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Abstract: Object detection in images captured by unmanned aerial vehicles (UAVs) holds great
potential in various domains, including civilian applications, urban planning, and disaster response.
However, it faces several challenges, such as multi-scale variations, dense scenes, complex back-
grounds, and tiny-sized objects. In this paper, we present a novel scale-adaptive YOLO framework
called SMFF-YOLO, which addresses these challenges through a multi-level feature fusion approach.
To improve the detection accuracy of small objects, our framework incorporates the ELAN-SW object
detection prediction head. This newly designed head effectively utilizes both global contextual
information and local features, enhancing the detection accuracy of tiny objects. Additionally, the
proposed bidirectional feature fusion pyramid (BFFP) module tackles the issue of scale variations in
object sizes by aggregating multi-scale features. To handle complex backgrounds, we introduce the
adaptive atrous spatial pyramid pooling (AASPP) module, which enables adaptive feature fusion
and alleviates the negative impact of cluttered scenes. Moreover, we adopt the Wise-IoU(WIoU)
bounding box regression loss to enhance the competitiveness of different quality anchor boxes, which
offers the framework a more informed gradient allocation strategy. We validate the effectiveness of
SMFF-YOLO using the VisDrone and UAVDT datasets. Experimental results demonstrate that our
model achieves higher detection accuracy, with AP50 reaching 54.3% for VisDrone and 42.4% for
UAVDT datasets. Visual comparative experiments with other YOLO-based methods further illustrate
the robustness and adaptability of our approach.

Keywords: object detection; unmanned aerial vehicles; tiny objects; complex scenarios; multi-level
feature information fusion

1. Introduction

Object detection, a critical task in computer vision, involves identifying specific objects
and determining their positions. It provides an efficient and accurate method for object
identification in images or videos. This task plays a significant role and has broad appli-
cations in the field of artificial intelligence. The emergence of unmanned aerial vehicles
(UAVs) has revolutionized various domains, including urban monitoring, traffic control,
and disaster response. Due to their unique advantages and wide range of application
scenarios, UAVs have made object detection a pivotal area of research in the field [1,2].

The significant advancement of object detection can be attributed to the emergence of
deep learning [3–8]. These methods have demonstrated impressive accuracy on large-scale
object detection datasets consisting of natural images, such as MS COCO [9] and PASCAL
VOC [10]. Nevertheless, the performance of existing methods designed for natural images
in object detection tasks falls short when applied to UAV-captured images. This is mainly
due to the significant differences between the two types of images.

There are four primary factors that contribute to the challenges of object detection in
UAV-captured images. Firstly, UAV-captured images have different viewpoints compared
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to natural images taken from the ground or conventional perspectives. This introduces
diversity in the scale, angle, and shape of objects in UAV images, which makes object
detection more challenging. Secondly, UAV-captured images exhibit significant variations
in object scales. These images contain both small objects, such as pedestrians and bicycles,
as well as large objects like buildings and terrain. This scale variation within the images
adds complexity to the object detection task. Thirdly, the backgrounds in UAV-captured
images can be complex, which presents environmental factors that further complicate
object detection tasks. For example, objects within the images may have textures and colors
similar to the background, making them harder to distinguish. Fourthly, UAV-captured
images often suffer from low resolution due to operation altitude or device limitations.
This low resolution leads to the loss of object details and inadequate information, hindering
accurate object detection. Furthermore, factors like wind or clouds may affect the UAV-
captured images, which results in image blurring or the presence of noise. These factors
collectively contribute to the difficulties faced in object detection in UAV-captured images.

Existing methods for object detection in UAV-captured images are typically designed
for specific scenarios, such as ship or vehicle detection. These methods are well-suited for
cases where object sizes are similar and backgrounds are uniform. Consequently, these limita-
tions result in reduced detection performance for multi-class objects and an increased risk of
missing detections when handling objects with significant scale variations. Moreover, object
detection in UAV-captured images often involves a considerable number of small objects.
These tiny objects exhibit small sizes and limited details, diminishing their distinctiveness in
the image and making them susceptible to confusion with the background or other objects.
To address these challenges, researchers have devoted efforts to enhance the performance
of tiny object detectors by improving feature representation and optimizing data augmenta-
tion techniques [11–14]. Despite the progress made by these methods in improving object
detection performance, they still possess certain limitations. Notably, these methods exhibit
insufficient generalization capability in the context of multi-class object detection, especially
when it involves small objects [15–17]. Additionally, complex environmental factors can
lead to erroneous detection results, and existing models may not extract sufficient feature
information for small objects. In scenarios with complex, blurred, and contaminated back-
grounds, a significant amount of information loss occurs, which poses challenges for detecting
these objects.

To overcome the challenges of information loss, adaptability to different object sizes,
and complex backgrounds in small object detection, this paper proposes an object detector
suitable for UAV-captured images based on the YOLO framework. Specifically, to improve
the detection accuracy of small objects, we introduce an additional tiny object prediction
head. Moreover, we replace the conventional convolution-based prediction heads with
novel prediction heads that combine convolution and Swin Transformer [18], enhancing
feature representation. Next, we employ a bidirectional feature fusion approach to aggre-
gate feature information of different resolutions in the backbone network, significantly
improving the importance of low-level information in the feature maps. Additionally, we
utilize the ELAN module [19] as a fundamental module in the YOLO framework, enabling
the network to learn more features and exhibit stronger robustness. Furthermore, we design
the adaptive atrous spatial pyramid pooling (AASPP) module to alleviate the influence
of complex backgrounds in UAV-captured images and enhance the detection accuracy of
multi-scale and multi-class objects. Finally, we redesign the loss function based on the
characteristics of the dataset and incorporate a dynamic non-monotonic focal mechanism,
which results in better performance.

The main contributions of this paper can be summarized as follows:

1. We present SMFF-YOLO, a novel one-stage detection framework for accurate object
detection in UAV images. It introduces a novel type of prediction head that fuses
convolution with Swin Transformer, enhancing feature representation by combining
global and local information. Furthermore, a specialized prediction head is added to
detect tiny objects effectively.
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2. To improve object detection across scales, we introduce the adaptive atrous spatial
pyramid pooling (AASPP) module. This facilitates cross-scale feature fusion and
employs mixed attention mechanisms for enhanced feature information. We also
propose the bidirectional feature fusion pyramid (BFFP) model to enhance multi-scale
fusion via bidirectional information flow.

