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Abstract: Satellite precipitation data downscaling is gaining importance for climatic and hydrological
studies at basin scale, especially in the data-scarce mountainous regions, e.g., the Upper Indus Basin
(UIB). The relationship between precipitation and environmental variables is frequently utilized to
statistically data and enhance spatial resolution; the non-stationary relationship between precipitation
and environmental variables has not yet been completely explored. The present work is designed
to downscale TRMM (Tropical Rainfall Measuring Mission) data from 2000 to 2017 in the UIB,
using stepwise regression analysis (SRA) to filter environmental variables first and a geographically
weighted regression (GWR) model to downscale the data later. As a result, monthly and annual
precipitation data with a high spatial resolution (1 km × 1 km) were obtained. The study’s findings
showed that elevation, longitude, the Normalized Difference Vegetation Index (NDVI), and latitude,
with the highest correlations with precipitation in the UIB, are the most important variables for
downscaling. Environmental variable filtration followed by GWR model downscaling performed
better than GWR model downscaling directly when compared with observation data. Generally, the
SRA and GWR method are suitable for environmental variable filtration and TRMM data downscaling,
respectively, over the complex and heterogeneous topography of the UIB. We conclude that the
monthly non-stationary relationships between precipitation and variables exist and have the greatest
potential to affect downscaling, which requires the most attention.

Keywords: TRMM; downscaling; stepwise regression analysis; geographically weighted regression;
the upper Indus basin

1. Introduction

Climatic and hydrological-related studies in mountainous regions have drawn much
attention due to their sensitivity to climate change and the importance of hydrological
management, especially in the context of global climate change and for basins with a lack
of data [1,2]. One of the most important meteorological factors is precipitation, and the
reliability of basin-scale hydrological simulation and forecast is directly impacted by the
precision of precipitation data [3–5]. However, precipitation gauge stations are sparse
and spatially dispersed unevenly in mountainous regions due to complicated topography
and inaccessible circumstances, leading to a shortage of observed data [6,7]. Additionally,
ground-based observation stations can only accurately describe and represent the patterns
of precipitation over a limited area [8]. As a result, there are large inaccuracies in surface
precipitation data that were interpolated based on a small number of observer stations [9].
Satellite-based precipitation datasets have been developed since the 1980s, e.g., the Global
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Precipitation Climatology Project (GPCP) [10], the Climate Research Unit (CRU) [11], Asian
Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Wa-
ter Resources (APHRODITE) [12], the Tropical Rainfall Measuring Mission (TRMM) [13],
etc. These gridded datasets provide new opportunities for hydrometeorological investiga-
tions and precipitation estimation in mountainous basins with limited data due to their
advantages of broad spatial coverage and convenient data collecting [14]. However, the
accuracy of the raw gridded precipitation data needs to be improved due to the impact of
complicated meteorological conditions and terrain [15,16]. Furthermore, because of the
relatively coarse resolution of gridded precipitation datasets, they cannot be applied at
the basin scale [17,18]. The foundation for increasing precipitation accuracy at spatial and
temporal scales will therefore likely be data downscaling.

For downscaling precipitation data, a variety of statistical techniques have been
employed, including multilinear regression (MLR) [19,20], exponential regression [21],
artificial neural network (ANN) [20,22], and random forest model [23,24]. These models
are spatially invariant and ignore the spatially heterogeneity of the interactions between
precipitation and environmental variables, which may lead to local overfitting and inter-
scale matching errors [25]. Dynamical approaches should be used in downscaling with the
assumption that the correlations between precipitation and environmental variables are
spatially heterogeneous in light of the drawbacks and difficulties of the aforementioned
methodologies [26]. The geographically weighted regression (GWR) model, as it takes non-
stationary variables into account, sheds light on the spatial correlations between variables
and the desired outcome (e.g., precipitation). In order to show geographically diverse
associations and increase downscaling accuracy, the model calculates regression parameters
for each geographic location rather than for the entire study region [27,28]. Chen et al. [26]
applied the GWR model for downscaling the TRMM data in northern China, and they
demonstrated the GWR model’s noticeably superior performance. Zhao et al. [29] applied
the GWR model to explore the spatial variability patterns between NDVI and climate factors
in the climate transition region, and they discovered that the model could successfully
address the issues of spatial heterogeneity and scale independence. Even though the GWR
model has been applied with great success, filtering out different environmental factors and
understanding how they affect downscaling remain difficult, particularly in mountainous
areas where data is limited.

