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Abstract: UAVs represent a tremendous opportunity to perform geophysical and repeated exper-
iments, particularly in volcanic contexts. Their ability to be deployed rapidly and fly at various
altitudes and the fact that they are easy to operate despite complex field conditions make them
attractive for magnetic surveys. Detailed maps of the magnetic field in turn bring key constraints
on the rocks’ composition, thermal anomalies, intrusive systems, and crustal contrast evolution. Yet,
raw magnetic field measurements require careful processing to minimize directional, positional, and
crossover errors. Moreover, stitching together adjacent or overlapping surveys acquired at different
times and altitudes is not a trivial task. Therefore, it is challenging in remote areas to directly evaluate
the consistency of a survey and to ascertain the success of the field mission. In this paper, we present
a fast algorithm allowing for a quick-look modeling of scalar magnetic intensity measurements. The
approach relies on rectangular harmonic analysis (RHA). The field measurements are automatically
corrected for a global main field. Then, they are projected along this main field and modeled in terms
of RHA functions. The software can exploit the quality indices provided with data and a procedure is
applied to mitigate the effect of outliers. Maps for the scalar and the vector anomaly fields are readily
built on an interpolated regular grid leveled at a constant altitude. In order to assess the modeling
and the inversion procedures, analyses are carried out with synthetic measurements derived from
a high-resolution global lithospheric magnetic field model estimated on the French aeromagnetic
grid and at UAV locations with some added nonrandom noise. These analyses indicate that RHA is
efficient for first-order and direct mapping of the crustal magnetic field structures measured by UAVs
but that it could be applied on airborne and marine magnetic intensity data covering dense and large
geographical extensions.

Keywords: UAV; rectangular harmonic analysis; geomagnetism

1. Introduction

The use of unmanned aerial vehicles (UAVs) has become ubiquitous in geophysical
prospecting. Rapid to deploy at various altitudes above the topography, they are especially
useful in volcanic and extreme contexts for high-resolution magnetic field mapping. Such
maps are then used for inferring information on the structure and composition heterogeneities,
thermal anomalies, and intrusive systems, as well as their evolution through time [1].

Magnetometry onboard UAVs for crustal field investigations is challenging since the
UAV moving platform is prone to magnetic field measurement errors. These errors arise
from the electronics such as antenna, battery, or communication systems, and from varying
topographic or wind conditions that induce magnetic field time variations from the engine’s
rotation. These UAV contaminations are mostly characterized by transient magnetic fields
over short time duration or appearing as flight line offsets, crossover errors, drag effects, and
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biases that complicate their direct reading. These effects then superimpose to natural global
magnetic fields, masking the local crustal magnetic fields. These latter geophysical fields
such as the Earth’s core field and the diurnal and/or rapid magnetospheric field variations
occurring at the time of the survey [2] are themselves difficult to separate [3]. In a favorable
situation, the total contributions of the geophysical internal and external magnetic fields
are conveniently corrected for with measurements made at a nearby fixed station (or at a
magnetic observatory). The natural Earth field corrections and the proper characterization
and compensations for the UAV magnetic noises that depend on the specific environment,
its type, and the instrumental setup [4] are usually applied in the laboratory.

In remote field areas, it is fundamental to monitor and to evaluate the success of a
survey, to ensure its consistency with adjacent and/or previous surveys, and to quickly
build onsite the first-order maps showing the crustal magnetic field structures. This
information is the condition ensuring reactivity, onsite reiteration, or complementary UAV
surveys. The autonomy of a light UAV is another limit that hampers the possibility to
prospect large areas. Compiling different surveys acquired at different times, altitudes,
conditions, or even epochs is another challenge that must sometimes be addressed in the
field for data quality assessment.

Our primary incentive is to develop software allowing us to directly acquire onsite
a spatially consistent crustal magnetic field model from a series of incomplete, unequally
spaced, and noisy magnetic field scalar raw measurements. This software should also help
identifying and downweighting discrepant measurements. In order to address this problem,
we follow a regional modeling strategy coupled with an iterative data reweighting scheme.
Among the wide class of usable approaches (see [5] for a review), the rectangular harmonic
double Fourier series appears to be the most convenient one to tackle regional problems in
a semiautomatic way with a limited number of numerical difficulties. The introduction of
the so-called rectangular harmonic analysis (RHA) in geomagnetism is generally attributed
to [6], even though, to the author’s knowledge, the general expressions can already be
found in [7] and, years later, in [8] for applications on magnetic field scalar anomalies.
The RHA proposed by [6] underwent a series of adjustments [9] because the theoretical
framework suffered from fundamental drawbacks [10]. However, even these empirical
adjustments remain flawed, as the solution given for the potential field does not solve the
Laplace equation.