3. For better regression anchor accuracy in SMFF-YOLO, we adopt Wise-IoU (WIoU) as
the bounding box regression loss. This serves to balance anchor box competitiveness
and address gradient issues from low-quality samples, which enhances the model’s
overall performance.

4. We evaluate the performance of SMFF-YOLO by comparing it with several state-of-the-
art detection models on the VisDrone and UAVDT datasets. The experimental results
clearly show that our proposed method excels in detecting objects in challenging
scenarios characterized by substantial variations in object scales.

2. Related Work
2.1. Traditional Object Detection Methods and Deep Learning-Based Object Detection Methods

The development of object detection methods can be categorized into two main
categories: traditional object detection and deep learning-based object detection. Traditional
methods typically involve three components: object localization, feature extraction, and
feature classification. However, traditional object localization methods have limitations.
Since objects can appear at arbitrary locations in an image with uncertain sizes and aspect
ratios, the initial approach involves exhaustively sliding windows over the entire image
at different scales and aspect ratios. While this exhaustive strategy covers all possible
object locations, it has drawbacks, including high time complexity, excessive redundant
windows, and adverse effects on subsequent feature extraction and classification speed and
performance. Additionally, traditional object detection methods rely on manually designed
features, which may not fully capture the complexity of objects. Consequently, traditional
methods exhibit relatively poor performance and robustness in complex scenarios.

Deep learning-based object detection methods have emerged as the dominant ap-
proach in the field. They can be classified into two categories. The first category is a two-
stage detection method based on region proposals. An early example is R-CNN [20], which
extracts region proposals and utilizes convolutional neural networks (such as AlexNet [21]
and VGG [22]) for object classification and bounding box regression. Fast R-CNN [3]
improves detection speed by introducing the ROI (region of interest) pooling layer. Faster
R-CNN [3] further enhances the speed and accuracy of detection by introducing the region
proposal network, which unifies region proposal extraction and object detection. Mask
R-CNN [23] extends Faster R-CNN to support instance segmentation, enabling precise
pixel-level masks for objects. Cascade R-CNN [24] adopts a cascading approach that trains
and filters multiple detectors in a progressive manner, gradually improving the detection
accuracy. Libra R-CNN [25] addresses class imbalance in object detection by introducing
balancing strategies and loss functions to mitigate the performance degradation caused by
imbalanced classes.

The one-stage approach is another category of methods that directly regress the object
size, location, and class from the input image using the network. One of the most widely
recognized one-stage detection methods is the YOLO series of frameworks [19,26,27]. These
frameworks treat object detection as a regression problem and predict bounding boxes
and class information for each grid in the image. SSD [5] achieves multi-scale object
detection by predicting targets at various feature map levels. RetinaNet [6] utilizes a feature
pyramid network to extract features and addresses class imbalance in object detection. To
improve the detection performance of small objects, it introduces focal loss. CornerNet [28]
determines the position and size of objects by detecting their keypoints using convolutional
neural networks for keypoint prediction.
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2.2. Deep Learning-Based Object Detection Methods for UAV-Captured Images

In recent years, the rapid advancement of UAV technology has led to the capturing
of images with unique characteristics and challenges. These challenges include variations
in different scenes, complex backgrounds, scale variations of objects, and occlusion of
targets. These factors pose significant challenges for traditional object detection methods
to achieve satisfactory performance when applied to UAV-captured images. Fortunately,
the introduction of large-scale datasets specifically designed for UAV-captured images has
facilitated significant breakthroughs in object detection by utilizing deep learning-based
approaches [29,30].

Convolutional neural networks (CNNs) have significantly advanced object detection
in the field by leveraging their automatic feature extraction capabilities. In the domain of
UAV-captured images, deep learning has been increasingly integrated into object detection
methodologies. Wu et al. [31] improved the spatial pyramid pooling structure by incorpo-
rating additional pooling layers and cascading multiple groups of pooling layers, thereby
enhancing the learning capacity of the network. Chen et al. [32] proposed a classification-
oriented super-resolution generative adversarial network to augment data and detect small
vehicles in UAV images. ClusDet [33] introduced an end-to-end framework that unified
object clustering and detection, achieving high runtime efficiency and effectively improving
the detection accuracy of small objects. AdNet [34] introduced a multi-scale adversarial
network that aligns features across different viewpoints, lighting conditions, weather, and
backgrounds, which enhances its adaptability. LMSD-YOLO [35] proposed a lightweight
SAR ship detection model composed of convolutional blocks using depth-wise separable
convolutions, reducing computational demands while accelerating model convergence and
improving detection accuracy. BIFA-YOLO [36] designed a detection head with angle clas-
sification capability, which enables accurate capture of angle information in ship detection
for cases involving boundary continuity and complex parameter regression.

Unlike traditional CNNs, transformers leverage self-attention mechanisms, which
allow them to capture global contextual information beyond local features. This ability
makes transformers more effective in handling long-range dependencies and global re-
lationships. In the domain of object detection in UAV-captured images, the introduction
of the transformer brings several advantages. TPH-YOLOv5 [37] effectively integrates
YOLOv5 and transformers, with transformer prediction heads that significantly improve
performance in images with significant variations in object sizes. TPH-YOLOv5++ [38]
designs a cross-layer asymmetric transformer to replace additional prediction heads, which
results in a notable improvement in detection speed while retaining most of the knowledge
from the additional prediction heads. VIT-YOLO [39] designs an improved backbone to
preserve sufficient global contextual information and extracts more diverse features using
multi-head self-attention for object detection. The transformer structure is particularly
effective in utilizing global contextual information, which is crucial for understanding the
relationship between objects and their surroundings. Additionally, transformers possess
strong feature representation abilities, which allows them to capture the intricate details
and complexity of objects, thus enhancing detection accuracy. Moreover, the self-attention
mechanism of the transformer enables adaptive handling of objects at different scales,
which makes the algorithm more robust. In summary, the introduction of transformers
introduces new possibilities to the field of UAV applications. In our design, the combi-
nation of Swin Transformer and CNN further enhances object detection performance in
complex environments.

3. Proposed Method

This section provides an overview of the method proposed in this paper, outlining its
overall structure and discussing several specific improvement measures. These measures
include the replacement of the original prediction heads with a new prediction head
consisting of Swin Transformer and CNN. Additionally, the paper introduces a tiny object
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prediction head, a novel spatial pyramid pooling module, a bidirectional feature fusion
pyramid module, and an improved loss function.