Millions of people live in the Indus basin and are fed by one of the greatest irrigation
systems in the world, which has its source in the UIB [30]. Hydrological simulation plays
an important role in assessing the impact of climate change on water resources. However,
inaccurate precipitation data can increase uncertainties and affect the outcomes of hydro-
logical modeling [31]. Furthermore, the UIB is a typical mountainous region with intricate
alpine land surface features, making it difficult to conduct long-term field observations.
Thus, precise observed data is essential and highly necessary for climatic and hydrological
studies, and it is challenging to collect such data in a complicated basin with uneven precip-
itation patterns. In comparison to other gridded datasets, researchers found that the TRMM
is a better dataset for characterizing the spatiotemporal distribution of precipitation in the
UIB [31–33]. Due to their coarse resolution, TRMM’s results, however, cannot be utilized
directly to force hydrological models. The process of downscaling TRMM data allows for
the transfer of precipitation data to a finer resolution, improving the representation of the
precipitation data at regional scale. Numerous research on downscaling TRMM data at
various areas and scales has been undertaken. NDVI (1 km) was first used by Immerzeel
et al. [21] to downscale TRMM data in the Iberian Peninsula. They then performed an
exponential regression between TRMM and NDVI and discovered that NDVI was a reliable
indicator for downscaling. Duan et al. [34] created monthly grid-based data and enhanced
the resolution (from 0.25◦ to 1 km) by applying the local-based nonlinear relationships
between annual precipitation and annual mean NDVI for downscaling TRMM. With the
exception of NDVI, Ghorbanpour et al.’s [35] comparison of various spatial downscaling
techniques for TRMM data revealed that adding more environmental variables (such as
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DEM and Land Surface Temperature) can enhance the downscaling performance. Various
environmental variables were all included to downscale the TRMM precipitation data in
the UIB, where Arshad et al. [33] proposed a mixed geographically weighted regression
(MGWR) model that has the capability to handle both fixed and spatially varying envi-
ronmental variables. However, most studies frequently overlook prefilter environmental
variables. For instance, using NDVI/DEM alone [36] is inappropriate for capturing the
relationships between precipitation and environmental variables, and including multiple
environmental variables together when dealing with downscaling will not be able to reduce
the effects of multicollinearity among variables.

Given the aforementioned issues, it is crucial to filter environmental variables before
downscaling gridded datasets in order to increase the accuracy of the data. Additionally,
the earlier research concentrated on downscaling precipitation data on an annual scale,
whereas the most influential parameters for downscaling for precipitation vary between
years and months. To improve the applicability of downscaled precipitation in complicated
data-scarce watersheds, downscaling of precipitation at multiple scales is therefore crucial.
As per the best knowledge of authors, less work has been carried out across the data-scarce
complex Indus basin to downscale the gridded precipitation datasets at multiple scales by
keeping in view the best suitable environmental variables. The present work was carried
out to downscale the TRMM datasets throughout the UIB. Additionally, the filtration of the
best suitable environmental variables at a monthly scale and the effects of environmental
variables filtration on downscaling were studied. Stepwise regression analysis (SRA) and
GWR model were integrated for data downscaling at monthly and annual scales with the
help of observed precipitation from 2000 to 2017. The study’s main objectives were to:
(1) filter the most significant environmental variables at the corresponding monthly scale;
(2) downscale TRMM precipitation data using the SRA and GWR models and to obtain
a high-resolution precipitation dataset (3) validate the effect of environmental variables
filtration on downscaling.

2. Materials and Methods
2.1. Study Area

The Indus River is one of the important rivers of the “Asian Water Tower”, whose
upper basin is located in the northwestern part of the Tibetan Plateau and originates from
the Hindu Kush-Karakorum-Himalayan region [30,37]. The entire river basin spans four
countries: China, Pakistan, Afghanistan, and India. Its main tributary is located in Pakistan.
The elevation of the basin ranges from 246 to 6800 m above sea level (a.s.l.), with almost
50% of the basin area having an elevation of more than 4000 m. It is one of the largest areas
covered by glaciers (22,000 km2) due to its geographical location and complicated alpine
land surface features, with an average multi-year snow cover of roughly 33–36% [38,39].
Nearly 80% of Pakistan’s irrigation water comes from snow and glacier meltwater, which
together account for about 40.6% of the region’s runoff [40]. The variability of snow- and
glacier-fed water is regarded as a key indicator of climate change, and it is crucial for the
sustainable development of socio-economics and ecosystems in the middle and lower Indus
Basin [41,42]. Precipitation in the UIB is affected by the interaction of the westerlies and the
Indian monsoon [43]. The area’s climate has seen significant regional and seasonal changes,
as evidenced by variations in temperature and precipitation. Due to the availability of
data, 24 gauged meteorological stations were employed in the study; nevertheless, their
distribution was uneven, with the majority of them being found in low-lying or flat areas
(Figure 1). Therefore, obtaining high spatiotemporal resolution precipitation data is a
requirement and a top priority for many UIB projects.