In the first section, we rewrite the RHA theoretical framework, stressing that these
functions solve a particular boundary value problem that is suited only to a restricted
category of natural magnetic fields. This section aims at better defining the range of
practical applications of RHA. In the second section, we set up the algebra for solving
the least-squares inverse problem in an automatic manner. We consider additional a
priori statistical constraints provided by the magnetometer, such as the individual data
quality. The inverse problem then is solved iteratively using the Huber statistics [11] for
the identification and the leverage reduction of discrepant measurements. In order to
assess the efficiency of the RHA modeling procedure, we perform a series of end-to-end
studies. For this, we simulate real airborne and UAV measurements, apply the software to
synthetic magnetic anomalies without and with noise, and compare the results with the
initial data. Finally, we discuss the efficiency of this approach and interest for developing
further applications.

2. Method

We recall some fundamental properties of the magnetic field measured outside the
magnetic sources. The magnetic potential is the solution of the Laplace equation. Let
us denote Ω as the domain under study within which the magnetic field is measured.
A boundary value problem consists of setting boundary conditions on all surfaces n of the
closed surface ∂Ω such that ∂Ω = ∂1Ω∪ ∂2Ω..∪ ∂iΩ...∪ ∂nΩ is completely defined on each
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of the domain boundary ∂iΩ. This is the well-known Sturm–Liouville framework that can
be set up as

∇2V(ro) = 0 within Ω, (1a)

αiV(ro) + βi
∂V(ro)

∂ni
= Gi on each ∂Ωi, (1b)

with ∇2 as the Laplace operator, ni as the normal vector at the boundary ∂iΩ, αi, βi as
two real functions or constants, and ro = (roer, θoeθ , ϕoeϕ) as the vector where magnetic
observations are available, for instance, here in the geographic reference frame (Figure 1).
This very general formulation illustrates that the magnetic field can be represented in
any complex geometry and reference frame, either analytically or numerically, by solving
this boundary value problem. It is important to stress that the magnetic divergence free
equation (Maxwell’s equation) implies that the divergence of the magnetic vector field B
integrated over the volume Ω is equal to the null flux of the magnetic field integrated over
the surface of the volume, which is written as∫∫∫

div B · dΩ =
∫∫

B · d∂Ω = 0. (2)

This null flux equation can be restrictive in practice depending on the chosen boundary
conditions. As a result, boundary conditions must be chosen with care, as the mathematical
basis functions may in some circumstances not allow the representation of all components
of the magnetic field and/or may have a slow convergence rate.

Figure 1. Cartesian and geocentric reference frames and coordinate systems discussed in this paper.
The rectangular prism is tangent to the Earth’s surface. Its center in the geocentric coordinate system
is defined as the center of the available measurements. Lx and Ly are its dimensions in the north and
east directions, respectively, and are defined according to the minimum and maximum geocentric
data locations.
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2.1. Solution in the Cartesian Reference Frame

We now consider representing the magnetic field in a Cartesian orthonormal reference
frame where ux is oriented northward, uy is eastward, and uz is oriented downward
(Figure 1). The Laplace equation is now as follows:

∇2V(x, y, z) =
∂2V
∂2x

+
∂2V
∂2y

+
∂2V
∂2z

= 0.

Following the classical method of variable separation and writing

V(x, y, z) = f (x)g(x)h(z), (3)

the Laplace equation will reduce to ordinary differential equations. Assuming further that
the potential is defined within a bounded horizontal plane and possesses finite real valued
boundary conditions, the formal solution for each variable is

f (x) = α sin(x
√

µ) + β cos(x
√

µ), (4a)

g(y) = γ sin(y
√

λ− µ) + δ cos
(

y
√

λ− µ
)

, (4b)

h(z) = ψ sinh(z
√

λ) + φ cosh(z
√

λ), (4c)

where the eigenvalues µ and λ are such that λ ≥ 0, λ − µ ≥ 0, and (α, β, γ, δ, ζ, η) are,
at this stage, arbitrary real valued constants. The eigenvalues µ and λ of the ordinary
differential equations are to be explicited by solving a particular boundary value problem.
There are various ways of setting conditions in Equation (1b) on each of the boundaries,
among which are the homogeneous Dirichlet (βi = Gi = 0), Neumann (αi = Gi = 0),
mixed, periodic, etc., depending on the properties of the field under study.