The architecture of our proposed SMFF-YOLO is depicted in Figure 1, encompassing
three main components: backbone, neck, and prediction heads. The backbone network
consists of ELAN modules, designed based on gradient path and showcasing strong
learning capabilities. Additionally, we introduce the AASPP module, positioned at the
end of the backbone, to further enhance feature extraction. In the neck component, we
draw inspiration from EfficientDet [40] and devise the BFFP module, efficiently connecting
multi-scale features bidirectionally to improve the model’s ability to extract features at
different scales. Lastly, our model employs four prediction heads to generate outputs.
The joint module ELAN-SW, combining Swin Transformer and ELAN, forms the core
component of the prediction heads. This integration enables the model to build long-range
dependencies and capture global context information in the input image. Consequently,
the model can better comprehend the semantics and spatial relationships of the objects.

Figure 1. Overall architecture of the proposed SMFF-YOLO.

3.1. Additional Tiny Object and Swin Transform Prediction Heads

In UAV-captured images, objects exhibit a wide range of scale variations, often con-
sisting of many tiny-sized targets. Detecting these tiny objects is challenging due to the
limited availability of spatial context information and low visual prominence. Typically,
the YOLO framework utilizes three prediction heads to improve the accuracy of detecting
tiny-sized targets. However, it is clearly insufficient for handling all possible detection
scenarios. To address this issue, we introduce a dedicated prediction head for tiny objects.
This prediction head extracts features from high-resolution feature maps, which makes
it more sensitive to tiny objects. Through collaboration with the other three prediction
heads, we effectively mitigate the negative impact of significant scale variations on the
performance of object detection. Our design strategy allows our model to effectively handle
object detection tasks with substantial differences in scale.

Moreover, the transformer model has powerful capabilities in modeling long-range de-
pendencies, which aid in understanding the relationships and contextual information among
objects, thus improving the accuracy and robustness of object detection. In UAV-captured
images, due to the significant variations in object scales, traditional YOLO frameworks that
solely rely on convolutional prediction heads often struggle to effectively detect objects of
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various sizes. Therefore, drawing inspiration from DETR [7], we combine transformers with
convolutional layers to serve as a novel prediction head in our model. Specifically, we connect
and stack ELAN modules and Swin Transformer modules twice to generate the output. The
structure of ELAN-SW is illustrated in Figure 2. Swin Transformer is a transformer-based
method proposed in recent years. It improves the ability to capture contextual information
and spatial information in images by introducing the window multi-head self-attention (W-
MHSA) module and the shifted window multi-head self-attention (SW-MHSA) module. The
W-MHSA module adopts the window attention mechanism, which divides the input feature
map into windows to effectively model local information by calculating attention weights
within each window. The SW-MHSA module utilizes the shifted window attention mecha-
nism, which considers the relationship between adjacent windows to effectively capture local
information. The Swin Transformer module manifests exceptional prowess in contextual
modeling by integrating self-attention mechanisms and cross-window shifting operations.
This integration enables the module to effectively capture context information at a global
scale, thereby facilitating a deeper understanding of the relationships between objects and
their surrounding environment. In addition to the benefits of the Swin Transformer, convo-
lutional layers serve as traditional feature extractors with remarkable capabilities in local
perception. They extract features from localized regions through sliding windows, capturing
fine details and texture information of objects. By combining convolutional layers and Swin
Transformer, we can fully leverage the advantages of both methods. This allows the model to
consider both global and local information, resulting in an overall performance improvement.

Figure 2. The detailed structure of the ELAN-SW module.

3.2. Adaptive Atrous Spatial Pyramid Pooling Module

In the YOLO framework, it is common to incorporate a pyramid pooling structure
at the end of the backbone network to enhance contextual information and thus improve
the accuracy and robustness of object detection. However, in recent years, numerous
pyramid pooling structures have been proposed, many of which involve multiple pooling
operations. These multiple pooling operations can inadvertently result in the loss of scale
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information, as objects of varying scales will be compressed into the same length of feature
representation after pooling. Consequently, this could lead to inadequate representation of
small-scale objects and information compression for large-scale objects.

To overcome this challenge, we propose a more effective solution called the adaptive
atrous spatial pyramid pooling (AASPP) module. This module is designed to preserve
scale information and enhance the performance of object detection. Figure 3 illustrates the
structure of the AASPP module.

Figure 3. Structure of AASPP module.

The AASPP module is incorporated at the end of the backbone network, similar to
other pyramid pooling modules. Firstly, the AASPP module takes the feature map P, which
is generated by the deep convolution of the backbone network, as input. It then performs
convolution operations using convolutional kernels with different dilation rates, and four
feature maps at different scales are generated, denoted as Pi (i = 1, 2, . . . , 4). This step
enables multi-scale feature extraction, which allows the model to effectively detect objects at
various scales and achieve a balance and integration of information. Subsequently, each Pi
undergoes further feature enhancement through the use of the enhanced channel attention
(ECA) module [41], producing Yi. The ECA module is illustrated in Figure 4. The output of
each Pi processed by the ECA module is denoted as follows:

Si = Feca(Pi, δ) = δ(Conv1D(GAP(Pi))) (1)

Yi = Si · Pi, (2)

where GAP(·) denotes global average pooling, and Conv1D(·) represents a one-dimensional
convolution with a kernel size of k in the channel domain, to simulate local cross-channel
interactions. The parameter k determines the coverage range of the interaction. In ECA, the
kernel size k is adaptively determined based on the channel dimension C, instead of being
manually adjusted, using cross-validation:

k =

∣∣∣∣ψ(C) = log2 C
γ

+
b
γ

∣∣∣∣
odd

. (3)
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Figure 4. Structure of the ECA module.

Furthermore, all Yi are concatenated and then subjected to overall feature recalibration
using the spatial attention module (SAM) [42]. The spatial attention module optimizes
the channel representation of the feature map in an adaptive manner by compressing the
channels and performing average pooling and max pooling operations in the channel
dimension. Moreover, by calculating the importance weights of each pixel and applying
them to every position of the feature map, the spatial attention module helps the network
focus on the significant regions in the image. This step further enhances the model’s
comprehension of the target position and context, resulting in the final output. The spatial
attention module is depicted in Figure 5. The final output of the AASPP module, denoted
as I, can be defined as follows:

I′ = f 1×1(P) + f 3×3[Y1, Y2, Y3, Y4] (4)

I = δ( f 7×7[Avg(I′), Max(I′)
]
)⊗ I′, (5)

where f 7×7[·] represents the convolution operation with a kernel size of 7 and concatenates
the elements within it. The term f 1×1(·) represents the convolution operation with a kernel
size of 1. The δ stands for the sigmoid activation function. In the AASPP module, each
feature map obtained from different atrous convolutions undergoes additional feature en-
hancement to enhance its discriminative and expressive capabilities. Finally, by integrating
all the feature maps that have undergone feature enhancement and incorporating the spatial
attention mechanism, the final output feature map is obtained. The inclusion of the AASPP
module addresses the problem of scale information loss in traditional pyramid pooling
methods, resulting in a more comprehensive and accurate representation of the objects.

