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Abstract: High-speed railways in the Beijing–Tianjin–Hebei (BTH) Plain are gradually becoming
more widespread, covering a greater area. The operational safety of high-speed railways is influenced
by the continuous development of land subsidence. It is necessary to predict the subsidence along
the high-speed railways; thus, this work is of critical importance to the safety of high-speed railway
operation. In this study, we processed Sentinel-1A data using the Persistent Scatterer Interferometric
Synthetic Aperture Radar (PS-InSAR) technique to acquire the land subsidence in the typical BTH
area. Then, we combined the Empirical Mode Decomposition (EMD) and Gradient Boosting Decision
Tree (GBDT) methods (EMD-GBDT) to forecast land subsidence along high-speed railways. The
results revealed that some parts of the high-speed railways in the BTH plain had passed through or
approached the land subsidence area; the maximum cumulative subsidence of the Beijing–Shanghai,
Tianjin–Baoding and Shijiazhuang–Jinan high-speed railways reached 326 mm, 384 mm and 350 mm,
respectively. The forecasting accuracy for land subsidence along high-speed railways was enhanced
by the EMD-GBDT model. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
were 0.38 mm to 0.56 mm and 0.23 mm to 0.38 mm, respectively.

Keywords: EMD; GBDT; operation safety of high-speed railway; land subsidence features; land
subsidence forecasting

1. Introduction

Land subsidence is a slowly occurring environmental geological phenomenon that is
mainly caused by natural factors or human activities. This process threatens the region’s
economic development by endangering subsurface pipes and causing structural damage to
buildings. The slope of high-speed railway lines will be particularly affected by regional
land subsidence. Their safe operation will be hindered by the existence of the land subsi-
dence funnel. Hence, there are stricter requirements for the stability, degree of deformation,
and track smoothness of road foundations and bridges to ensure that high-speed railways
operate safely. The Beijing–Tianjin–Hebei (BTH) plain lies in the northern part of the North
China Plain, with a complex regional geological structure and scarce water resources. The
demand for water is increasing due to the continuous improvement of urban facilities and
the increasing population growth. Regional groundwater funnels have formed as a result
of the chronic exploitation of groundwater [1,2]. The decrease in the region’s groundwater
level caused severe land subsidence [3–5]. Meanwhile, with the integrated development
of Beijing, Tianjin, and Hebei, the rapid development of high-density urban clusters and
the rapid expansion of high-speed three-dimensional transportation networks have led
to the formation of multiple land subsidence zones in the region. The land subsidence
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in the BTH plain is characterized by continuous interregional distribution and a high
interannual subsidence rate [6]. Studies revealed that the area with a land subsidence
rate greater than 50 mm/year in the BTH region from 2012 to 2016 reached 1620 km2,
and the maximum land subsidence rate reached 130 mm/year [7]. Most of the areas with
significant land subsidence are located in the north and southeast of the Beijing Plain;
these include the Wangqingtuo District in Tianjin, Baoding in the center of the Hebei Plain,
Hengshui and Cangzhou in the southeast of the Hebei Plain, and Handan in the southern
portion of the Hebei Plain. The expansion of regional land subsidence seriously jeopardizes
the operational safety of key linear projects such as the Beijing–Shanghai, Beijing–Tianjin,
Tianjin–Baoding, Shijiazhuang–Jinan high-speed railways, and South-to-North Water Di-
version Projects, and restricts the sustainable development of the region [8]. According to
“The Outline of the 14th Five Year Plan for National Economic and Social Development
and Vision 2035 of the People’s Republic of China,” the network construction of high-speed
railways in the BTH area should be completed by 2025. In this situation, it is essential to
forecast land subsidence along high-speed railway lines and assess its effects on the opera-
tional safety of these lines. This has important research value and practical significance for
disaster prevention and mitigation for other major linear projects under construction in the
BTH area.