We now assume that the domain under study is a rectangular prism defined by
[−Lx/2, Lx/2]×

[
−Ly/2, Ly/2

]
×
]
−∞, zp

]
, with Lx and Ly as the typical horizontal di-

mensions of the rectangle along x and y, respectively, and zp as an arbitrary finite altitude
above the Earth’s surface (considering that z is oriented downward). In this representa-
tion, the domain is semi-infinite in the vertical dimension. Since B = −∇V, it can be
verified easily that none of the homogeneous boundary conditions (Neumann or Dirich-
let) on V are suited for representing the three magnetic field components everywhere
within the rectangular domain. For example, the homogeneous Dirichlet conditions on
the lateral boundaries would imply within the domain that the magnetic field components
∂xV(x, 0, z) = ∂yV(0, y, z) = ∂zV(0, y, z) = ∂zV(x, 0, z) = 0. This solution is not able to
represent any magnetic field everywhere in the rectangular prism. The magnetic potential
in general verifies neither Neumann nor Dirichlet nor mixed homogeneous nor periodic
boundary conditions. In this case, the problem is no longer self-adjoint (i.e., the basis is not
orthonormal), and its analytical resolution could become, by far, more difficult ([12], chapter
12). However, we aim at deriving a semiautomatic software so that the orthogonality of
the basis functions is an important property for numerically solving the inverse problem.
With this constraint, the most practical and least restrictive boundary conditions among the
ones discussed above are the periodic boundary conditions.

The periodic lateral boundary conditions give rise to a double Fourier series in the
(x, y) dimensions. If we further assume that the magnetic field cancels out at−∞, then Equa-
tion (4c) reduces to e

√
λz and the product in Equation (3) now becomes

V(x, y, z) =
∞

∑
n=0

∞

∑
m=0

[αm
n Am

n (x, y) + βm
n Bm

n (x, y) + γm
n Cm

n (x, y) + δm
n Dm

n (x, y)]e
√

λz, (5)

with



Remote Sens. 2023, 15, 4549 5 of 17

Am
n (x, y) = cos(

2πnx
Lx

) cos(
2πmy

Ly
), (6a)

Bm
n (x, y) = cos(

2πnx
Lx

) sin(
2πmy

Ly
), (6b)

Cm
n (x, y) = sin(

2πnx
Lx

) cos(
2πmy

Ly
), (6c)

Dm
n (x, y) = sin(

2πnx
Lx

) sin(
2πmy

Ly
), (6d)

and
√

λ = k(n, m) =

√(
2πn
Lx

)2
+

(
2πm

Ly

)2
. (7)

When the infinite series is truncated to maximum indices N and M (not necessarily
equal), the minimum wavelength represented by the basis functions is

l =

√(
Lx

N

)2
+

(
Ly

M

)2
. (8)

The solutions for the three magnetic field components are obtained by taking the
gradient of the potential:

∂xV(x, y, z) =
∞

∑
n=0

∞

∑
m=0

[−αm
n Cm

n (x, y)− βm
n Dm

n (x, y) + γm
n Am

n (x, y) + δm
n Bm

n (x, y)]ek(n,m)z, (9a)

∂yV(x, y, z) =
∞

∑
n=0

∞

∑
m=0

[−αm
n Bm

n (x, y) + βm
n Am

n (x, y)− γm
n Dm

n (x, y) + δm
n Cm

n (x, y)]ek(n,m)z, (9b)

∂zV(x, y, z) =
∞

∑
n=0

∞

∑
m=0

k(n, m)[αm
n Am

n (x, y) + βm
n Bm

n (x, y) + γm
n Cm

n (x, y) + δm
n Dm

n (x, y)]ek(n,m)z. (9c)

Since the choice for the boundary conditions may be restrictive for magnetic field represen-
tation, we explore the limitations induced by the periodic ones.

Let us consider Bx, By, and Bz, the three magnetic field components in the Cartesian
reference frame of any true vector magnetic field that we expand in terms of the rectangular
harmonic basis functions. Defining the six surfaces of the rectangular prism (Figure 1)
such that dS1 = dS1(Lx/2, y, z)ux, dS2 = −dS2(−Lx/2, y, z)ux, dS3 = dS3(x, Ly/2, z)uy,
dS4 = −dS4(x,−Ly/2, z)uy, dS5 = dS5(x, y, z0)uz, dS6 = −dS6(x, y,−∞)uz, where z0 is
the arbitrary altitude reference of the bottom surface, the null flux field condition across all
surfaces is ∫∫

(Bx(Lx/2, y, z)− Bx(−Lx/2, y, z))dydz

+
∫∫ (

By(x, Ly/2, z)− By(x,−Ly/2, z)
)
dxdz

+
∫∫

(Bz(x, y, zd)− Bz(x, y,−∞))dxdy = 0.