Remote Sens. 2023, 15, 4356 4 of 18
Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Location and elevation of the UIB. Solid green points indicate the name and locations of 
meteorological gauge stations. 

2.2. Data Collection and Processing 
2.2.1. TRMM Precipitation Dataset 

The joint U.S. and Japanese TRMM (1997–2015) endeavor used radar, microwave im-
aging and lightning sensors to detect rainfall and was aimed to reveal the distribution and 
variability of precipitation in tropical and subtropical rainfall [13]. Since the launch of the 
TRMM, it has supplied essential precipitation information for a range of scientific projects 
[14,44]. We obtained the TRMM3B42 precipitation dataset from the NASA official website 
(http://mirador.gsfc.nasa.gov (accessed on 13 January 2023)), the spatial resolution of 0.25° 
(approximately 27.75 km). Monthly and annual precipitation were formed by the accu-
mulation of precipitation at different time intervals, respectively. Due to the availability 
of observed precipitation data, the time span of TRMM precipitation was determined from 
2000 to 2017. 

2.2.2. Precipitation Gauge Data 
Daily recorded precipitation values from 2000 to 2017 of 24 meteorological gauge 

stations (8 meteorological stations with daily precipitation records for 2000 to 2013) lo-
cated in Pakistan were obtained from Pakistan Metrological Department (PMD) and Pa-
kistan Water and Power Development Authority (WAPDA). The spatial distribution and 
basic information of these meteorological gauge stations is shown in Figure 1 and Table 1. 
Nevertheless, the distribution of these gauge meteorological stations in the UIB is quite 
uneven; hence, it is impossible to collect precipitation data with high spatiotemporal res-
olution directly by the methods of interpolation. In this research, precipitation gauge data 
was used primarily for verifying the downscaled TRMM datasets based on the GWR 
model and S-GWR model. 

Table 1. Basic information about the observed meteorological stations used in the study. 

Name Agency Longitude Latitude Elevation (m) 
Annual Mean 

Precipitation (mm) Period 

ASTORE PMD 74.9 35.37 2168 408.79 2000–2017 
CHERAT PMD 71.88 33.82 1372 635.51 2000–2017 
CHILAS PMD 74.1 35.42 1250 179.51 2000–2017 

DIR PMD 71.85 35.2 1375 1198.93 2000–2013 

Figure 1. Location and elevation of the UIB. Solid green points indicate the name and locations of
meteorological gauge stations.

2.2. Data Collection and Processing
2.2.1. TRMM Precipitation Dataset

The joint U.S. and Japanese TRMM (1997–2015) endeavor used radar, microwave
imaging and lightning sensors to detect rainfall and was aimed to reveal the distribution
and variability of precipitation in tropical and subtropical rainfall [13]. Since the launch
of the TRMM, it has supplied essential precipitation information for a range of scientific
projects [14,44]. We obtained the TRMM3B42 precipitation dataset from the NASA official
website (http://mirador.gsfc.nasa.gov (accessed on 13 January 2023)), the spatial resolution
of 0.25◦ (approximately 27.75 km). Monthly and annual precipitation were formed by the
accumulation of precipitation at different time intervals, respectively. Due to the availability
of observed precipitation data, the time span of TRMM precipitation was determined from
2000 to 2017.