Traditional land subsidence monitoring techniques, e.g., leveling, Global Navigation
Satellite System (GNSS) and layerwise mark measurements, have some limitations with
regard to obtaining large-scale monitoring information with high-temporal resolution [9,10].
Interferometric Synthetic Aperture Radar (InSAR) techniques offer advantages such as
wide spatial coverage, high monitoring accuracy, and low cost. The emergence of InSAR,
to some extent, overcomes the limitations of traditional methods in surface deformation
monitoring. At present, InSAR technology is a geodetic method that is commonly used to
study surface deformation, especially Persistent Scatterer InSAR (PS-InSAR), Small Baseline
Subset InSAR (SBAS-InSAR), and Interferometric Point Target Analysis (IPTA), which
were developed on this technology [11,12]. These techniques, to some extent, solve the
limitations of conventional Differential Interferometric Synthetic Aperture Radar (D-InSAR)
when it comes to removing atmospheric errors, spatial and temporal decorrelation, orbital
errors, and topographic errors [6]. The PS-InSAR technology can identify the points with
stable scattering characteristics (PS points) in the time series. The land subsidence can be
determined by processing the PS points; the monitoring accuracy can reach millimeter
scale [13]. Wang et al. [14] used TerraSAR-X and Sentinel-1 data to reveal the spatial and
temporal evolution characteristics of land subsidence along the Beijing–Tianjin intercity
railway. Kapil Malik et al. [15] used the Cosmo-skymed dataset, Sentinel-1A-B dataset, and
ALOS PALSAR data to obtain the land subsidence of the New Delhi region from 2007 to
2018, and compared it with groundwater level data for the same period. Lu et al. [16] used
the PS-InSAR technique to evaluate the land subsidence along the Beijing–Tianjin intercity
railway and further analyzed the differential evolution characteristics along the same line.
Ye et al. [17] determined the land subsidence along the subway in Zhengzhou by using
the PS-InSAR technique, and on this basis, they used the LSTM model to forecast the land
subsidence of typical subway stations.

Land subsidence forecasting studies can be divided into deterministic and stochastic
prediction models. The deterministic models estimate land subsidence by simulating the
physical process of land subsidence [18–20]. The limitation of deterministic prediction
models is that they require a large number of regional hydrogeology parameters. The
stochastic models consider the diversity and uncertainty of the influencing factors of land
subsidence. They usually adopt mathematical statistical models to establish the correlation
between the change in a single influencing factor and the amount of land subsidence
by analyzing and simulating the internal relationship and development characteristics
of a large amount of historical monitoring data to forecast land subsidence [21–24]. The
stochastic models are less reliant on physical parameters, but they are computationally
inefficient. With the rapid development of big data and artificial intelligence, intelligent
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forecasting algorithms have been frequently used in land subsidence forecasting studies as
they require fewer physical parameters and have greater computational efficiency [25–28].

Considering the nonlinear evolution characteristics of land subsidence along high-
speed railways, we proposed a prediction method that combines the Empirical Mode
Decomposition (EMD) and Gradient Boosting Decision Tree (GBDT) models. First, we used
the EMD method to decompose the land subsidence into multiple stable time series. Then,
we used the GBDT model to forecast land subsidence with this stable time series data. The
paper is organized as follows: Section 2 describes the study area and the datasets. Section 3
shows the principles of the methods cited in the study. Sections 4 and 5 presents the results
and discussion, respectively. The conclusions are summarized in Section 6.