From Equations (6a)–(6d) and (9a)–(9c) it is straightforward to obtain that the null
flux equation reduces to
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∞

∑
n=1

(
γ0

nLy

k(n, 0)
ek(n,0)zd −

γ0
nLy

k(n, 0)
ek(n,0)zd

)
(10)

+
∞

∑
m=1

(
βm

0 Lx

k(0, m)
ek(0,m)zd −

βm
0 Lx

k(0, m)
ek(0,m)zd

)
(11)

+
(

k(0, 0)LxLyγ0
0ek(0,0)zd − 0

)
= 0. (12)

The first two sums are the direct consequence of the 2π periodic trigonometric func-
tions that impose that the magnetic field flux across surfaces S1 and S2 and across S3 and
S4, respectively, are term-by-term equal. More restrictive is the final two terms implying
that the magnetic field flux across the surface S5 should be null. This corresponds to a zero
average vertical magnetic field component 〈∂zV(x, y, z)〉 = 0 on all horizontal surfaces
of arbitrary altitude z. The rectangular harmonic analysis is therefore suited only if Bz
averages out on all horizontal surfaces. Assuming that the rectangular harmonic analysis
(RHA) is a valid approach for the representation of an anomaly vector field is, therefore,
not sufficient. The magnetic vertical field that can be represented by these functions must
have a zero mean within the rectangular domain. The fundamental reason is that the
boundary value problem is incomplete. The RHA is not a true 3D but, rather, a partial 2D
representation of the Earth’s magnetic field. As a result, it does not represent the behavior
of Newtonian potential fields with altitude except under these restrictive conditions.

According to Equation (1), the full Sturm–Liouville boundary value problem involves
setting boundary conditions on all surfaces, including the bottom and the top surfaces.
However, as in 2D FFT analysis, boundary conditions were set up on the lateral surfaces
only. The reason is that solving within a finite rectangular prism would involve an extra
trigonometric basis function in the vertical direction. Numerically determining the pa-
rameters of this extra basis function would require sufficient magnetic field sampling in
altitude, which is a situation almost never met in practice. For an open domain such as
the semi-infinite rectangular prism (with the upper boundary at infinity), the solution is
even less convenient because it involves no more discrete series but, rather, continuous
parameter functions. The horizontal double Fourier solution is therefore not complete and
we should ensure that the data agree with the RHA constraint that the vertical magnetic
field averages out. In general, we do not measure the vector field, just its intensity, and
we cannot directly verify whether the data agree with this condition. However, imposing
this constraint to the measured intensity anomaly should be a sufficient remedy. This
inconvenience is a small price to pay when the purpose is precisely to unveil small-scale
crustal magnetic fields. Similar limitations are discussed in the spherical geometry and
the reader will find in [13] practical examples for core and crustal Earth’s magnetic field
modeling in the 3D space using the incomplete spherical cap analysis [14], the semi-infinite
cone analysis [15], and the revised spherical cap harmonic analysis [16].

2.2. Expression for the Scalar Anomaly Field

It is well established that the anomaly field intensity dF can be considered as a per-
turbation in the direction of the ambient field, provided that ‖dBc‖2 � ‖B‖2, where dBc
and B are the anomaly and the Earth’s ambient vector fields, respectively. Defining F as the
modulus of vector B expressed in the local Cartesian reference frame, this is [17]

dF =
∂xV.Bx + ∂yV.By + ∂zV.Bz

F
. (13)

This expression holds true even when both the anomaly and the main field vary in
space. In the special approximation that the ambient field B is constant throughout the



Remote Sens. 2023, 15, 4549 7 of 17

region of interest with Bx/F ' Cx, By/F ' Cy and Bz/F ' Cz, we show, after replacing
∂xV,∂yV and ∂zV by their rectangular harmonic expansion in Equations (9a)–(9c), that

dF '
∞

∑
n=0

∞

∑
m=0

[
α̃m

n Am
n (x, y) + β̃m

n Bm
n (x, y) + γ̃m

n Cm
n (x, y) + δ̃m

n Dm
n (x, y)

]
ek(n,m)z, (14)

with the linear relationships between parameters:

α̃m
n ' Czk(n, m)αm

n + Cy
2πm

Ly
βm

n + Cx
2πn
Lx

γm
n , (15a)

β̃m
n ' −Cy

2πm
Ly

αm
n + Czk(n, m)βm

n + Cx
2πn
Lx

δm
n , (15b)

γ̃m
n ' −Cx

2πn
Lx

αm
n + Czk(n, m)γm

n + Cy
2πm

Ly
δm

n , (15c)

δ̃m
n ' −Cx

2πn
Lx

βm
n − Cy

2πm
Ly

γm
n + Czk(n, m)δm

n . (15d)

In the constant ambient main field approximation, the anomaly field intensity therefore
also satisfies the Laplace equation and can be expanded by Equation (14). One could
therefore directly model the intensity anomaly with a 2D double Fourier expansion and,
if needed, relate the estimated coefficients to the coefficients describing the vector magnetic
field using Equations (15a)–(15d). The direct modeling of intensity was proposed without
demonstrating these limitations in the seminal paper of [8]. This approximation requires
that the size of the region is small enough and/or that the spatial gradient of the Earth’s
vector main field can be neglected. If the ratios Bx/F, By/F, and Bz/F cannot be assumed
constant, the solution obtained from Equation (14) is not a potential field. For this reason,
we argue that systematically modeling the anomaly field dF by linearization along the
constant or varying ambient magnetic field using Equation (13) is physically the most
relevant procedure. It can be performed at almost no additional numerical cost and directly
provides the coefficients for the vector field. Note that, as is the case for any geomagnetic
linearization of scalar anomaly along the Earth’s ambient field, a special treatment is
necessary in magnetic equatorial regions in order to account for the Backus effect [18].