2.2.2. Precipitation Gauge Data

Daily recorded precipitation values from 2000 to 2017 of 24 meteorological gauge
stations (8 meteorological stations with daily precipitation records for 2000 to 2013) located
in Pakistan were obtained from Pakistan Metrological Department (PMD) and Pakistan
Water and Power Development Authority (WAPDA). The spatial distribution and basic
information of these meteorological gauge stations is shown in Figure 1 and Table 1.
Nevertheless, the distribution of these gauge meteorological stations in the UIB is quite
uneven; hence, it is impossible to collect precipitation data with high spatiotemporal
resolution directly by the methods of interpolation. In this research, precipitation gauge
data was used primarily for verifying the downscaled TRMM datasets based on the GWR
model and S-GWR model.

http://mirador.gsfc.nasa.gov


Remote Sens. 2023, 15, 4356 5 of 18

Table 1. Basic information about the observed meteorological stations used in the study.

Name Agency Longitude Latitude Elevation (m) Annual Mean
Precipitation (mm) Period

ASTORE PMD 74.9 35.37 2168 408.79 2000–2017
CHERAT PMD 71.88 33.82 1372 635.51 2000–2017
CHILAS PMD 74.1 35.42 1250 179.51 2000–2017

DIR PMD 71.85 35.2 1375 1198.93 2000–2013
DROSH PMD 71.783 35.57 1464 529.51 2000–2013
Chitral PMD 71.83 35.85 1498 452.08 2000–2017
Gilgit PMD 74.33 35.92 1460 148.79 2000–2017
Gupis PMD 73.4 36.17 2156 234.23 2000–2017

ISLAMABAD PMD 73.04 33.72 831 1215.75 2000–2017
Lower Dir PMD 71.69 34.7 1375 835.57 2000–2017
KAKUL PMD 73.3 34.18 1308 1159.29 2000–2013
KOHAT PMD 71.43 33.55 513 564.38 2000–2013

MURREE PMD 73.4 33.9 2291 1539.37 2000–2017
R-PUR PMD 71.97 34.08 320 762.57 2000–2013

SKARDU PMD 75.54 35.34 2267 233.86 2000–2013
S-SHARIF PMD 72.35 34.82 970 988.24 2000–2013
Srinagar PMD 74.8 34.1 1604 565.22 2000–2017

Shiquanhe CIMISS 80.05 32.3 4280 67.53 2000–2013
Ushkore WAPDA 73.42 36.03 3051 454.31 2000–2017

Yasin WAPDA 73.29 36.45 3280 673.11 2000–2017
Zani Pass WAPDA 72.17 36.35 3839 315.06 2000–2017

Deosai WAPDA 75.54 35.09 4149 435.98 2000–2017
Hushey WAPDA 76.37 35.42 3076 666.58 2000–2017

Shendoor WAPDA 72.55 36.09 3712 408.18 2000–2017

2.2.3. Environmental Variables

Digital elevation model (DEM) data, with the spatial resolution of 90 m, obtained from
the Space Shuttle Radar Topography Mission (SRTM) (http://www.gscloud.cn (accessed
on 13 January 2023)), was utilized to delineate geographical characters of aspect, slope,
elevation and relief in this study. All these geographical layers were recognized as environ-
mental variables. The monthly MODIS NDVI dataset (MOD13A3, 2000–2017) of the UIB,
with a spatial resolution of 1 km, was derived from NASA (http://reverb.echo.nasa.gov/
(accessed on 13 January 2023)). Finally, Universal Transverse Mercator Grid System
(WGS_1984_UTM_Zone_43N (accessed on 13 January 2023)) projected all the environ-
mental variables, including latitude, longitude, elevation, slope, aspect, geographic relief
and NDVI. All the utilized data were projected, extracted and aggregated based on the
Python27.

2.3. Methods

The TRMM precipitation dataset was downscaled to a relatively high resolution
(1 km × 1 km) by using both the stepwise regression analysis (SRA) and geographically
weighted regression model (GWR) at monthly and annual scales. The technique of down-
scaling was accomplished based on two assumptions: (1) the spatial non-stationarity of
TRMM (0.25◦ × 0.25◦) precipitation can be explained by environmental variables; (2) high-
resolution precipitation can be predicted using high-resolution environmental factors. The
detailed technique of data downscaling is explained as follows (Figure 2):

(1) Data preparation. The original TRMM (0.25◦ × 0.25◦) precipitation data and
environmental variables (1 km × 1 km), which are required for model input, were prepared.
The original TRMM data from January 2000 to December 2017 were aggregated on monthly
and annual scales. Environmental variables include latitude, longitude, elevation, NDVI,
slope, aspect and geographic relief. The same projection (WGS_1984_UTM_Zone_43N)
was used to project the above datasets.

http://www.gscloud.cn
http://reverb.echo.nasa.gov/
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(2) The GWR model downscaling without environmental variable filtration (namely,
GWR). Establish the GWR model between all environmental variables and the original
TRMM datasets at annual scale for obtaining the intercepts, regression coefficients and
residuals.