2. Study Area and Data
2.1. Study Area

The BTH plain in the northern part of the North China Plain covers a total area of
218,000 km2 and has a population of over 100 million. It mainly includes Beijing, Tianjin,
and some cities in Hebei Province (Figure 1). According to the different hydrogeological
conditions, there are three hydrogeological units in the BTH plain: the piedmont alluvial
proluvial inclined plain, the central alluvial lacustrine plain, and the eastern alluvial marine
plain. The BTH Plain has a serious shortage of water resources; thus, the urban water
supply is highly reliant on groundwater. Chronic groundwater overexploitation has led to
the formation of multiple groundwater funnels and land subsidence areas in this region.
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By 2020, the total length of high-speed railways in the BTH region will have reached
2163 km. There are three main high-speed railways heading in the east–west direction: the
Beijing–Tianjin, Beijing–Guangzhou, Beijing–Shanghai high-speed railways, and numerous
high-speed railways heading in the north–south direction, such as the Shijiazhuang–Jinan
and Tianjin–Baoding high-speed railways. The areas with high land subsidence rates in the
BTH plain are mainly distributed in the Chaoyang District, Tongzhou District, Langfang,
Baoding, Cangzhou, Xingtai, Hengshui, and Wangqingtuo District of Tianjin [29]. Some
of the high-speed railways pass through or are close to these land subsidence areas, and
the gradual development of land subsidence will seriously threaten their safe operation.
For this study, which aimed to monitor and forecast land subsidence along high-speed
railways, typical high-speed railway lines in the BTH plain, including the Beijing–Tianjin,
Beijing–Shanghai, Beijing–Guangzhou, Tianjin–Baoding, and Shijiazhuang–Jinan high-
speed railways (only the high-speed railway section located in the BTH plain), were
selected as the research objects.

2.2. Data

In this study, 204 Sentinel-1A (S1A) images were selected, with a track number of
142 for the ascending track and frame numbers of 126, 121, and 116. The time span was
from 14 January 2016, to 1 September 2020. The Sentinel-1A image coverage and main
parameters are shown in Figure 1 and Table 1. During PS-InSAR processing, only the
part covering the BTH region is selected in the S1A data with frame number 116. We
selected the Shuttle Radar Topography Mission DEM (SRTM DEM) with a resolution of
30 m as the external Digital Elevation Model (DEM) data that was used to remove the
topographic phase. Furthermore, we selected seven leveling benchmarks from October
2016 to October 2017 to verify the reliability of the PS-InSAR technique. The positions of
the leveling benchmarks are shown in Figure 1.

Table 1. S1A Radar Image Information.

SAR Sensor Sentinel-1A (S1A)

Orbit direction Ascending
Spatial resolution(m) 5 m × 20 m

Band C-band
Polarization VV
Beam Mode Interferometric Wide swath (IW)

Repeat observation period(day) 12
Number of images 204

Date range 14 January 2016–1 September 2020

In this paper, we extracted points along the high-speed railway at an interval of 1 km as
the sample points for Tianjin–Baoding, Beijing–Shanghai, Shijiazhuang–Jinan and Beijing–
Guangzhou high-speed railways. For the Beijing–Tianjin railways, we set the interval at
0.6 km because of the short distance. The original time series of the land subsidence was
from January 2016 to September 2020, for a total of 57 time points. To ensure the unification
of the time intervals, we processed the time series data with monthly time intervals. We
filled up the missing months’ data using the interpolation method. Then, these points
were used as the sample data for the EMD-GBDT model to forecast the land subsidence
along each high-speed railway line. Different high-speed railways had different numbers of
sample points. The number of sample data points for the Beijing–Shanghai, Beijing–Tianjin,
Beijing–Guangzhou, Tianjin–Baoding and Shijiazhuang–Jinan high-speed railways were
300, 190, 229, 161, and 188, respectively.
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3. Methods
3.1. Permanent Scatterers Interferometric Method

PS-InSAR was proposed by Ferretti et al. in 2000 [13]. When using this method,
the target points (PS points) with stable backscattering properties in long time series are
selected, and the phases of PS points are analyzed. The phases of PS points include the
deformation phase, the topographic phase, the flat-earth phase, the atmospheric error, and
the noise error. The interference phase of each PS point is represented in (1) [30]:

φ = ϕdef + ϕtopo + ϕflat + ϕatm + ϕnoise (1)

where ϕdef is the deformation phase, ϕtopo is the topographic phase, ϕflat is the flat-earth
phase, ϕatm is the atmospheric delay error, and ϕnoise is the noise phase. In this study, S1A
data were processed using SAROROZ (version: 3 May 2022) software. The specific process
is as follows [31]:

• The S1A data of the three frames was merged and then divided into three sub-strips
according to different Swath numbers.

• For the S1A data of each substrip, one image was selected as the reference image and
the other images as the secondary images. In this paper, the image from 8 Febru-
ary 2018 was selected as the reference, and the other images were registered to the
reference image.