Figure 5. Structure of the spatial attention module.

3.3. Bidirectional Feature Fusion Pyramid

In convolutional networks, deep layers are adept at capturing semantic features, while
shallow layers are more responsive to image features. However, this feature representation
poses challenges in object detection tasks. On one hand, although deep layers can capture
semantic features, their feature maps have low spatial resolutions, which limits the available
geometric information for precise object detection. This limitation is especially evident
when detecting small objects. Moreover, shallow layers contain more geometric information
but lack sufficient semantic features, leading to subpar performance in image classification
tasks. To tackle this issue, the feature pyramid network (FPN) [43] was introduced. FPN
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incorporates a top-down information propagation mechanism that effectively fuses and
represents multi-scale features. PAFPN [44] builds upon FPN by adding a bottom-up
pathway, which enables the predicted feature maps to possess both high semantic and
positional information. NAS-FPN [45] optimizes the construction of the feature pyramid
by autonomously searching for network architectures, thereby enhancing object detection
performance. ASFF [46] introduces an adaptive feature fusion mechanism that dynamically
allocates weights for feature fusion based on the quality and contribution of each scale’s
feature map to object detection. Recursive-FPN [47] proposes a recursive feature fusion
method for more efficient handling of multi-scale features. To further optimize the multi-
scale feature fusion in FPN, BIFPN [40] introduces a bidirectional feature fusion approach.
Inspired by the structure of BIFPN and in combination with YOLO, we propose a novel
module called bidirectional feature fusion pyramid (BFFP). BFFP incorporates top-down
feature propagation from higher-level features and bottom-up feature propagation from
lower-level features, achieving a bidirectional flow of information. Figure 6 illustrates the
structure of the BFFP module.

Figure 6. Structure of the BFFP module.

To simplify the description, we will refer to the ELAN module as the Conv1 module
and ELAN-SW as the Conv2 module, as depicted in Figure 6. Our proposed BFFP module
takes four feature maps extracted by the backbone network as inputs, denoted as I1 − I4
from bottom to top. Among these, I1 has the highest feature map resolution, while the
subsequent feature maps have their resolutions halved. To enhance the framework’s ability
to fuse multi-scale features and minimize framework complexity, we chose to incorporate
bidirectional skip connections between the middle two layers of the module in our practical
experiments. This allows us to effectively capture feature information across different
scales while mitigating issues related to excessive parameter increase, model oversizing,
gradient vanishing, and feature degradation. The process of fusing multi-scale features in
the BFFP module can be described as follows:

F′4 = Conv(I4) (6)

F′3 = Conv1[I3, Up(F4′)] (7)

F′2 = Conv1[I2, Up(F3′)] (8)

F′1 = Conv1[I1, Up(F2′)] (9)

F1 = Conv2(F′1) (10)

F2 = Conv2
[
Down(F1), I2, F′2

]
(11)

F3 = Conv2
[
Down(F2), I3, F′3

]
(12)

F4 = Conv2
[
Down(F3), F′4

]
, (13)

where F′1 − F′4 represent the feature maps obtained from the top-down path, corresponding
to levels 1 to 4, while F1 − F4 represent the output feature maps from the bottom-up path.
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The notation Conv denotes a 1x1 convolution operation, Conv1 implies that the feature
map undergoes the Conv1 module (simplified ELAN module), and Conv2 indicates that the
feature map undergoes the Conv2 module (simplified ELAN-SW module). The operation
Up represents upsampling, and Down denotes a convolution operation with a kernel size of
3 and a stride of 2.

3.4. Loss Function

Wise-IoU (WIoU) [48] is a loss function used in object detection tasks to regress bound-
ary boxes. Traditional methods often assume that the majority of examples in the training
dataset are of high quality and focus on improving the boundary box regression for these ex-
amples. However, real-world object detection datasets, especially those from UAV-captured
images like ours, often contain examples of low quality. Overemphasizing boundary box
regression for these low-quality examples can have a negative impact on detection per-
formance. In contrast to other boundary box loss functions such as DIoU [49], EIoU [50],
CIoU [49], and SIoU [51], WIoU introduces a dynamic non-monotonic focus mechanism.
This mechanism allows WIoU to prioritize ordinary-quality boundary boxes, thereby im-
proving the overall performance of the detector. The overall loss of the network can be
defined as follows:

L = WboxLbox + WclsLcls + WobjLobj (14)

Lbox = LWIoU , (15)

where Lbox represents the bounding box loss, also known as LWIoU , Lcls represents the
category loss, and Lobj represents the confidence loss. Wbox, Wcls, and Wobj refer to the
weights assigned to the individual losses, respectively. The total loss L is calculated by
taking the weighted sum of the three losses.

The bounding box regression model is shown in Figure 7 where, for the anchor box
B = [x, y, w, h], the values correspond to the center coordinates and size of the bounding
box. Similarly, Bgt =

[
xgt, ygt, wgt, hgt

]
describes the properties of the target frame. The

LWIoU can then be further interpreted as:

LWIoU = rLIoU RWIoU (16)

LIoU = 1− IoU (17)

IoU = 1− Wi Hi
wh + wgthgt −Wi Hi

(18)

RWIoU = exp(
(x− xgt)2 + (y− y2

gt)

(W2
g + H2

g)
∗ ), (19)

where IoU represents the degree of overlap between anchor boxes and target boxes in object
detection tasks, and RWIoU is a distance attention mechanism. To prevent interference
of the distance attention mechanism RWIoU with gradients, we detach Wg, Hg, and the
computation graph, denoted by superscript *. In Equation (19), we weaken the influence
of geometric factors on the loss, thereby improving the model’s generalization ability. At
the same time, we limit the range of RWIoU , LWIoU (RWIoU ∈ [1, e), and LWIoU ∈ [0, 1]),
which increases the LWIoU of ordinary quality anchor boxes and decreases the RWIoU of
high-quality anchor boxes. Through such adjustments, the loss function will pay more
attention to the distance between the center points of anchor boxes and target boxes:
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Figure 7. Bounding box regression model.

