domain, and the finetune stage
customizes it according to the target domain. However, the PF framework is not capable
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of overcoming the huge discrepancy between optical and SAR domains, as the network
also learns domain-specific features. Transferring these domain-specific features could
impede the transfer learning from the optical to the SAR domain and decrease the detector’s
performance. Therefore, to effectively utilize the knowledge in optical images to boost
SAR aircraft detection performance, it is critical to reduce the divergences and focus on
the common features that are shared between both domains, e.g., aircraft spatial structure
and airport background. To this end, we propose a multi-stage domain adaptation training
(MDAT) framework to boost aircraft detection performance in SAR images by transferring
knowledge from optical images. As depicted in Figure 3, the proposed method can be
divided into three stages: image translation, domain adaptive pretraining, and domain
adaptive finetuning, which are introduced as follows:
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Stage 1: Image Translation: In the first stage, to reduce the global-level image dif-
ference between the two domains, we utilize a generative adversarial network (GAN) to
translate optical images into SAR-style images (the generated domain, denoted as XGen)
that have similar characteristics to SAR images. The generated images can retain the origi-
nal aircraft spatial location of optical images and have a smaller divergence from the target
SAR domain.

Stage 2: Domain Adaptive Pretraining: The detection model is trained on the gen-
erated domain. As there still exist local-level divergences between XGen and XSAR, we
apply multilayer feature alignment to reduce the feature distance between the two domains.
Specifically, we employ domain classifiers on every feature level of the detection network to
discriminate the features and train the detector to learn generic aircraft features on multiple
scales.

Stage 3: Domain Adaptive Finetuning: The pretrained detector is finetuned on the
target domain to detect SAR aircraft. To avoid the overfitting problem caused by small
training samples, the domain classifiers of the pretrained model are retained and continue
to align feature distributions of XGen and XSAR. By initializing with the pretrained weights
and constraining the feature distributions to be domain-invariant, the target information of
the optical domain can be efficiently transferred to SAR aircraft detection and boost the
detection performance.

The proposed MDAT training method uses three stages to gradually reduce the domain
discrepancy between optical and SAR domains. The first stage reduces the global-level
domain discrepancy in the original image space, which is effective and straightforward.
However, though GAN is capable of learning overall image distributions and translating
image style, it is difficult for the network to completely overcome the local-level divergence
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caused by different imaging mechanisms. Therefore, multilayer feature alignment was
proposed to further reduce the local-level divergence in the semantic feature space. With
an adversarial learning strategy, the detector can learn domain-variant features that are
beneficial to the learning of SAR aircraft detection. Therefore, by using the multi-stage
divergence reduction framework, the considerable gaps between the optical and SAR
domains can be effectively bridged, and the detector can achieve a better transfer learning
effect.

2.3. Global-Level Domain Adaptation with Image Translation

Due to different imaging mechanisms, the same ground object may appear completely
different in optical and SAR images. For aircraft detection, such a difference indicates
that far-away points in the image space could correspond to similar detection results. As
CNN aims to learn the mapping function from the image space to the detection results, to
obtain better transfer learning performance, it is critical to reduce the overall distance of the
two domains in the image space. On this basis, we propose to use generative adversarial
networks (GAN) to translate optical images into SAR-style images and achieve global-level
domain adaptation.

Since matched optical-SAR image pairs are hard to obtain, we chose CycleGAN to
perform unpaired image translation, which is shown in Figure 4. Specifically, there were
two generators: GO−S for translating optical images into SAR-style images and GS−O for
translating SAR images into optical-style images. The training loss for these two generators
can be expressed as:

LO−S = Ex∼XOpt [log(1− DSAR(GO−S(x)))] +Ex∼XSAR [log DSAR(x)] (3)

LS−O = Ex∼XSAR

[
log
(
1− DOpt(GS−O(x))

)]
+Ex∼XOpt

[
log DOpt(x)

]
(4)

where DSAR and DOpt are two domain discriminators. Through the adversarial training
strategy, the generators learn to translate source images into fake images that are indistin-
guishable from target domain images. However, the original target information may be
lost in the generated images due to mode collapse [38]. To address this problem, a cycle
consistency loss was added to constrain the output of the generator, which is described as:

Lcycle = Ex∼XOpt [‖GS−O(GO−S(x))− x‖1] +Ex∼XSAR [‖GO−S(GS−O(x))− x‖1] (5)
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The cycle consistency requires that the original image can be reconstructed through
a generated image and thus forces the generators to maintain the original content of the
input image. The overall loss for image translation is:

LS1 = LO−S + LS−O + λ·Lcycle (6)

where λ is a weight parameter set to 10.0. After the training of CycleGAN, the generators
can capture the overall image divergence between optical and SAR images and achieve
image-style transfer. Therefore, GO−S is used to translate all optical images into SAR-style
images. By combining these generated images and the target labels of corresponding
optical images, a middle domain

{
XGen, YOpt

}
, which has a closer distance to XSAR, can be

obtained and used for learning generic aircraft characteristics.