• We used the amplitude stability coefficient method to choose the PS points with a
threshold of 0.75.

• Phase analysis was carried out on PS points, and the phase information contained in
PS points was shown in Formula (1). In this study, SRTM DEM data and precision
ephemeris data were used to remove the topographic phase and the flat-earth phase,
respectively. First, based on the total deformation phase component obtained by
using the nonlinear standard model in the Atmospheric Phase Screen (APS) module
of SARPROZ, the atmospheric phase was inverted and removed. Then, the star
topology analysis method in the PS point deformation analysis module was used
to invert the deformation phase of each PS point, including nonlinear and linear
deformation phases.

• The deformation phase information of PS points was unwrapped, and the temporal
deformation information was obtained.

3.2. Empirical Mode Decomposition-Gradient Boosting Decision Tree (EMD-GBDT) Model
3.2.1. Empirical Mode Decomposition (EMD) Model

The Empirical Mode Decomposition (EMD) model is a signal analysis method that
was proposed by Huang et al. in 1998 [32], which effectively processes non-stationary
time series data. This method can decompose the fluctuation or trend signals of different
scales in the original data step by step and obtain a series of local characteristic signals of
different time scales [33]. It contains a trend component and several components of the
Intrinsic Mode Function (IMF). The EMD expression is shown in Formula (2) [34]. The
IMF decomposed by EMD must adhere to the following requirements: the total number of
maximum and minimum values in the IMF must be equal to or have at most one difference
from the number of zeros, and the average of the upper and lower envelopes of any point
in the IMF should be equal to 0 [32].

Xt =
n

∑
i=1

IMFi(t) + rn(t) (2)

where Xt is the original time series data. In this paper, this refers to the time series of land
subsidence along each high-speed railway. IMFi(t) is the ith IMF component, and rn(t) is
the trend component.
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3.2.2. Gradient Boosting Decision Tree (GBDT) Model

The Gradient Boosting Decision Tree (GBDT), also known as the Multiple Additive
Regression Tree (MART), was proposed by Friedman in 2001 [35]. It is a typical repre-
sentative of the boosting algorithm in ensemble learning and can be successfully applied
to regression and classification problems. The GBDT is composed of multiple regression
trees. Through the iteration of multiple regression trees, the loss function is reduced in the
gradient direction. The model takes the value of the loss function at the current negative
gradient as the rough appraisal of the boosting tree algorithm’s residual in the regression
issue [36–38]. Then, the regression tree is fitted, and the results of all the trees are added up
to reach the final decision. In this paper, each sample point along each high-speed railway
was modeled. The detailed procedures for constructing the GBDT model are as follows:

• The time series subsidence of sample data was selected as the dataset{
(x, y)(t), 1 ≤ t ≤ T

}
, T represents the monitoring time. Then, we set the proportion

of training data and validation data, and the first D subsidence data were constructed
as the training set

{
(x, y)(t)train : 1 ≤ t ≤ D

}
; the remaining T−D subsidence data were

constructed as the validation set
{
(x, y)(t)test, T−D ≤ t ≤ T

}
. D is a monitoring time

less than T.

• Initializing for the training dataset, f0(x) = argmin
D
∑

i=1
L(yi, c), f0(x) represents the

base learner, and is a decision tree; L(y, c) is the loss function, and c represents the
constant value that minimizes the loss function.

• For the training dataset, M decision trees must be built (m = 1, 2, · · · , M). For
i = 1, 2, · · · , D, the negative gradient descent value of the loss function [rm1, rm2, · · · , rmD]

T

(T represents matrix transpose) is calculated as the residual approximation rmi of the
next step decision tree model fm(x) to the current decision tree model fm−1(x) :
−
[

∂L(yi,f(xi))
∂f(xi)

]
f=fm−1

.

• By iterating M times, the final model f̂(x) = fM(x) is obtained, in which f̂(x) consists
of M trees.

• The trained model f̂(x) is used to predict land subsidence.