r =
β

δαβ−δ
(20)

β =
L∗IoU

LIoU
, (21)

where β is introduced to define the outlier factor to describe the quality of anchor boxes, and
LIoU is the sliding average with momentum m. Therefore, the quality threshold for anchor
boxes is also dynamic, enabling LWIoU to dynamically allocate gradient gains according to
the current situation. Moreover, in order to avoid negative gradients caused by low-quality
examples, we utilize β to construct a dynamic non-monotonic focus coefficient r. The
dynamic non-monotonic focal mechanism can effectively reduce the competitiveness of
high-quality anchor boxes while also reducing the harmful gradients produced by low-
quality examples, thereby improving the performance of the model. In this paper, we set α
and δ as hyperparameters, with values of 1.9 and 3, respectively, based on our experimental
findings and the recommendations of Tong et al. [48]. Furthermore, in our experiments, we
set the momentum m to 0.00001.

4. Experiments

The current section commences by providing an overview of the experimental datasets,
implementation details, and the evaluation metrics employed. Following that, a thorough
analysis is presented, focusing on the datasets’ specific characteristics. Lastly, extensive
experimental results are provided, showcasing the efficacy and superiority of the pro-
posed method.

4.1. Dataset Introduction

In the research into object detection in UAV-captured images, one of the main and
commonly used datasets is the VisDrone dataset [30]. This dataset consists of three parts: the
training set, validation set, and test set. The training set contains 6471 images, the validation
set contains 548 images, and the test set contains 1610 images. The maximum resolution
of the images in the entire dataset is 2000× 1500. The VisDrone dataset covers multiple
object categories, including pedestrians, various types of vehicles, bicycles, motorcycles, and
other common classes, totaling 10 classes. We used the VisDrone dataset as the primary
research subject for training and evaluating our object detection algorithm. Additionally,
we supplemented our research with the UAVDT dataset [29] for ablation experiments. The
UAVDT dataset consists of 50 videos, containing a total of 40,376 images. Referring to the
TPH-YOLOv5 [38], we used 24,778 images for training and 15,598 images for testing in the
UAVDT dataset. All images have a resolution of 1024× 540. Furthermore, according to the
dataset requirements, we grouped all images from the same video into either the training set
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or the testing set. Specifically, among the 50 videos, images from 31 videos were placed in
the training set, while images from the remaining 19 videos were placed in the testing set. By
using these two datasets, we were able to comprehensively cover diverse scenes and target
categories, enabling us to evaluate and compare the performance of our object detection
algorithm across different datasets.

In order to conduct a more comprehensive investigation into the object detection prob-
lem for UAV-captured images, a thorough survey and analysis of the VisDrone dataset and
the UAVDT dataset were carried out. Both datasets comprise real-world images captured by
UAVs, encompassing diverse urban and rural areas with varied scenes, lighting conditions,
and object categories. The research findings revealed common challenges shared by these
datasets, which can be categorized into three aspects. Firstly, the prevalence of small objects
and occluded targets in the images poses a significant challenge. These objects often have
small sizes and can be partially or fully occluded by the surrounding environment, other
objects, or obstructions, making accurate detection difficult. This challenge is exemplified
in Figure 8a. Secondly, due to variations in the UAV’s capturing angles and heights, the
targets in the images appear with different scales, angles, and shapes. This diversity adds
complexity to the object detection task, necessitating models with good scale adaptability
and pose robustness. Figure 8b illustrates these variations. Lastly, the objective weather
conditions also affect the quality of UAV-captured images. Differences in lighting, bright-
ness, and contrast introduce variations in image quality. Specific weather conditions like
foggy weather and nighttime images present additional challenges, as depicted in Figure 8c.
By comprehensively understanding these challenges present in the datasets, it becomes
possible to effectively design and improve object detection algorithms, enhancing accuracy,
robustness, and adaptability in detecting objects in UAV-captured images.

Figure 8. UAV-captured images in the VisDrone dataset and UAVDT dataset. (a) The challenge of
tiny objects and occluding objects. (b) The challenge of UAV imaging perspectives. (c) The challenge
of objective weather conditions.

4.2. Implementation Details

SMFF-YOLO is built upon the architecture of YOLOv7. Given the distinctive charac-
teristics of UAV-captured images, we made necessary adaptations to the original YOLOv7
framework. For future experiments, the results of the modified YOLOv7 will serve as
the baseline. The experiments were conducted using an Intel® Xeon® Silver 4310 CPU
operating at 2.10 GHz and NVIDIA RTX3090 graphics cards with 24 GB of video mem-
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ory. The experimental software was configured with PyTorch 1.12 and CUDA 11.7. The
training phase comprised 200 epochs, utilizing the first 2 epochs for warm-up. The initial
learning rate was set to 3.2× 10−4 and decayed to 0.12 times its value in the final epoch.
Parameter optimization was performed using the Adam optimization algorithm [52].
Given the higher resolutions of images in the VisDrone dataset, we configured the in-
put size to be 1536× 1536 and utilized a batch size of 4. We conducted post-processing
during the testing phase using non-maximum suppression (NMS) with a threshold of 0.6 to
derive the final experimental results. Furthermore, for experiments involving the UAVDT
dataset, an input size of 1024× 1024 was chosen to preserve image information and prevent
loss caused by size considerations.

4.3. Evaluation Metrics

In this paper, several evaluation metrics were utilized to assess the performance of our
proposed method, including precision (P), recall (R), F1-score (F1), average precision at IoU
threshold of 0.5 (AP50), and mean average precision (AP). Precision measures the ratio of
correctly detected objects to all detected results, while recall measures the ratio of correctly
detected objects to all ground truth objects. F1-score is a combined measure that takes
into account both precision and recall, providing a comprehensive evaluation of model
performance. The calculation methods for precision, recall, and F1-score are as follows:

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

F1 = 2
PR

P + R
, (24)

where TP (true positives) represents the number of correctly detected objects, FP (false
positives) represents the number of incorrectly detected objects, and FN (false negatives)
represents the number of missed objects during the detection process. AP (average preci-
sion) is the average precision obtained at different IoU thresholds ranging from 0.5 to 0.95,
with an interval of 0.05. The calculation of AP is defined as follows:

AP =
∫ 1

0
P(R)dR. (25)

In addition to precision, recall, F1-score, and AP, other metrics such as model pa-
rameters and FLOPs (floating-point operations) can also be used as reference points for
evaluating a model’s performance. Model parameters and FLOPs provide insights into the
complexity of the model to some extent.