The RHA approach is different from the 2D FFT commonly used in geomagnetic
prospecting. An RHA vector field model can be obtained by least-squares inversion of
an unequally spaced discrete set of anomaly field measurements without interpolation
and, thus, incorporation of fictitious field values. Contrary to 2D FFT, which requires
this interpolation step for data reduction to a common altitude, the RHA modeling can
also deal with measurements acquired at different altitudes. This represents a valuable
advantage over the 2D FFT because there is no need to remove the average field value for
each survey, but only to remove the average field for all surveys. This better preserves the
large wavelengths and opens a way to iteratively incorporate new UAV surveys to the full
dataset. This possibility also shows that RHA can deal with measurements acquired over
(reasonably) large geographical extensions for which constant altitude measurements in a
geographic reference frame correspond to non constant altitudes in the Cartesian reference
frame. Therefore, RHA as it is defined here is not a planar approximation because the
geographical coordinate system can be converted into the Cartesian one while accounting
for the curvature of the Earth in the variations of z. Similarly, the spatially varying ambi-
ent magnetic field can be projected exactly from the geographic to the Cartesian frames.
To benefit from these advantages, the solution must be obtained by solving an inverse
problem that can, in some situations, be numerically ill posed and that must be set up with
some care.
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3. Least-Squares Inverse and Forward Problems

The inverse problem for the intensity anomaly is linear and solved by iterative
weighted least-squares with W the diagonal data quality matrix (assuming uncorrelated
data errors) at the first iteration. The design matrix A is built from the RHA basis functions
at the measurement location d projected along the Earth’s core magnetic field values. Since
the geographical data coverage is generally nonhomogeneous, the inverse problem can
be numerically ill posed despite the orthonormality of the trigonometric basis functions.
The numerical solution for the model parameters p is obtained by generalized singular
value decomposition. We estimate

p =
(

ATWA
)−1

ATWd,

by approximating G =
(
ATWA

)−1 by its Moore–Penrose pseudoinverse G ' VΣ+VT ,
where V and Σ+ are the numerical eigenvectors and nonzero eigenvalues, respectively.
The weighting matrix W is then updated according to the misfit residuals following the
implementation advocated by Huber ([11], chapter 7), and successive inversions are per-
formed until the model parameters converge. Once the model parameters p are obtained,
the forward problem is computed on a regular grid and at a constant altitude.

In this paper, magnetic field component maps are displayed at the minimum altitude of
the full dataset, but this could be modified in the code. During this forward computation on
the regular grid, we address the well-known drawbacks occurring with periodic functions.
When the functions to be represented (here, the magnetic field components) are themselves
not periodic, the solutions are convergent in the mean square sense, subject to ringing near
the boundaries, and prone to the Gibbs effect (e.g., [10]). Numerical strategies could be
followed in order to mitigate these issues, such as arbitrarily extending the domain [19],
applying a window taper, padding the extended domain with zero values, or filling it
with synthetic measurements. For the purpose of this work, these empirical solutions are
not fully satisfactory as they can hardly be fully automated. For example, enlarging the
dimension of the region implies that the orthonormality is artificially degraded. This may
lead to additional numerical issues with respect to an inverse problem often already ill
conditioned due to the scarcity of the measurements. Moreover, enlarging the dimension
of the region implies that the minimum resolved wavelength in Equation (8) is artificially
increased, so this tends to smooth out useful small-scale magnetic field structures. A chosen
alternative for alleviating the issues related to the nonuniform convergence, while keeping
the integrity of the true measurements and the dimensions of the rectangular prism, is to
approximate the solution by a uniformly convergent solution.

This can be achieved by applying the σ-factor on each of the parameters in front of
the double Fourier series ([20], chapter 4). If G is the design matrix on the nodes of a
regular grid at a constant altitude, with p the estimated parameters, b the magnetic model
component, and Λ the matrix of Lanczos factors, the forward problem is computed with
b = GΛp. Analytically, this is written, for the magnetic potential,

V(x, y, y) =
∞

∑
n=0

∞

∑
m=0

σ(n, m)[αm
n Am

n (x, y) + βm
n Bm

n (x, y) + γm
n Cm

n (x, y) + δm
n Dm

n (x, y)]ek(n,m)z, (16)

with

σ(n, m) = sinc
(

n
N + 1

)
sinc

(
m

M + 1

)
. (17)

Each magnetic field component of the model on the regular grid can therefore be computed
and displayed after applying the σ-factor on the model parameters. This approach does not
eliminate all cumbersome Gibbs oscillations but considerably smooths out their amplitude
within the rectangular prism by pushing back the discrepancies near the edges of the
domain. The counterpart is that the σ-factor can in turn also dampen genuine magnetic
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field signals. Properly setting the σ-factor for each case study and for in-depth analysis
requires a scientist in the loop. We recall that our purpose is to quickly obtain first-
order consistent maps at constant altitudes directly on the survey site. Such maps do not
necessarily correspond to the optimum solutions that can be obtained in the laboratory
after careful UAV compensation, data processing, and inversion.