2.4. Local-Level Domain Adaptation with Multilayer Feature Alignment

Though image translation can reduce overall image divergence and achieve global-
level domain adaptation, the local-level divergence caused by different aircraft characteris-
tics still impedes the detector training process in both the pretrain and finetune stages. In
the context of limited data, detectors are more prone to overfitting on the few training sam-
ples rather than learning generic aircraft characteristics, leading to limited aircraft-detection
performance.

As the detector tends to extract discriminative object features during the training
process, the difference of feature distribution between the two domains can reflect the
local-level object divergences learned by the detector. Therefore, learning similar feature
distributions of the two domains is critical for reducing the local-level divergences. On
this basis, we propose multilayer feature alignment to further reduce the distribution
distance between XGen and XSAR in the feature space. Specifically, adversarial learning
was adopted on multiple feature maps of the detector to force the detector to learn generic
features in all scales. As shown in Figure 5, one domain classifier (DC) was added to each
feature layer after the feature pyramid network (FPN) to align the feature distributions
between the optical and SAR domains. While training the detector, the detection head
generates prediction results based on the extracted features and helps the network to learn
discriminative features for aircraft detection. By applying DC to all feature scales, aircraft
features of various scales can be properly aligned and learned by the detector. Specially,
in Faster RCNN, we denote the region proposal network and the FCN together as the
detection head. DC is used to generate domain classification results and help the network
to learn domain-invariant features between XGen and XSAR.

As depicted in Figure 6, a DC consists of a gradient reverse layer (GRL), two convo-
lution layers, and a sigmoid function. The GRL keeps the input feature unchanged and
multiplies the gradient by a negative scalar during the back propagation. By reversing
the gradient between the DC and the detector, the detector is more likely to learn domain-
invariant features that are indistinguishable by the DC. In each DC, two 1 × 1 convolution
layers are used to transform the feature map into domain classification results. Subse-
quently, a sigmoid function is employed to normalize the output. The domain classifiers are
trained simultaneously with the detector, and their loss function adopts the cross entropy
(CE) loss, which can be expressed as:

LDC = Ex∼XSAR [log F(x)] +Ex∼XGen [log(1− F(x))] (7)

where F(·) is the mapping from the input image to the DC output.
While training the detector, images from two domains, i.e., a training domain and

an auxiliary domain, are sent into the network simultaneously. As shown in Figure 7, in
the DA-P stage, the detector is pretrained on XGen, and XSAR is the auxiliary domain. The
training loss for the second stage is:

LS2 = LDet
(
XGen, YOpt

)
+ α·LDC (8)



Remote Sens. 2023, 15, 4614 9 of 20

where LDet(·) denotes the original detection loss, and α is a weight parameter. In our
practice, α was set to 1.0. The detector can learn to discriminate aircraft in XGen while
focusing on the common features that are shared within both domains.
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In the DA-F stage, the detector is finetuned on XSAR, and XGen is the auxiliary domain.
The domain classifiers of the pretrained model are retained and continue to align feature
distributions. The training loss for the last stage is:

LS3 = LDet(XSAR, YSAR) + α·LDC (9)

With the learned weights as model initialization and the domain adaptation constraint,
the detector can effectively utilize the transferred knowledge and achieve better SAR
aircraft detection performance. In the reference stage, the detector can detect SAR aircraft
without DC and the auxiliary domain.

3. Experiment and Parameters Evaluation
3.1. Datasets

Since public SAR aircraft detection datasets are rare, we carefully selected 13 large-
scale SAR images acquired by the GaoFen-3 system in spotlight mode, representing the
target SAR domain. Additionally, we chose seven large-scale panchromatic images acquired
by the GaoFen-2 system, serving as the source optical domain. These large-scale images
cover different airports and have image sizes of several thousand pixels. The aircraft targets
in these images are manually annotated with the reference of optical remote sensing images
that cover the same area and are confirmed by SAR image interpretation experts.