(3) Environmental variable filtration was executed first and followed by GWR model
downscaling (namely, S-GWR). The SRA was used to filter environmental variables at
monthly scale, and a total of 216 months from 2000 to 2017 were utilized for the SRA. This
step eliminates irrelevant variables that may decrease the model performance and obtains
the optimal environmental variables in each month. The environmental variables were
resampled to 0.25◦ according to the resolution of the original TRMM datasets (0.25◦ × 0.25◦).
Establish the GWR model between environmental variables filtered by SRA and the original
TRMM datasets at a monthly scale for obtaining the intercepts, regression coefficients
and residuals.

(4) Regression parameter processing. The intercepts dataset and regression coeffi-
cient dataset from the GWR and S-GWR models were resampled to a high-resolution
(1 km × 1 km), and the residual dataset is interpolated to 1 km by using the inverse
distance weighting (IDW) method.

(5) Downscaled data achievement by the GWR model. The downscaled annual TRMM
dataset (1 km × 1 km) was obtained based on Equation (3); all environmental variables were
multiplied with the corresponding coefficients, and then added the corresponding constant
terms and residuals. Disaggregation annual precipitation into monthly precipitation using
a fraction disaggregation method based on Equation (6).

(6) Downscaled data achievement by the S-GWR model. The downscaled monthly
TRMM dataset (1 km × 1 km) was obtained based on Equation (3); the filtered environmen-
tal variables in each month were multiplied with the corresponding coefficients, and then
added to the corresponding constant terms and residuals.
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2.3.1. The Stepwise Regression Analysis (SRA)

The SRA model can automatically filter the crucial variables from a large number
of variables and develop predictive or explanatory models for regression analysis [45].



Remote Sens. 2023, 15, 4356 7 of 18

Hence, it can be used for reducing the impact of multicollinearity and for variables filtration.
Since the correlations between precipitation and environmental variables vary in diverse
times, the SRA approach was utilized to filter environmental variables that are considerably
associated with precipitation at a corresponding monthly scale. The SRA normally removes
the least important variables in a stepwise manner based on partial F-tests [46] until all
remaining variables are statistically significant. The partial F-statistic is defined as follows:

F =

(
R2

q − R2
q−1

)
(n − q − 1)(

1 − R2
q

) (1)

where q is the number of predictors, n − q − 1 is the degree of freedom, and R indicates
the correlation coefficient between precipitation and environmental variables in this study.
When the p-value of the F test is less than 0.05, the environmental variables are removed;
otherwise, it is retained.

The SRA model was established using the SPSS 26, with the TRMM precipitation data
as the dependent variable and the environment variables as the independent variables. The
equation of the SRA can be expressed as follows:

Y = ∝0 + ∝1 X1+ ∝2 X2 + · · ·+ ∝i Xi (2)

where Y is the TRMM data, Xi is the environment variable, and ∝i is the partial regression
coefficient of each independent environment variables.

2.3.2. Geographically Weighted Regression Model (GWR)

Generally, most statistical models expect the relationships between result and predictor
variables to be spatially constant. However, the GWR model establishes a local regression
equation for each point in the spatial range [47]; thus, it is the regression algorithm that
takes into account the non-stationary relationship between the predictor and outcome
variables [48]. Equation (3) can be used to establish the GWR model as

Yi = β0(ui, vi) +
p

∑
k=1

βi(ui, vi)Xik + εi (3)

where (ui, vi) denote the spatial position of the i; β0(ui, vi) and βi(ui, vi) are the intercept
and slope at point I, respectively; εi is the regression residual at point i, P denotes the
number of predictor variables. Unlike the conventional global regression model, the GWR
model is established based on the assumption that the sample points have greater impacts
on the prediction point that is closer to it; and the model adopts a function that the weight
decays with the distance of the sample from the predicted point increases, so the coefficient
changes in space. The coefficient is calculated as:

β̂(ui, vi) =
(

XT(W(ui, vi))X
)−1

XTW(ui, vi)Y (4)

where β̂(ui, vi) is the parameter estimate at the point (ui, vi); X and Y are the vector sets of
predictor and outcome variables, respectively. W(ui, vi) is the weight matrix, which serves
to ensure that the modeling points which are closer to the location of the point i have a
greater weight in estimating the parameter of the point i. The weight allocation follows the
formula below:

wi,j =


(

1 −
d2

ij
θi(k)

)2
, dij ≤ D

0, dij > D
(5)

where dij is the Euclidean distance between the j point and i point; D is the radius of the
kernel weight function. Adaptive Bi-square and the Akaike information criterion (AICc)
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are chosen as the kernel weight function and the bandwidth, respectively, which have the
best effect in estimating precipitation [49].