3.2.3. Empirical Mode Decomposition–Gradient Boosting Decision Tree (EMD-GBDT) Model

Due to the complex temporal evolution of land subsidence, which presents inhomo-
geneity, the time series data are nonstationary. If the data are modeled by direct fitting,
forecasting accuracy will be affected. So, we proposed the EMD-GBDT model to forecast
land subsidence in this study, and the flow chart is shown in Figure 2. The forecast-
ing results were compared with the Autoregressive Integrated Moving Average model
(ARIMA) [39] and the GBDT model. The detailed processing steps of the EMD-GBDT
model are as follows:

• We used the EMD method to decompose the time series of land subsidence acquired
using the PS-InSAR technique and obtained the IMF components and trend compo-
nents.

• The GBDT model was used to forecast subsidence with the IMF components and the
trend component. After forecasting each component, we obtained the final forecasting
results by reconstructing the forecast results for all components.

• By comparing the forecasting accuracy of land subsidence with different IMF com-
ponent numbers, the optimal number of IMF components was selected. Then, the
optimal forecasting result was output as the final forecasting result at this point.
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In this paper, the training data and the testing data accounted for 70% (the first 39 time
points) and 30% (the last 16 time points) of the total number of time series data, respectively.
The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were chosen as the
assessment indices of model accuracy. The smaller the RMSE and MAE values, the better
the forecasting effect of the model. The calculation formulas were as follows:

RMSE =

√√√√√ n
∑

i=1
(xi − x̂i)

n
(3)

MAE =

n
∑

i=1
|(xi − x̂i)|

n
(4)

where n represents the number of sample data, xi represents the label value of the ith data
in the time series of the validation dataset, x̂i represents the forecast label value of the ith
data in the forecasting dataset, and xi represents the average value of the ith true label
values in the validation dataset.
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4. Results
4.1. Subsidence Characteristics along Typical High-Speed Railways in the BTH Plain

In the BTH Plain, there are various land subsidence funnels with an interregional
continuous distribution between 2016 and 2020, as shown in Figure 3. The BTH plain’s
center region had the most subsidence funnels, and these were distributed along a north–
south strip. The main serious land subsidence was in Chaoyang–Tongzhou in Beijing,
Wuqing in Tianjin, Bazhou in Langfang, Baoding, Hengshui, Xingtai, and Cangzhou. The
maximum subsidence rates in the above areas are 64 mm/year, 94 mm/year, 70 mm/year,
119 mm/year, 130 mm/year, 132 mm/year, and 92 mm/year, respectively. The highest
land subsidence rate in the radar data coverage area was 132 mm/year between January
2016 and September 2020.
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Figure 3 shows, the distribution of high-speed railways, while Figure 4 shows the
characteristics of land subsidence along the high-speed railways, showcasing those that
travel through or are adjacent to the land subsidence area. The subsidence rates along the
Beijing–Shanghai, Beijing–Tianjin, Beijing–Guangzhou, Tianjin–Baoding, and Shijiazhuang–
Jinan high-speed railways range from 0–56 mm/year, 0–28 mm/year, 0–23 mm/year,
0–82 mm/year, and 2–77 mm/year, respectively. Figure 4d,e show that the land subsidence
along the Tianjin–Baoding and Shijiazhuang–Jinan high-speed railways is relatively serious.
The land subsidence regions of Wuqing, Langfang, and Xiongxian are traversed by the
Tianjin–Baoding high-speed railway. Figure 4d shows that the maximum rate of land
subsidence along the high-speed railway, which occurred 98 km from the starting point,
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reached 82 mm/year. Meanwhile, Figure 4e revealed that the amount of subsidence along
the Shijiazhuang–Jinan high-speed railway is considerable, with 67% of the whole length of
the high-speed railway having a subsidence rate over 30 mm/year. The railway spanned
the subsidence area of Jing County, Hebei Province, of which the maximum subsidence
rate was 77 mm/year and occurred 136 km away from the beginning site. As shown in
Figures 3 and 4a–c, the Beijing–Shanghai, Beijing–Tianjin and Beijing–Guangzhou high-
speed railways are close to the subsidence areas of Dongguang County–Jingxian County,
Chaoyang District–Tongzhou District, and Xushui County, and the overall subsidence is rel-
atively slow. The largest subsidence rates, which were situated 250 km, 21 km, and 103 km
from the starting point, were 55 mm/year, 28 mm/year, and 23 mm/year, respectively.
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Figure 4. Land subsidence rate along the high-speed railways in the typical BTH area. Land
subsidence rate along the Beijing–Shanghai (a), Beijing–Tianjin (b), Beijing–Guangzhou (c), Tianjin–
Baoding (d) and Shijiazhuang–Jinan (e) high-speed railways from 2016 to 2020.