4. Algorithm and Synthetic Analyses
4.1. Algorithm and Processes

The data processing chain is illustrated in Figure 2. The data conversion from direct
magnetometers and GPS readings to the RHA software input format are left to the user.
The input data format for the software is latitude, longitude in the geocentric reference
frame, altitude in km, time in modified Julian day (MJD), intensity in the units of nT, and
data quality index when available. However, the software can also deal with a simplified
input format such as latitude, longitude, altitude, and intensity only when no other infor-
mation is available. The measurements are first corrected for the ambient core intensity
field with the auxiliary CHAOS-7 model [21] whose coefficients should be downloaded
and updated, if necessary, depending on the data epochs.

Figure 2. General flowchart of the five main processing blocks generating a regional magnetic vector
crustal field from raw UAV scalar intensity measurements. See text for details.
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The vector core field components computed at the data location are stored and ap-
pended to the original data (Proc. 1). Measurement locations are then rotated and projected
in a local Cartesian coordinate system accounting for the natural curvature of the Earth,
where x is north, y is east, and z is oriented downward (Proc. 1), and the vector core
field components at each location are then converted from the geocentric to the Cartesian
reference frame (Proc. 2). The RHA basis functions are next assembled at the Cartesian
data coordinates with the core field components projected in the Cartesian reference frame
(Proc. 3). In processing block 4, the inverse problem is estimated using generalized singular
value decomposition (GSVD). Normalized eigenvalues smaller than 10−4 are arbitrarily
rejected to ensure that the matrix is numerically invertible (this number can be modified).
This precaution allows setting of the maximum degree expansion indices N = M almost
arbitrarily, provided they correspond to a minimum wavelength (in Equation (8)) that
corresponds roughly to the maximum spacing between the flight lines. The minimum
wavelength should not be too much smaller than this distance. At this stage, the original
and the modeled intensity values and the residual maps are displayed on the data loca-
tion. The estimated model parameters are then used to estimate the vector field and the
intensity Cartesian components on a regular grid defined at the minimum data altitude
(Proc. 5). Finally, the gridded vector components and their locations are converted back
and displayed from the local Cartesian to the original geocentric reference frame (Proc. 5).
Note that measurements are generally provided in the geodetic coordinates. However,
for the purpose of a quick-look estimation, we do not distinguish between geocentric and
geodetic systems. It should not be difficult to perform the transformations from geodetic to
Cartesian and vice versa.

4.2. Computation of Synthetic Datasets

We test the efficiency of RHA and its ability to model the Earth’s magnetic crustal field.
Three closed-loop numerical experiments are carried out.

In the first test, we consider the original aeromagnetic grid of the French metropolitan
territory [22] and compute a total field intensity for the main and the lithospheric fields.
The original French anomaly intensity grid, not in the public domain, was included in the
World Magnetic Anomaly Map (WDMAM-2, [23]). We compute the Earth’s core vector
field with the CHAOS-7 model [21] expanded to spherical harmonic (SH) degree 15 at
epoch 2023.0 in decimal year. The vector crustal field contributions are computed from
SH degree 16 to 1319 using the extended dedicated lithospheric field model derived with
the WDMAM-2 map and the European Swarm satellite measurements [24]. The maximum
spatial resolution of the combined core and crustal field models is about 30 km at the
Earth’s mean radius. The anomaly intensity is then computed by subtracting the total
intensity of the core field from the combined core and crust intensity values. For this
synthetic dataset, hereafter named SYN-AERO-PERFECT, we do not assign any weight
and the measurements are perfect (no noise added). The locations of the synthetic data
anomaly intensity projected in the Cartesian reference are shown in Figure 3a.

For the second analysis we use a series of UAV real surveys to generate a realistic
data distribution. Part of these surveys were acquired over the Puy de Dôme volcano
(Massif Central, France) by our group during the validation/calibration phase of UAVs as
an efficient platform for magnetometry [25]. However, we purposefully stretch both the
altitudes and the areas in order to test the efficiency of RHA to model significant altitude
differences over dimensions larger than individual surveys. This is also a way to test
the ability of RHA to patch together small-dimension surveys in a consistent way, and to
secure wavelengths larger than the dimensions of the individual surveys. The full dataset,
hereafter named SYN-UAVS-PERFECT, contains 24 surveys covering altitudes between 5.2
and 20.0 km. The total intensity measurements are computed in a similar way to before.
The synthetic measurements have no weight and contain no noise. The data locations are
displayed in the Cartesian reference frame in Figure 3b.
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Figure 3. (a) Crustal intensity anomaly field (in nT) over France and data location used for building
the SYN-AERO-PERFECT dataset. (b) Crustal intensity anomaly field (in nT) at UAV data locations
used for building the SYN-UAVS-PERFECT and SYN-UAVS-NOISED datasets. See text for details.