Since the optical images are used as the source domain, all optical images were used
for image translation and detector pretraining, and the SAR images were divided into a
training set and a test set. According to their different image sizes, eight large-scale SAR
images were used for model training, and the remaining five large-scale images were used
for testing. To benefit the model training and testing, we adopted the sliding window
method to crop these large-scale images into small image chips with a size of 512 × 512.
Notably, image chips that contain no aircraft were used for model training in the image
translation stage and were filtered in the detector training stages. The dataset information
is given in Table 1. It can be seen that after removing these pure background image chips,
the number of training samples for aircraft detection was quite limited. As illustrated in
Figure 8, the target size of the optical dataset and that of the SAR dataset have similar
ranges, where most aircraft have sizes larger than 20 pixels and smaller than 100 pixels.

Some image chips of the dataset are shown in Figure 9. It can be seen that due to the
different imaging mechanisms, the overall image style and target detail are completely
different. However, the two domains share the similar airport background and aircraft
structure, which could be helpful for object detection knowledge transfer.
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Table 1. Details of the optical and SAR datasets.

Domain Imaging
Platform

Imaging
Mode Resolution Chip Num. (All)

(Train/Test)
Chip Num. (Filtered)

(Train/Test)
Aircraft Num.
(Train/Test)

Source Gaofen-2 Panchromatic 0.8 m 2180/- 648/- 2083/-
Target Gaofen-3 Spotlight 1.0 m 1120/912 300/189 1282/697
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3.2. Evaluation Metrics

To assess the aircraft detection performance, precision rate (P), recall rate (R), F1-score,
and average precision (AP) were used as evaluation metrics. They are defined as follows:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 = 2× P× R
P + R

(12)

AP =
∫ 1

0
P(R)dR (13)

where TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively. Taking into account the relatively small scale and dense arrangement of
aircraft, we set the intersection over union (IoU) threshold for true positive detections as
0.45. The common metric for object detection AP50 is based on an IoU threshold of 0.5. And
AP is calculated across the IoU thresholds from 0.5 to 0.95 with an interval of 0.05.

3.3. Implementation Setting

The proposed training framework contained two different training tasks: training a
GAN for achieving global-level domain adaptation and training the detection network
to detect aircraft targets. For image translation, the training of the CycleGAN followed
the default settings in [38], where all the images in the optical domain and the images
in the training set of the SAR domain were used for unpaired image translation. In
the detector pretrain and finetune stages, the detector was trained on the source and
target dataset, respectively, with the same training parameters. Specifically, Faster RCNN
was trained for 72 epochs with a learning rate of 0.0025, and YOLOv3 was trained for
120 epochs with a learning rate of 0.001, where both learning rates were multiplied by 0.1
after the 2/3 and 11/12 of the total training epochs, respectively. The optimizer adopted
an SGD optimizer with a momentum of 0.9 and a weight decay of 0.0001. In each training
iteration, a mini-batch of four images with augmentations, including random crop and
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horizontal flip, along with four randomly chosen images from the auxiliary domain were
simultaneously sent into the network. In the experiments, we implemented all detection
methods based on the MMDetection [39] toolkit and adopted the default parameter settings
unless stated otherwise. The pytorch implementation code of the proposed method is at
https://github.com/YUWEBBER/MDAT (accessed on 9 September 2023).

4. Results
4.1. Comparison with Other Methods

To evaluate the superiority of the proposed method, we employed several representa-
tive domain adaptation methods on the SAR aircraft detection dataset, including domain-
adversarial neural network (DANN) [31], domain adaptation Faster RCNN (DAF) [32],
and strong–weak distribution alignment (SWDA) [33]. DANN is the first work that intro-
duced domain adaptation in deep feature learning by using adversarial learning, which
is the cornerstone of many recent studies. DAF is a classic work that introduced domain
adversarial adaptation into detection networks. The feature-level and instance-level design
inspired other researchers and led to numerous domain adaptation studies that focused
on the two-stage framework [41–44]. SWDA is also a representative domain adaptation
method that is widely studied by researchers, which is also used in the study of SAR ship
detection [45]. Among these methods, DANN is implemented on both Faster RCNN and
YOLOv3 by directly adding a domain classifier to the feature maps of the backbone, while
DAF and SWDA are implemented on Faster RCNN since they were designed based on
the two-stage framework. The results in Table 2 show that the proposed method achieved
the best detection performance. For the two-stage detector, the proposed method achieved
an F1-score of 0.7478 and an AP50 of 66.8, which was the best performance among the
domain adaptation methods. The result of the proposed method on YOLOv3 demonstrated
an F1-score of 0.7762 and an AP50 of 0.69.6, which prove the effectiveness of multi-stage
domain adaptation for overcoming the huge domain discrepancy between optical and
SAR domains. Specifically, the proposed method achieved a recall rate of 0.7690, which
was higher than other methods, indicating that the network can effectively learn aircraft
structure and discover more aircraft targets.