According to the cumulative subsidence and time series land subsidence data, the
evolution characteristics of land subsidence along these lines were further analyzed from the
perspective of time. We selected PS points with the maximum deformation rate along the
line as typical points to analyze the cumulative subsidence and time series land subsidence
(Figure 5). The position of the points is shown in Figure 3. As shown by the cumulative
subsidence curve, from 2016 to 2020, land subsidence continued to occur at each typical
point. Figure 5a–e show that the maximum cumulative subsidence of the Beijing–Shanghai,
Tianjin–Baoding, and Shijiazhuang–Jinan high-speed railways reached 326 mm, 384 mm,
and 350 mm, respectively. We further analyzed the changing characteristics of the land
subsidence at typical points. The fluctuation degree of the curve in Figure 5 represents
the uneven degree of the land subsidence time series change. Figure 5 shows that the
subsidence of each typical point fluctuated from 2016 to 2020. The uneven evolution of the
subsidence of typical points on the Beijing–Guangzhou high-speed railway is slightly weak,
and the amplitude of the subsidence fluctuation is basically within 5 mm. The amplitudes
of subsidence fluctuations at typical points on the Beijing–Tianjin and Beijing–Shanghai
high-speed railways are approximately 10 mm. The uneven evolution degree of the time
sequence subsidence of typical points on the Tianjin-Baoding high-speed railway and
the Shijiazhuang–Jinan high-speed railway is the strongest, with maximum amplitudes
reaching 16 mm and 12 mm, respectively. The time periods are from July to August 2016 and
July to August 2018. In general, the spatial–temporal evolution of regional land subsidence
certainly affects high-speed railways. Therefore, attention must be paid to the monitoring
of land subsidence along high-speed railway lines.
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Figure 5. Panels (a–e) show the cumulative and time series land subsidence of typical PS points
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4.2. Validation of Time-Series Results

To verify the accuracy of the land subsidence monitoring results obtained using the
PS-InSAR technique, we selected seven leveling benchmarks in the study area from October
2016 to October 2017. Their positions are shown in Figure 1. We established buffers with
a radius of 500 m around the leveling benchmark, and the subsidence of PS points was
extracted within the buffer areas. We calculated the average subsidence of these PS points
from October 2016 to 2017 and compared them with the leveling benchmark values. The
results are shown in Table 2. We find that the maximum deviation between the results
obtained by PS-InSAR monitoring and the leveling values is 11 mm, the minimum deviation
is 0 mm, and the average deviation is 5 mm. The comparison shows that the monitoring
results of PS-InSAR are accurate and can support this study.

Table 2. Comparison between PS-InSAR and leveling monitoring results.

Benchmarks
Number PS-InSAR (mm) Leveling

Measurement (mm) Difference (mm)

1 2 2 0
2 6 15 9
3 5 9 4
4 26 36 10
5 1 2 1
6 88 89 1
7 79 90 11

5. Discussion
5.1. Land Subsidence Forecasting along High-Speed Railways Based on the EMD-GBDT Model

Land subsidence is characterized by nonlinear evolution, as shown in Figure 5, and
the evolution of land subsidence is complex. To accurately forecast the land subsidence
along the high-speed railway lines, the time series were broken down and the complexity of
the original data was reduced using the EMD method. To improve the forecasting accuracy,
we used a GBDT model for the decomposed IMF components and trend component.