Finally, we simulate a series of noisy scalar measurements by adding a geophysical
noise to the SYN-UAVS-PERFECT dataset. The noise is computed by selecting the time se-
ries of the permanent magnetic ground station installed at Clermont-Ferrand in November
2021 (International Association of Geomagnetism and Aeronomy code “CMF” available
at Bureau Central de Magnétisme Terrestre—BCMT: http://www.bcmt.fr, accessed on
10 September 2023, located in Figure 3). This station delivers minute vector and scalar
measurements. We extract from the database the intensity channel between 23 April 2023
0:00 LT and 24 April 2023 23:59 LT. This corresponds to a period during which a magnetic
storm classified as severe was measured worldwide (G4, following the National Oceanic
and Atmospheric Administration classification). The intensity signal is high-pass filtered
in order to remove the global magnetospheric field variations with periods larger than
20 min, which is typically the duration of a UAV survey. The remaining rapid geophysical
variations considered as the natural noise (Figure 4) are then added to the crustal field
signal computed at each data location and altitude. This noise that is correlated in time and
not stationary is more realistic than pure random noise. When superimposed to the crustal

http://www.bcmt.fr
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field signals it introduces magnetic field variations along the UAV trajectory that mimic
well noise contamination and flight-line offsets. The corresponding dataset is hereafter
named SYN-UAVS-NOISED.

Figure 4. Top: Magnetic intensity of the 23–24 April 2023 magnetic storm (in nT) recorded at the
CMF ground magnetic station. Bottom: Residual signal after high-pass filtering that is added as a
natural noise to build the SYN-UAVS-NOISED dataset.

5. Results and Discussion

RHA models are derived from the three datasets described above. For the test case
computed with the dataset SYN-AERO-PERFECT, we derive a model over France from the
regular scalar anomaly grid to maximum expansion indices N = M = 30 in the infinite
series (Equations (9a)–(9c)). For the inversion of datasets SYN-UAVS-PERFECT and SYN-
UAVS-NOISED, the maximum truncation indices are set to N = M = 15. According
to Equation (8), the maximum spatial resolution for all three cases is about 30 km in the
east and north directions. We remind the reader that the synthetic measurements were
also computed with a global model to the maximum spatial resolution of about 38 km.
Therefore, these RHA truncation indices correspond to the spatial information content of
the synthetic measurements.

The residuals between the input scalar anomaly field computed in SYN-AERO-
PERFECT and the RHA scalar anomaly model are displayed in Figure 5a after correcting
for the constant field value. The global standard deviation of the inversion is 0.1 nT and
most residuals correspond to oscillations typical of truncated double Fourier series. There
is no increase of residuals near the edges, footprint of numerical ringing, or geometric
distortion. The maps for three magnetic field components are predicted in the Cartesian
reference frame at a constant altitude of 4 km above the Earth’s mean radius and converted
back to the north (Figure 5b), east (Figure 5c), and vertical directions (Figure 5d) in the
initial geocentric reference frame. The figures show that the model is stable and that it
resolves the input measurements to the spatial resolution of the magnetic signal. One
primary conclusion of this test is that RHA, which is a Cartesian representation, can be used
to derive magnetic field models in the geocentric reference frame even when the curvature
of the Earth cannot be neglected over extensions as large as 1000 km.



Remote Sens. 2023, 15, 4549 13 of 17

Figure 5. (a) Residual map (in nT) between the data and the RHA scalar anomalies predicted over
France after modeling the SYN-AERO-PERFECT dataset. (b) Reconstruction of the magnetic north
(b), the east (c), and the vertical component (d) of the crustal field. All maps are displayed in the
geocentric reference frame at 4 km altitude above the Earth’s radius.

Regarding the realistic UAV data location experiments, the standard deviation between
the synthetic measurements at their actual location and the RHA model predictions derived
from the SYN-UAVS-PERFECT and SYN-UAVS-NOISED datasets are 0.2 nT and 1.5 nT,
respectively. The misfit value for the RHA model based on the noisy dataset corresponds to
the level of noise introduced in the dataset (Figure 4). The scalar and vector field models are
then predicted on a regular grid at a constant altitude of 5 km above the Earth’s mean radius.
Both residual maps between the intensity anomaly RHA predictions and the expected
synthetic anomaly field values computed with the global spherical harmonic model [24]
are displayed in Figures 6a and 7a, respectively. The residuals show almost identical misfit
patterns, with a comparatively larger amplitude for the model obtained with the noisy
measurements. The vector field model derived from the SYN-UAVS-NOISED dataset is
slightly noisier than the vector field model obtained with the SYN-UAVS-PERFECT one.