Table 2. Comparison with other methods.

Detector Method P R F1 AP AP50

Faster RCNN

DANN 0.7718 0.6987 0.7334 26.3 63.0
DAF 0.7438 0.7374 0.7406 26.6 65.0

SWDA 0.7646 0.7131 0.7380 27.7 65.5
MDAT 0.7555 0.7403 0.7478 27.8 66.8

YOLOv3
DANN 0.7682 0.7274 0.7472 29.8 66.5
MDAT 0.7836 0.7690 0.7762 31.0 69.6

Some visualized detection results are shown in Figures 10 and 11. As a note, green,
yellow, and red rectangles represent correct detections, missed detections, and false alarms,
respectively. In Figure 10, it can be seen that compared to other domain adaptation
methods, the proposed MDAT can achieve better overall performance and make a better
balance between precision and recall rate. In the third row of Figure 10, there is an aircraft
that can be easily merged with background buildings and is missed by other methods,
while the proposed method correctly detected it, indicating a better learning effect. From
Figure 11, both the missed detections and false alarms of MDAT are fewer than those
of DANN, proving the superiority of the proposed method for boosting SAR aircraft
detection performance.

https://github.com/YUWEBBER/MDAT
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4.2. Ablation Study

To inspect the effectiveness of the proposed method for boosting SAR aircraft detection
performance, we added the proposed components step by step, as shown in Table 3, where
P-F, IT, DA-P, and DA-F mean the detector is directly pretrained on the source domain, the
images of the source domain are translated, the multilayer feature alignment is used in
the pretraining stage, and the multilayer feature alignment is used in the finetuning stage,
respectively. It can be seen that when directly using the vanilla P-F method, the AP for
both detectors was marginally increased. Higher AP indicates that the network can achieve
higher precision with high IoU thresholds, which means a higher target localization ability.
Therefore, pretraining on the optical domain can help the network to learn aircraft structure
and scale characteristics, which can contribute to target localization. At the same time,
the AP50 metric of Faster RCNN decreased by 3.5, and that of YOLOv3 decreased by 2.0,
indicating a lower ability to discover aircraft targets. This performance drop depicts that
the network can be misled by optical backgrounds and fails to discriminate aircraft from
complex building interferences in SAR images. Therefore, the P-F framework is not capable
of efficiently transferring knowledge from the optical domain, leading to a limited transfer
learning effect.

Table 3. Ablation study results.

P-F IT DA-P DA-F
Faster RCNN YOLOv3

AP AP50 AP AP50

25.4 65.0 28.4 67.5√
25.9 61.5 28.8 65.5√ √
26.7 64.4 30.0 67.2√ √ √
27.2 65.8 30.6 68.0√ √ √ √
27.8 66.8 31.0 69.6

On this basis, different from directly using the pretrained weights from the optical
domain, pretraining on the translated images that are generated after image-level domain
adaptation can significantly boost the detection performance, i.e., there was a 0.8 increase
in AP and a 2.9 increase in AP50 for Faster RCNN and a 1.2 increase in AP and 1.7 increase
in AP50 for YOLOv3. This performance increment is beneficiated from the reduced global-
level image divergence between the pretrain and finetune stages. As the transferred images
share more similar characteristics with SAR images, it is easier for the network to learn
generic features that are beneficial to SAR aircraft detection tasks. Furthermore, adopting
the multilayer feature alignment in the pretrain stage and finetune stage can both reduce
the feature difference and achieve distribution alignment, improving the effect of transfer
learning. Compared to training from scratch, the proposed method can boost the detection
performance on both Faster RCNN and YOLOv3, proving its effectiveness in improving
SAR aircraft detection accuracy.