4.4. Analysis of Results
4.4.1. Effect of Additional Tiny Object and Swin Transform Prediction Heads

To improve the detection of targets at different scales, we incorporated an additional
tiny object prediction head. In our drone-based detection task, the targets exhibit significant
scale variations. Using a limited number of prediction heads may not effectively capture
targets of different scales, particularly tiny ones. To evaluate the performance of the
modified YOLOv7 with varying numbers of prediction heads, we conducted experiments.
The results of these experiments are presented in Table 1.
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Table 1. Comparison of our method with different numbers of prediction heads. The best results are
highlighted in bold.

Prediction Head Size AP50 (%) AP (%)

P4 48× 48 35.0 18.1
P3 98× 98 46.5 27.1

P3, P4 48× 48, 98× 98 47.6 27.8
P2 196× 196 49.5 31.1

P2, P3, P4 48× 48, 98× 98, 196× 196 51.8 31.7
P1 392× 392 36.3 24.5

P1, P2, P3, P4 48× 48, 98× 98, 196× 196, 392× 392 52.7 32.5

The results shown in Table 1 indicate that using multiple prediction heads in our
experiments has produced positive outcomes. We maintained consistency in the model
parameters throughout the experiments, only altering the number of prediction heads.
Varying the number of prediction heads allowed us to analyze how different scenarios
affected the detection performance of the model. Among the experiments with only one
prediction head, the P2 prediction head achieved the highest performance, with an AP50
of 49.5% and an AP of 31.1%. However, when comparing the experiments with a single
prediction head to those with multiple prediction heads, the performance of the latter was
notably superior to that of the former. In the experiments involving P3 and P4 prediction
heads, the P3 prediction head demonstrated the highest performance, with an AP50 of
46.5% and an AP of 27.1%. However, the performance further improved when combining
P3 and P4 prediction heads, resulting in an AP50 of 47.6% and an AP of 27.8%. Ultimately,
our method achieved the optimum performance by employing 4 prediction heads, with
an AP50 of 52.7% and an AP of 32.5%. By fusing multiple detection heads, our method
proficiently integrates multi-scale feature information. The fusion of multi-scale features
enhances the model’s ability to represent and detect objects of varying scales. Due to the
potential introduction of excessive parameters and FLOPs, we made the decision not to
include an additional prediction head.

We compared the experimental results of the adjusted YOLOv7 with different predic-
tion heads, as shown in Table 2. Our study introduces the ELAN-SW module as a newly
developed and innovative prediction head, aiming to improve the model’s perception
of feature information. By incorporating the ELAN-SW module as a replacement for the
traditional convolutional prediction head, the table highlights the superior detection per-
formance achieved by our proposed method. The ELAN-SW prediction head showcases
substantial advantages compared to the original convolutional prediction head.

Table 2. Experimental results of the adjusted YOLOv7 with additional tiny object prediction heads
and replaced prediction heads. The best results are highlighted in bold.

Method P (%) R (%) F1 AP50 (%) AP (%)

YOLOv7 58.2 52.3 55.1 51.8 31.7
YOLOv7-4Heads 58.8 53.4 56.0 52.7 32.5

YOLOv7-4Heads-SW 60.3 53.7 56.8 53.7 33.3

4.4.2. Effect of AASPP Module

Table 3 displays the test results obtained from the YOLOv7-4Heads-SW model, where
we replaced the spatial pyramid pooling module of the original model with our AASPP
module. The AASPP module is designed with varying numbers of atrous convolutions
and dilation rates.
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Table 3. Experimental results of AASPP with different parameters. The best results are highlighted
in bold.

Experiment Number of Atrous Convolutions Dilation Rates AP50 (%) AP (%)

I 3 3, 5, 7 53.9 33.2
II 3 3, 6, 9 54.1 33.5
III 3 4, 8, 12 53.7 33.1
IV 3 5, 10, 15 53.5 32.9
V 3 6, 12, 18 53.8 33.3
VI 3 3, 6, 9, 12 54.0 33.4
VII 3 4, 8, 12, 16 53.9 33.3

Based on the results obtained from experiments II, III, VI, and VII, we have observed
that increasing the number of dilated convolutions has a certain impact on the model’s
performance. However, it appears to have a relatively minor effect on AP and may lead
to an increase in the model’s parameter count. To investigate this further, we conducted
several control experiments with a fixed number of atrous convolutions. Through these
experiments, we discovered that the AASPP module with dilation rates of 3, 6, and 9
achieved the best performance for small object detection in UAV-captured images. This
module resulted in the highest AP, with AP50 reaching 54.1% and AP reaching 33.5%.
These findings provide additional evidence that appropriately utilizing atrous convolutions
can significantly enhance the model’s performance in this specific task.

Utilizing the YOLOv7-4Heads-SW model as the baseline, our primary focus was to
compare various popular spatial pyramid modules. Specifically, the compared modules
include SPP [53], SPPF, ASPP [54], SPPCSPC [19], and SPPFCSPC [55].

As shown in Table 4, it is evident that the AASPP module surpasses other methods in
terms of detection performance. When integrating the AASPP module into the YOLOv7-
4Heads-SW model, we achieve the following metrics: precision (59.5%), recall (54.3%),
F1-score (56.8), AP50 (54.1%), and AP (33.5%). When compared to the SPPCSPC module,
the AASPP module improves these metrics by 0.2%, 0.7%, 0.3, 0.5%, and 0.4%, respectively.
Furthermore, the AASPP module reduces parameter count and complexity in relation to
the original YOLOv7 framework utilizing the SPPCSPC module by 5.1 G FLOPs and 9.9 M
parameters. Despite a slight increase in parameter count and model complexity compared
to SPP, SPPF, and ASPP modules, our method demonstrates a clear advantage in terms
of detection performance. This is attributed to the AASPP module’s effective utilization
of appropriate dilation rates for dilated convolutions and the integration of the mixed
attention mechanism. By selecting appropriate dilation rates, the AASPP module can
better capture the feature information of objects at different scales within the given image.
Simultaneously, the mixed attention mechanism enables the model to concentrate on target
regions while effectively reducing background interference. This design strategy empowers
the AASPP module to play a crucial role in enhancing object detection performance.

Table 4. Comparison of different spatial pyramid structures (tested on the VisDrone test dataset). The
best results are highlighted in bold.