We extracted a PS point from each high-speed railway line as an example point for
EMD. The subsidence values of these points were decomposed using the EMD method
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introduced in Section 3.2.1, and all IMF components and trend components are presented in
Figure 6. As shown in Figure 6a–e, there were four IMF components of the Beijing–Tianjin
and Beijing–Shanghai high-speed railways; the Beijing–Guangzhou, Tianjin–Baoding, and
Shijiazhuang–Jinan high-speed railways had three. With the decomposition of the EMD
method, the fluctuations in the original time series weakened. However, due to the
different evolution characteristics of the sample points along the high-speed railways,
the numbers of IMF components obtained from the EMD method were different. To ensure
that the forecasting result of each sample point was the optimal value, each point was
iteratively decomposed, and the IMF component obtained via the decomposition was
modeled separately. We compared the error values forecasted by the GBDT models under
different numbers of IMF components at sample points and selected the number of IMF
components with the optimal error and the forecasting results at this time as the final
forecasting results. The RMSE comparison of models between the optimal decomposition
and the maximum decomposition for each high-speed railway is shown in Figure 7a–e.
While constructing the EMD-GBDT and GBDT models, we mainly considered the selection
of parameters used in the base learners and tree branches. We optimized and adjusted each
of the model’s parameters based on the grid search approach to determine the optimal
parameters, as shown in Table 3.
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Figure 6. EMD decomposition results of original time series subsidence of typical PS points on Beijing–
Shanghai (a), Beijing–Tianjin (b), Beijing–Guangzhou (c), Tianjin–Baoding (d) and Shijiazhuang–Jinan
(e) high speed railways.

Table 3. Parameter list of EMD-GBDT and GBDT model.

Model Parameters Value Parameters Value

EMD-
GBDT/GBDT

loss MSE max_depth 2
learning_Rate 0.13 min_samples_split 6
n_estimators 50 min_samples_leaf 0.04
Random Seed 10 subsample 0.85



Remote Sens. 2023, 15, 4606 12 of 16

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

shows that the RMSE and MAE of the optimized EMD-GBDT model are the minimum, 
which indicates that our model has the best forecasting results for land subsidence in time 
series. The results also further demonstrated that the final forecasting effect and accuracy 
can be improved by reconstructing the forecasting values of IMF components and trend 
components in relation to the complex nonlinear characteristics of land subsidence in time 
series. 

 
Figure 7. Comparison of model RMSE between the optimal IMF decomposition and the maximum 
decomposition for Beijing–Shanghai (a), Beijing–Tianjin (b), Beijing–Guangzhou (c), Tianjin–Bao-
ding (d) and Shijiazhuang–Jinan (e) high-speed railways. The red and the blue solid lines represent 
optimal decomposition accuracy and model accuracy differences, respectively. The gray dotted line 
shows maximum decomposition accuracy. 

  

Figure 7. Comparison of model RMSE between the optimal IMF decomposition and the maximum
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To contrast and verify the EMD-GBDT model’s correctness, we used the GBDT and
ARIMA models. The results of the accuracy evaluation indexes of the three models are
shown in Table 4, and the model forecasting results are shown in Figure 8a–e. Table 4
shows that the RMSE and MAE of the optimized EMD-GBDT model are the minimum,
which indicates that our model has the best forecasting results for land subsidence in time
series. The results also further demonstrated that the final forecasting effect and accuracy
can be improved by reconstructing the forecasting values of IMF components and trend
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components in relation to the complex nonlinear characteristics of land subsidence in
time series.

Table 4. Comparison of accuracy indexes of EMD-GBDT and GBDT, ARIMA models.

Model EMD-GBDT GBDT ARIMA

Evaluating indicator RMSE MAE RMSE MAE RMSE MAE
Beijing–Shanghai 0.47 0.29 0.49 0.30 1.16 0.90

Beijing–Tianjin 0.43 0.27 0.45 0.28 0.96 0.73
Beijing–Guangzhou 0.38 0.23 0.39 0.24 0.87 0.68

Tianjin–Baoding 0.54 0.32 0.56 0.33 1.23 0.95
Shijiazhuang–Jinan 0.56 0.38 0.59 0.4 1.43 1.15

Note: The bold represents the smallest error corresponding index of the model and the units of RMSE and MAE
values are in millimeters.
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Figure 8. The forecasting result of subsidence along Beijing–Shanghai (a), Beijing–Tianjin (b), Beijing–
Guangzhou (c), Tianjin–Baoding (d) and Shijiazhuang–Jinan (e) high-speed railways based on EMD-
GBDT (purple line), GBDT (cyan line), and ARIMA (red line) models (the time series of the original
value range from January 2016 to September 2020 and EMD-GBDT, signal GBDT, and ARIMA models
range from January 2016 to September 2021).