2.3.3. Disaggregation of Annual Precipitation

Fraci =
PTRMMi

∑12
i=1 PTRMMi

(6)

where PTRMMi represents the original TRMM data of the ith month, and the denominator
represents the annual TRMM data obtained by accumulating monthly original TRMM
precipitation data.

2.3.4. Performance of Variables Filtration and Data Downscaling

The accuracy of the TRMM precipitation data was assessed according to correlation
coefficient (R), relative error index (BIAS) and root mean square error (RMSE). R reflects the
linear correlation between two sets of data. BIAS describes the extent to which predicted
data overestimate or underestimate when compared with the observed data. RMSE denotes
the overall level of error in predicting data. The corresponding equations of these indicators
are as follows:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(7)

BIAS =
∑n

i=1 xi

∑n
i=1 yi

− 1 (8)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(9)

where xi, yi are TRMM data and observation precipitation data measured by rain gauge,
respectively; x, y are the mean value of TRMM data and observation precipitation data,
respectively; n is the total number of meteorological gauge stations in the UIB (n = 24).

3. Results
3.1. Environmental Variables Filtration

The correlations between environmental variables and precipitation could be used
to recognize the dominant factors that influence the precipitation variability in the UIB.
Figure 3 represents the results of environmental variables filtration at a monthly scale
by the SRA model from January 2000 to December 2017 (216 months in total). There are
three environmental variables that are the most frequent variables which influence the
downscaling the most (85 occurrences in 216 months, Figure 3a). In terms of the variable
types, elevation, longitude, NDVI and latitude are the most frequent variables (frequency
varies from 143 to 183 times) which explain the variability of precipitation, whereas aspect
is the least frequent variable (Figure 3b).

The numbers of environmental variables distributed in each month are given in
Figure 3c. The results of correlation between longitude and precipitation suggest relatively
good correlation during all the months, and the numbers of this variable did not fluctuate
too much throughout the whole year. The latitude variable indicates an enhanced connec-
tion with precipitation in October and November. The NDVI variable is mostly related to
precipitation in spring (March–May) and decreases dramatically in summer. The slope and
aspect vary less due to the small numbers after the SRA filtration, but the numbers of the
slope increase in August. Aspect is more explanatory of precipitation in May. Topographic
relief contributed less throughout the year, except for an increase in July and August. The
contribution of elevation is higher throughout the year, especially from June to September.
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precipitation for each month; different colors represent different environment variables. The number
represents the frequency of different variables, which were filtered by the SRA each month.

3.2. Comparative Evaluation of the Accuracy of Downscaled TRMM Data with GWR and
S-GWR Models

To evaluate the effect of variable filtration on downscaling, the downscaled TRMM
data based on the GWR model and S-GWR model were both compared with 24 precipitation
stations with the help of statistical tests at temporal and spatial scales across the UIB.