Method P (%) R (%) F1 AP50 (%) AP (%) FLOPs
(G)

Params
(M)

SPP 59.5 53.3 56.2 53.7 33.0 0.9 2.6
SPPF 59.1 53.7 56.3 53.8 33.1 0.9 2.6
ASPP 59.5 54.1 56.7 53.9 33.3 7.0 10.2

SPPCSPC 59.7 53.6 56.5 53.6 33.1 21.5 28.3
SPPFCSPC 58.9 53.3 56.0 53.3 32.9 21.5 28.3
AASPP 59.5 54.3 56.8 54.1 33.5 16.4 18.4
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4.4.3. Effect of the BFFP Module

In this section, we compare the detection performance of our proposed model with
different improved versions of the YOLOv5 and YOLOv7 models. These improved models
incorporate all the enhancements that were previously mentioned, with the exception
of the BFFP module. Table 5 presents a comparison of the detection results among the
different models. Our SMFF-YOLO model, which includes the BFFP module, achieves
the best results in terms of precision, recall, F1-score, AP50, and AP when compared to
the four mainstream improved models: YOLOv5m, YOLOv5l, YOLOv5x, and YOLOv7.
Specifically, when compared to the improved version of YOLOv5l, our model demonstrates
improvements of 6.2%, 4.4%, 5.2%, 4.9%, and 5.1% on these metrics, respectively. These
results highlight the effectiveness and feasibility of the strategies proposed in our model.

Table 5. Comparison of different models with all the proposed improvements on the VisDrone
dataset. The best results are highlighted in bold.

Method P (%) R (%) F1 AP50 (%) AP (%)

YOLOv5m-improved 52.3 49.6 50.9 47.1 26.2
YOLOv5l-improved 53.6 50.1 51.8 49.4 28.6
YOLOv5x-improved 55.8 52.7 54.4 51.6 30.3
YOLOv7-improved 59.5 54.3 56.8 54.1 33.5

SMFF-YOLO 59.8 54.5 57.0 54.3 33.7

4.4.4. Comparison with State-of-the-Art Methods

To evaluate the performance of SMFF-YOLO, we compared its experimental results
with those of nine other state-of-the-art methods on the VisDrone dataset.

As shown in Table 6, our SMFF-YOLO achieved an average precision (AP) of 54.3%
and an average precision at IoU = 0.5 (AP50) of 33.7%, obtaining the highest values for
both metrics. In comparison to the baseline method, SMFF-YOLO exhibited significant
improvements in AP (increasing from 52.3% to 54.3%) and AP50 (increasing from 31.0% to
33.7%). The enhanced detection accuracy can be attributed to the inclusion of the ELAN-SW
detection head and AASPP module in SMFF-YOLO. These components significantly im-
prove the feature extraction ability for detecting objects of various scales in UAV-captured
images, while also reducing the occurrence of false positives. In terms of model complex-
ity, our model has a computational complexity of 257.7 G FLOPs and contains 99.1 M
parameters. To capture comprehensive feature information for small objects in complex
scenes, we increased the depth of the network and implemented advanced prediction
heads, which account for the higher computational complexity of our method. Compared
to Grid GDF, our method has a similar model complexity. However, when evaluated using
AP50 and AP metrics, our method outperforms Grid GDF by 23.5% and 15.5%, respectively,
highlighting its superior accuracy. Experimental comparisons demonstrate that a slight rise
in complexity can result in a considerable enhancement in performance.

To further validate our method, we conducted experiments on the UAVDT dataset,
as shown in Table 7. Compared to current methods, our SMFF-YOLO achieved new
SOTA results in all three metrics, with AP50, AP75, and AP being 42.4%, 33.6%, and
28.4%, respectively. SMFF-YOLO outperformed other advanced methods by at least 3% in
performance improvement. In conclusion, our method demonstrates excellent detection
accuracy for tiny targets and dense scenes, overcoming challenges in object detection in
complex scenarios to a certain extent.
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Table 6. Comparison of experimental results with nine other state-of-the-art methods on
VisDrone2019-DET-test-dev. The best results are highlighted in bold.

Method AP50 (%) AP (%) FLOPs (G) Params (M)

Faster R-CNN [3] 31.0 17.2 118.8 41.2
Cascade ADPN [56] 38.7 22.8 547.2 90.8
Cascade-RCNN [24] 38.8 22.6 146.6 69.0

RetinaNet [6] 44.3 22.7 35.7 36.4
Grid GDF [57] 30.8 18.2 257.6 72.0

SABL 41.2 25.0 145.5 99.6
YOLOv5l 42.4 26.6 107.8 46.2

TPH-YOLOv5++ [38] 52.5 33.5 207.0 -
YOLOv7 [19] 48.5 28.1 104.7 36.9
SMFF-YOLO 54.3 33.7 257.7 99.1

Table 7. Comparison of experimental results with other advanced methods on the UAVDT dataset.
The best results are highlighted in bold.

Method AP50 (%) AP75 (%) AP (%)

ClusDet [33] 26.5 12.5 13.7
Zhang et al. [58] - - 17.7

GDFNet [57] 26.1 21.7 15.4
GLSAN [59] 30.5 21.7 19.0
DMNet [60] 24.6 16.3 14.7
DSHNet [61] 30.4 19.7 17.8
CDMNet [62] 35.5 22.4 20.7
SODNet [14] 29.9 18.0 17.1

UFPMP-Net [63] 38.7 28.0 24.6
SMFF-YOLO 42.4 33.6 28.4

4.4.5. Summary of Experimental Results

In this section, we discuss the experimental results. Firstly, as shown in Tables 1 and 2,
it is evident that, by replacing the original prediction head of YOLOv7 with our novel
designed prediction head and adding an additional prediction head for tiny objects, we
achieved a substantial increase in the AP score for tiny objects in UAV-captured images,
reaching 53.7%. As indicated in Tables 3 and 4, the utilization of appropriate atrous
convolutions and attention mechanisms further enhances the detection performance for
UAV-captured images. This results in an AP50 of 54.1%, showcasing the distinct advantages
of our method over other pyramid structures. In Table 5, the model attains the highest
accuracy when using the BFFP module that we designed. We also conducted comparisons
with other advanced methods, as presented in Tables 6 and 7. Regarding model complexity,
our method does impose a higher computational burden, but it excels in terms of detection
performance. On the VisDrone dataset and UAVDT dataset, we achieved AP scores of
54.3% and 28.4%, respectively. These figures validate the effectiveness of our method.