5.2. Analysis of Slope Changes along High-Speed Railways

Slope changes along a high-speed railway can minimize the impact of land subsidence
on its safe operation [40]. Figure 8 demonstrates the continued, slow subsidence occurring
along the high-speed railways. We calculated the slope changes using Formula (5) with
the forecasted subsidence along each high-speed railway line and evaluated the stability
of high-speed railway operation. The results were shown in Table 5. The formula used to
calculate the slope is as follows [41]:

S =
∆h
L

(5)
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Table 5. Impact of land subsidence differential evolution on slope change of typical Beijing–Tianjin–
Hebei high-speed railways from 2016 to 2021.

Slope Variation Range (‰) 0–0.02 0.02–0.04 0.04–0.06 0.06–0.08 0.08–0.1 0.1–0.15

Beijing-Shanghai 83.28 13.71 2.34 0.67 - -
Beijing-Guangzhou 93.65 5.82 0.53 - - -

Beijing-Tianjin 93.42 5.26 0.88 0.44 - -
Tianjin-Baoding 60.63 19.37 9.37 2.5 5 3.13

Shijiazhuang-Jinan 69.52 23.53 5.35 1.07 0.53 -

Note: The symbol “-” indicates that there are no data in the range.

∆h represents the land subsidence difference (m) of the upper two points along the
high-speed railway and L represents the distance (m) between the two points. The results
show that from January 2016 to September 2021, the impact of the differential evolution
of land subsidence on the slope change along each high-speed railway was within the
engineering technical standard (2‰). Most of the slope changes along high-speed railways
are within 0.02‰. The influence of land subsidence along the Tianjin–Baoding high-speed
railway on the slope changes range from 0.15‰ to 0.1‰, and the length of the high-speed
railway within the range is 3.13 km.

In summary, these findings reveal a gradually growing tendency in the land subsidence
along the typical high-speed rails in the BTH. High-speed railway slope variations are
impacted by land subsidence, which has a direct impact on the stability of high-speed
railway operations. Therefore, it is crucial to pay close attention to how the land subsidence
along the high-speed train is developing.

6. Conclusions

Long-term groundwater overexploitation causes visible land subsidence in the BTH
region [3–5]. Concurrently, the development of transportation integration causes high-
speed railway networks to expand rapidly in the BTH region. In this study, based on the
results of land subsidence from 2016 to 2020 in typical areas of the BTH region obtained by
the PS-InSAR technique, we used the EMD-GBDT model to forecast the land subsidence
along typical high-speed railways in 2021. Then, we analyzed the stability of high-speed
railway operations. The conclusions are as follows:

• From 2016 to 2020, the land subsidence mainly occurred in the middle BTH Plain, with
a north–south zonal distribution. In numerous instances, multiple land subsidence
funnels in the BTH Plain were connected into one. The maximum land subsidence
rate reached 132 mm/year.

• The subsidence along the Tianjin–Baoding and Shijiazhuang–Jinan high-speed rail-
ways was significant in the BTH region. The Tianjin–Baoding high-speed railway
passed through the land subsidence areas of Wuqing, Langfang, and Xiongxian. The
maximum subsidence rate along the Tianjin–Baoding high-speed railway reached
about 82 mm/year.

• The EMD-GBDT model can improve the forecasting accuracy of land subsidence to some
degree. As of September 2021, the land subsidence has influenced slope changes along
the high-speed railways, but it does not exceed the permitted technical standards.

Although this forecasting model has improved the accuracy of the forecast results, it
also has some shortcomings. It did not consider the effect of different signal decomposition
methods on the accuracy of the model. We will consider this issue in future studies.
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