4.3. Effect of Domain Adaptation

The proposed method uses three stages to adopt domain adaptation on image and
feature levels. First, we adopted CycleGAN for transferring optical aircraft to SAR-like
aircraft, and the results are given in Figure 12. It can be seen that the generated images
have a similar overall visual appearance to SAR images, as the background is darkened
and the aircraft show a strong intensity form, which resembles that of SAR images. The
reduced image divergence can help the network learn common features that exist both in
optical and SAR images, leading to a better transferring effect.

Furthermore, to explore the effectiveness of the proposed method for reducing domain
discrepancy in the feature space, we used t-SNE to visualize the features extracted by the
detection network. Specifically, we took the mean value of each channel before flattening
the feature map to form a feature vector. By concatenating the feature vectors of all three
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layers, we could obtain a representative feature that indicates the input image, which can
be used for t-SNE. As depicted in Figure 13a,c, when using the vanilla P-F method for
transferring learning, the features extracted by the trained detector were decentralized,
and the two domains could be easily discriminated. After adopting the proposed MDAT
method, the features of the two domains were blended together and were difficult to
discern from each other. This result proves that the proposed method can effectively reduce
the feature distribution divergence between the optical and SAR domains. As the network
tends to extract domain-invariant features that are shared between optical and SAR images,
the aircraft structural characteristics in optical images can be transferred for SAR aircraft
detection more effectively, boosting the detection accuracy.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 20 
 

 

achieve distribution alignment, improving the effect of transfer learning. Compared to train-

ing from scratch, the proposed method can boost the detection performance on both Faster 

RCNN and YOLOv3, proving its effectiveness in improving SAR aircraft detection accuracy. 

Table 3. Ablation study results. 

P-F IT DA-P DA-F 
Faster RCNN YOLOv3 

AP AP50 AP AP50 

    25.4 65.0 28.4 67.5 

√    25.9 61.5 28.8 65.5 

√ √   26.7 64.4 30.0 67.2 

√ √ √  27.2 65.8 30.6 68.0 

√ √ √ √ 27.8 66.8 31.0 69.6 

4.3. Effect of Domain Adaptation 

The proposed method uses three stages to adopt domain adaptation on image and 

feature levels. First, we adopted CycleGAN for transferring optical aircraft to SAR-like 

aircraft, and the results are given in Figure 12. It can be seen that the generated images 

have a similar overall visual appearance to SAR images, as the background is darkened 

and the aircraft show a strong intensity form, which resembles that of SAR images. The 

reduced image divergence can help the network learn common features that exist both in 

optical and SAR images, leading to a better transferring effect. 

    
(a) (b) (c) (d) 

Figure 12. Results of image translation: (a,b) optical images; (c,d) the corresponding translated SAR-

like images. 

Furthermore, to explore the effectiveness of the proposed method for reducing do-

main discrepancy in the feature space, we used t-SNE to visualize the features extracted 

by the detection network. Specifically, we took the mean value of each channel before 

flattening the feature map to form a feature vector. By concatenating the feature vectors 

of all three layers, we could obtain a representative feature that indicates the input image, 

which can be used for t-SNE. As depicted in Figure 13a,c, when using the vanilla P-F 

method for transferring learning, the features extracted by the trained detector were de-

centralized, and the two domains could be easily discriminated. After adopting the pro-

posed MDAT method, the features of the two domains were blended together and were 

difficult to discern from each other. This result proves that the proposed method can ef-

fectively reduce the feature distribution divergence between the optical and SAR domains. 

As the network tends to extract domain-invariant features that are shared between optical 

and SAR images, the aircraft structural characteristics in optical images can be transferred 

for SAR aircraft detection more effectively, boosting the detection accuracy. 

Figure 12. Results of image translation: (a,b) optical images; (c,d) the corresponding translated
SAR-like images.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 13. Feature distribution visualization results via t-SNE: (a) Faster RCNN with vanilla P-F; (b) 

Faster RCNN with the proposed MDAT; (c) YOLOv3 with vanilla P-F; (d) YOLOv3 with the pro-

posed MDAT. 

4.4. Analysis of Training Sample Scale 

Due to the shortage of labeled SAR aircraft data samples, the detection accuracy 

when less training data were available highly reflects the robustness of a detector. There-

fore, the proposed method was trained with part of the training data of the target domain. 