4.5. Discussion

During the experiment, the SMFF-YOLO framework demonstrates promising potential
in detecting occluded objects. To illustrate the detection performance results of our method
in the presence of occlusion, we meticulously selected 30 images from the VisDrone dataset
that include a large number of occluded objects and performed comparative experiments
with methods based on YOLO. We assessed the performance of each method, considering
precision (P), recall (R), and F1-score.

Figure 9 presents the visualization results of our method and other YOLO-based
methods in occluded scenes. The annotated regions of interest, highlighted by yellow
rectangles, are enlarged in these images. In the occlusion scenario, SMFF-YOLO (b) is much
higher than the other two methods in terms of the proportion of true positive targets. The
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experiments clearly demonstrate that our method outperforms other methods in accurately
detecting occluded tiny objects, as shown in Table 8. Promisingly, our method outperformed
other methods in terms of precision and F1-score, indicating its higher accuracy and overall
performance in detecting occluded objects. It is important to note that achieving high
recall in scenarios with occluded targets is a common challenge that any object detection
algorithm faces. Occlusion remains a difficult problem to overcome. The advantages of
our method in terms of precision and F1-score demonstrate its effectiveness in addressing
the detection of occluded objects, offering a robust solution for handling the complexities
of real-world scenarios. In future research, we will continue to explore optimizations
to further enhance the algorithm, aiming for more comprehensive and accurate object
detection results, particularly in challenging scenarios involving occlusions.

Figure 9. Visual results of different methods based on YOLO in occlusion scenes. (a) Original image.
(b) Results of SMFF-YOLO. (c) Results of YOLOv5l. (d) Results of YOLOv7. Note that the green
bounding boxes represent true positive (TP) targets, the blue bounding boxes represent false positive
(FP) targets, and the red bounding boxes represent false negative (FN) targets.

Table 8. Comparative experimental results in scenarios with occluded objects. The best results are
highlighted in bold.

Method P (%) R (%) F1

YOLOv5l 57.8 80.5 67.9
YOLOv7 61.1 78.7 68.8

SMFF-YOLO 65.0 76.5 70.3

To comprehensively assess the detection performance of our proposed method, we
thoroughly evaluated the effectiveness of SMFF-YOLO using the VisDrone dataset, which
consists of real-world scenarios and objects captured by UAVs. Comparative experiments
were conducted, with YOLOv5l and YOLOv7 serving as benchmarks. The results of these
experiments are visually presented in Figure 10.

Figure 10 illustrates the experimental results obtained from three representative scenes
selected from the VisDrone dataset. In these images, specific areas of interest are annotated
and enlarged, denoted by yellow rectangles. In Scenario 1 (a), our proposed method, SMFF-
YOLO (b), demonstrates superior performance compared to other models in accurately
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detecting small objects concealed in the background. Other models often encounter false
negatives in such situations. Moving to Scenario 2 (e), we observe that YOLOv5l (g)
struggles to effectively detect targets in dense, low-light crowds, resulting in a combination
of false positives and false negatives. YOLOv7 (h), while detecting all targets within the
specific area, produces a higher number of false positives. Conversely, our proposed
method (f) correctly detects all targets present in the specific area. Finally, in Scenario 3 (i),
some targets within the specific area are occluded by other objects. Due to the complexity
of the background and the small size of the targets, other methods often fail to detect these
occluded objects, while our method successfully identifies them. Overall, the experimental
results depicted above demonstrate the excellent detection performance of our proposed
method on UAV-captured images.

Figure 10. Visual results of different methods based on YOLO on the VisDrone dataset.
(a,e,i) Original image. (b,f,j) Results of SMFF-YOLO. (c,g,k) Results of YOLOv5l. (d,h,l) Results of
YOLOv7. Note that the green bounding boxes represent true positive (TP) targets, the blue bounding
boxes represent false positive (FP) targets, and the red bounding boxes represent false negative
(FN) targets.
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In addition, we performed a bar chart analysis of the detection results obtained from
the three representative scenes depicted in Figure 10. This analysis is visually presented in
Figure 11.

Figure 11. Distribution of indicators (TP, FP, and FN) for three methods (YOLOv5l, YOLOv7, and
SMFF-YOLO) in three scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. The yellow bars
represent the results of SMFF-YOLO, the blue bars represent the results of YOLOv5l, and the red bars
represent the results of YOLOv7.

Analysis of Figure 11 reveals notable distinctions concerning true positives between
the proposed method in this paper and other models across different scenes. These findings
indicate that the proposed method achieves higher accuracy compared to other models.
Additionally, our method exhibits clear advantages in the comparison of false positives
and false negatives. Specifically, in Scenario 1 and Scenario 3, the SMFF-YOLO method
demonstrates only half the number of false negatives compared to the baseline model
(YOLOv7). These observations further affirm the superiority of our proposed SMFF-YOLO
in object detection tasks involving UAV-captured images.

5. Conclusions and Future Work

In this paper, we proposed SMFF-YOLO, a scale-adaptive YOLO framework, to ad-
dress the precise detection of multi-scale and tiny objects in UAV-captured images. Our
framework introduced several key improvements. Firstly, we improved the detection
performance for tiny objects by designing new prediction head modules and adding an ad-
ditional head dedicated to tiny object detection. By merging Swin Transformer with CNN,
we effectively leveraged global context and local features, resulting in enhanced accuracy.
Secondly, we introduced the BFFP module in the neck part, which employs a bidirectional
fusion strategy to enhance low-level information in the feature map. Finally, we designed
the AASPP module to address the challenge of complex backgrounds in UAV-captured
images. This module utilizes hybrid attention and cascaded atrous convolutions to extract
multi-scale feature information, adapt to different target scales, and enhance the detection
accuracy of multi-scale objects. Extensive experiments conducted on the VisDrone and
UAVDT datasets demonstrated that SMFF-YOLO achieves higher accuracy compared to
other methods. Furthermore, it exhibits robustness in challenging scenarios characterized
by complex backgrounds, tiny objects, and occluded targets. In summary, SMFF-YOLO has
made significant advancements in accurately detecting multi-scale objects and tiny objects
in UAV-captured images.

Our method exhibited outstanding results in UAV scenarios. However, in challenging
conditions marked by low lighting or fog, our method encountered difficulties in object
detection. Therefore, we are considering the adoption of image enhancement along with
lightweight strategies to improve its overall capability and applicability. Furthermore, our
future research involves expanding our technique to a wider range of modalities, including
infrared, SAR, and hyperspectral imagery.
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