Figure 8a shows the initial geophysical noise (displayed as a time series in Figure 4
bottom) in the geographical frame that was added to the intensity data for the numerical
simulation with the SYN-UAVS-NOISED dataset. This noise manifests itself as rapid
spatial variations, along-flight errors, and data incompatibility in overlapping areas, but
the algorithm identifies and downweights most of the noisy data (Figure 8b) during the
inversion process. It should be noted that the geophysical noise we added comes from a
magnetic field time series during a magnetic storm. With this signal being a time varying
potential field, some of its contributions leak into the crustal field model in the geographic
reference frame.
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Figure 6. (a) Residual map between the true and the RHA scalar anomalies over Massif-Central,
France, predicted after modeling the SYN-UAVS-PERFECT dataset. (b) Reconstruction of the mag-
netic north (b), the east (c), and the vertical component (d) at the constant altitude of 5 km.

Figure 7. (a) Residual map between the true and the RHA scalar anomalies over Massif-Central, France,
predicted after modeling the SYN-UAVS-NOISED dataset. (b) Reconstruction of the magnetic north (b),
the east (c), and the vertical component (d) of the crustal field at the constant altitude of 5 km.
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Figure 8. (a) Original noise introduced in the SYN-UAVS-NOISED dataset. (b) Misfit residuals
between the model and the noisy data. (c) Difference between (a,b).

For both cases on UAV real trajectories there is no spatially coherent residuals between
the model and the expected field, except near the edges where no measurement was
available to build the RHA models. This indicates that the RHA models did not miss either
large- or small-scale structures contained in the data. We remind the reader that intensity
anomaly and vector field maps are leveled at the constant altitude of 5.2 km over a regular
interpolation grid. The leveling altitude corresponds to the minimum altitude present in
the dataset. Since the initial data altitudes comprise between 5.2 km and 20 km according
to Figure 3b, the computation of the vector model corresponds to a downward continuation
in all locations except for a small part of the southwest quadrant. Mapping the results at
the minimum altitude was chosen for illustration purposes and does not correspond to the
most advantageous scenario since downward continuation of potential fields is known to
be prone to increased errors (e.g., [26]). The increased errors are due to the radial function
that amplifies the smaller more than the larger length scales. We could have chosen another
altitude for mapping the RHA model at a constant level (for example, at the median or
the maximum data altitude); however, the maps obtained in these synthetic analyses from
scalar measurements only are also stable for the three vector magnetic field components,
and the magnetic field structures are spatially consistent.
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6. Conclusions

The main incentive of this work was to process and to stitch together individual UAV
surveys obtained in situ in order to build consistent magnetic field vector maps interpolated
and leveled at a constant altitude. For this, an RHA mathematical representation was
developed. Synthetic analyses based on closed-loop tests for three different case scenarios
simulating real data distribution were carried out in order to demonstrate the ability of
RHA to achieve this aim. It meets our initial needs to monitor and to quickly evaluate onsite
the success of a magnetic survey, to filter out nonpotential field contamination signals,
to verify the consistency between adjacent and/or surveys available at differing altitudes
and epochs, to estimate the data noise level, and to identify in the geographical domain
the series of problematic data acquisition. The synthetic analyses also demonstrate that
the RHA approach can provide vector magnetic field models from scalar measurements
acquired over large spatial extents such as aeromagnetic, airborne, and dense offshore
marine magnetic surveys.

The RHA modeling method includes a processing block designed to minimize the
effect of outliers and to reject measurements that do not obey the potential theory; however,
the algorithm is not able to inform us about the origin of all possible contaminations.
The reason is that UAV magnetic effects depend too strongly on each individual setup to
allow the development of an automatic procedure (e.g., [27]). If it can readily be used for
first-order in situ modeling, final robust magnetic field models must be obtained in the
laboratory in a second step after further data analyses to correct for the systematic UAV
magnetic bias and noise. In that regard, the algorithm provides useful guidance for their
identification.

One limitation of RHA is its inability to separate the internal from the external magnetic
fields and to deal with signals with wavelengths larger than the typical dimensions of
the area under study. Such issues are, however, common to many regional potential
field methods [5]. Beyond this standard limitation, one major outcome is that RHA is a
mathematical potential field modeling approach. As such, it could be related analytically
to physical parameters expanded in terms of double Fourier series such as pseudo-gravity
anomalies, magnetic susceptibility distributions, or integrated magnetization models. This
would directly, in situ, provide further and complementary information about the apparent
physical properties of the magnetic sources.
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