Specifically, we trained the model with all generated images and finetuned the model with 

20%, 40%, 60%, and 80% of the SAR images to explore the robustness of the proposed 

method. The whole test set was used to evaluate detection performance. The results are 

depicted in Tables 4 and 5. It can be seen that the detection performance had a positive 

relevance with the data scale, and few training data may lead to a limited detection per-

formance. With more SAR training data, the network can access more SAR aircraft and is 

more prone to learn the difference between aircraft targets and background interferences. 

By adopting the proposed method, the AP metric can be improved by approximately 2.0 

or more. As visualized in Figure 14, after adopting the proposed MDAT, the performance 

of both Faster RCNN and YOLOv3 under all training data scales improved stably. This 

improvement indicates that with the same training data quantity, using the proposed 

training framework can effectively enhance the performance of aircraft detection in SAR 

images, which proves the robustness of the proposed method for efficiently transferring 

aircraft knowledge from the optical domain. 

  

Figure 13. Feature distribution visualization results via t-SNE: (a) Faster RCNN with vanilla P-F;
(b) Faster RCNN with the proposed MDAT; (c) YOLOv3 with vanilla P-F; (d) YOLOv3 with the
proposed MDAT.



Remote Sens. 2023, 15, 4614 16 of 20

4.4. Analysis of Training Sample Scale

Due to the shortage of labeled SAR aircraft data samples, the detection accuracy when
less training data were available highly reflects the robustness of a detector. Therefore,
the proposed method was trained with part of the training data of the target domain.
Specifically, we trained the model with all generated images and finetuned the model with
20%, 40%, 60%, and 80% of the SAR images to explore the robustness of the proposed
method. The whole test set was used to evaluate detection performance. The results are
depicted in Tables 4 and 5. It can be seen that the detection performance had a positive
relevance with the data scale, and few training data may lead to a limited detection
performance. With more SAR training data, the network can access more SAR aircraft and
is more prone to learn the difference between aircraft targets and background interferences.
By adopting the proposed method, the AP metric can be improved by approximately 2.0
or more. As visualized in Figure 14, after adopting the proposed MDAT, the performance
of both Faster RCNN and YOLOv3 under all training data scales improved stably. This
improvement indicates that with the same training data quantity, using the proposed
training framework can effectively enhance the performance of aircraft detection in SAR
images, which proves the robustness of the proposed method for efficiently transferring
aircraft knowledge from the optical domain.

Table 4. Results of the proposed method on Faster RCNN with different training sample scales.

Training Percentage
Baseline Proposed Method

AP AP50 AP AP50

20% 12.0 38.6 16.0 45.8
40% 17.4 51.3 21.7 57.5
60% 22.1 61.1 24.7 63.1
80% 23.9 63.1 26.2 64.6

100% 25.4 65.0 27.8 66.8

Table 5. Results of the proposed method on YOLOv3 with different training sample scales.

Training Percentage
Baseline Proposed Method

AP AP50 AP AP50

20% 15.3 46.7 19.1 49.3
40% 24.1 63.0 27.5 64.3
60% 26.8 64.5 28.6 65.5
80% 28.3 66.9 30.4 68.0

100% 28.4 67.5 30.6 69.6
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5. Discussion

Nowadays, research on algorithms for aircraft detection in SAR images predominantly
focuses on network design and feature extraction, while studies on transfer learning from
other domains are scarce. In this paper, to efficiently utilize knowledge from the optical
domain and improve SAR aircraft detection performance, a novel multi-stage domain
adaptation training framework was proposed.

In consideration of the limited data quantity of optical and SAR images, CycleGAN
was first employed to perform image translation and reduce global-level domain diver-
gences. The generated images shown in Figure 12 exhibit a similar brightness and contrast
to real SAR images. Compared to the original optical images, the flat runway area appears
darker, while the uneven ground area exhibits an overall brighter characteristic, which
is consistent with real SAR images. It is believed, in domain adaptation studies, that
a high similarity can lead to a higher transfer effect. Therefore, the generated images
can facilitate the knowledge transfer from optical to SAR, as evidenced by the results in
Table 3. While reducing the overall image divergences, the generated images failed to
achieve satisfactory target detail learning. As depicted in Figure 15, aircraft in SAR images
exhibit incomplete structures and generally have lower scattering intensity compared to
surrounding buildings, whereas the generated aircraft have complete structures. Conse-
quently, multilayer feature alignment was further adopted to mitigate local-level domain
divergences. The visualized feature distributions in Figure 13 demonstrate the effectiveness
of the proposed method in eliminating the domain shift between optical and SAR images.
A comparison with other domain adaptation methods indicated a higher recall rate of the
proposed method, which is proof of the efficiently transferred aircraft structure knowledge.
According to the results in Tables 4 and 5, the proposed MDAT can stably improve the
average precision of SAR aircraft, achieving effective knowledge transfer.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 20 
 

 

buildings, whereas the generated aircraft have complete structures. Consequently, multi-

layer feature alignment was further adopted to mitigate local-level domain divergences. 

The visualized feature distributions in Figure 13 demonstrate the effectiveness of the pro-

posed method in eliminating the domain shift between optical and SAR images. A com-

parison with other domain adaptation methods indicated a higher recall rate of the pro-

posed method, which is proof of the efficiently transferred aircraft structure knowledge. 

According to the results in Tables 4 and 5, the proposed MDAT can stably improve the 

average precision of SAR aircraft, achieving effective knowledge transfer. 

Though the SAR aircraft detection performance was improved, the proposed MDAT 

framework still requires a complex training process to overcome the domain discrepancy 

between optical and SAR. In the future, we will continue to explore the effects of domain 

adaptation methods on SAR aircraft detection tasks and focus on further improving the 

knowledge transfer efficiency. More studies on the diversity and quantity of source domain 

data are needed. Additionally, introducing the prior knowledge of SAR images and aircraft 

scattering characteristics is also a viable approach to achieve better adaptation performance. 

   
(a) (b) (c) 

Figure 15. Aircraft detail comparisons: (a) optical aircraft; (b) generated aircraft; (c) SAR aircraft. 

6. Conclusions 

In this paper, we proposed a multi-stage domain adaptation training framework for 

SAR aircraft detection, which can efficiently transfer knowledge from optical images by 

gradually reducing the domain discrepancy in three stages. In the image translation stage, 

CycleGAN was employed to transfer optical images into fake SAR-style images that are 

used for detector pretraining. With reduced global-level divergences from real SAR im-

ages, the efficiency of the model pretraining was effectively improved. Furthermore, the 

proposed multilayer feature alignment was integrated into the detector in the pretrain and 

finetune stages to eliminate the local-level aircraft divergences and to enable the network 

to focus on domain-invariant features. Experiments were carried out for aircraft detection 

using GaoFen-2 and GaoFen-3 images. The results revealed that the detection perfor-

mance of Faster RCNN and YOLOv3 was significantly improved, which verifies the ex-

cellence of the proposed framework. 

Author Contributions: Conceptualization, W.Y.; methodology, W.Y. and J.L.; software, W.Y.; vali-

dation, W.Y. and J.L.; formal analysis, W.Y.; investigation, Z.W. and W.Y.; data curation, W.Y.; writ-

ing—original draft preparation, W.Y.; writing—review and editing, Z.W.; visualization, J.L.; super-

vision, Z.Y. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data sharing is not applicable to this article. 

Acknowledgments: We gratefully appreciate the editor and anonymous reviewers for their efforts 

and constructive comments. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 15. Aircraft detail comparisons: (a) optical aircraft; (b) generated aircraft; (c) SAR aircraft.

Though the SAR aircraft detection performance was improved, the proposed MDAT
framework still requires a complex training process to overcome the domain discrepancy
between optical and SAR. In the future, we will continue to explore the effects of domain
adaptation methods on SAR aircraft detection tasks and focus on further improving the
knowledge transfer efficiency. More studies on the diversity and quantity of source domain
data are needed. Additionally, introducing the prior knowledge of SAR images and aircraft
scattering characteristics is also a viable approach to achieve better adaptation performance.

6. Conclusions

In this paper, we proposed a multi-stage domain adaptation training framework
for SAR aircraft detection, which can efficiently transfer knowledge from optical images
by gradually reducing the domain discrepancy in three stages. In the image translation
stage, CycleGAN was employed to transfer optical images into fake SAR-style images that
are used for detector pretraining. With reduced global-level divergences from real SAR
images, the efficiency of the model pretraining was effectively improved. Furthermore, the
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proposed multilayer feature alignment was integrated into the detector in the pretrain and
finetune stages to eliminate the local-level aircraft divergences and to enable the network
to focus on domain-invariant features. Experiments were carried out for aircraft detection
using GaoFen-2 and GaoFen-3 images. The results revealed that the detection performance
of Faster RCNN and YOLOv3 was significantly improved, which verifies the excellence of
the proposed framework.
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