3.2.1. Temporal Scale Evaluation

Annual and monthly validation of the original TRMM and TRMM data downscaled by
the GWR model and S-GWR model that compared with the observed data are presented in
Figures 4 and 5, respectively. Annually, the TRMM data downscaled by the S-GWR model
generally displays a better correlation than the original TRMM data and GWR downscaled
TRMM with the observations (Figure 4a), the R values were improved in each year and
multi-year average (2000–2017) of R was improved from 0.77 to 0.8. Biases of all the years
are below 0.2, except for 2017 when the BIAS is −0.21. Nonetheless, the BIAS of the TRMM
data downscaled by the S-GWR model is smaller than that of the original TRMM data and
the TRMM data downscaled by the GWR model (Figure 4b). Compared with the observed
precipitation, the RMSE of the downscaled TRMM data is smaller than that of the original
TRMM data, but the RMSE is still kind of large (Figure 4c). Generally, the BIAS and RMSE
are more or less identical before and after downscaling, the BIAS and RMSE of TRMM data
downscaled after variables filtration were reduced.
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Overall, the correlations between the observed precipitation and downscaled TRMM
data are still stronger than those with the original TRMM data in all months. The R between
the observed precipitation data and both of the before and after downscaled TRMM data
are generally higher in the summer months (June to August, R > 0.8), notably, the R in
November and December (the R was distributed between 0.5 to 0.6, respectively) were
relatively lower than in other months. The R between the downscaled TRMM data and
the observed data is the highest in July (R = 0.83) (Figure 5a). Contrary to the distribution
of R in November and December, the BIAS in November and December are around 0.2.
However, both of the original and downscaled TRMM data overestimated precipitation
in the months from June to September (BIAS > 0) (Figure 5b). Additionally, the RMSE
indicates strong variations in different months (Figure 5c). The RMSE is considerably lower
in the winter (December to February) and spring months (March to May) than that in the
summer months, especially in July and August (78 mm and 69 mm, respectively) when it is
the main rainy season in the UIB. Generally, the RMSE is more or less similar before and
after downscaling, the RMSE of the TRMM data downscaled by S-GWR is smaller than the
original TRMM data and GWR downscaled TRMM in all months.

3.2.2. Spatial Scale Evaluation

The original and downscaled TRMM data by the GWR model and S-GWR model at
24 observed weather stations were extracted and compared directly with the corresponding
observational data in terms of the evaluation indicators. Overall, the accuracy of the
downscaled TRMM data is better than the original TRMM data at all the meteorological
stations, except for the ASTORE, DIR and R-PUR stations (Table 2). Additionally, the
spatial performance of the S-GWR model downscaled TRMM data at each site was reported
in Figure 6. In terms of the correlation between the downscaled TRMM data and the
observational data, the mean R is 0.65 and the R spans from 0.47 (the Yasin station) to
0.89 (the MURREE station). However, the sites at lower elevations generally have higher
correlations with the observed precipitation than that at higher elevations (Figure 6a).
In addition, the BIAS of the downscaled TRMM data ranged from −0.56 (the ASTORE
station) to 0.71 (the Shiquanhe station) and relatively large negative BIAS was typically
detected in places with high precipitation (Figure 6b). Generally, the TRMM precipitation
data underestimate high precipitation while overestimating low precipitation in the UIB.
Similarly, the RMSE (9–74 mm) is higher in the locations which are located at low elevations
yet with high precipitation (Figure 6c).
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Table 2. The R, BIAS, and RMSE of the observed and TRMM precipitation at each meteorological
station in the UIB.3.3. The downscaling results of TRMM precipitation datasets.

Stations R BIAS RMSE(mm)

O GWR S-GWR O GWR S-GWR O GWR S-GWR

ASTORE 0.58 0.57 0.56 −0.27 −0.23 −0.28 31.11 31.44 31.59
CHERAT 0.74 0.76 0.83 0.42 0.31 0.34 56.00 49.06 45.62

Chitral 0.15 0.15 0.52 0.26 0.34 0.16 57.35 59.35 57.90
CHILAS 0.38 0.35 0.49 0.49 0.51 0.46 27.15 27.50 26.41

DIR 0.87 0.86 0.83 −0.38 −0.30 −0.28 55.68 50.79 48.63
DROSH 0.72 0.71 0.78 0.27 0.12 0.14 28.92 27.06 26.78

Gilgit 0.48 0.49 0.62 0.85 0.46 0.36 33.64 27.76 30.52
Gupis 0.27 0.25 0.59 0.17 0.18 0.15 32.90 33.55 31.96

M-ABAD 0.85 0.85 0.85 0.01 −0.03 −0.07 73.28 73.25 73.63
KOHAT 0.53 0.62 0.62 0.41 0.54 0.37 52.91 58.26 51.90
KAKUL 0.72 0.72 0.78 −0.03 −0.09 −0.07 49.55 50.12 48.50

Lower dir 0.50 0.50 0.75 0.04 −0.02 0.02 89.13 86.88 48.05
MURREE 0.84 0.84 0.89 −0.24 −0.40 −0.40 71.40 87.81 55.58

R-PUR 0.78 0.78 0.75 0.36 0.38 0.36 52.73 50.09 51.83
S-SHARIF 0.77 0.77 0.83 0.25 −0.22 −0.20 57.06 40.25 40.47
Srinagar 0.23 0.36 0.42 0.04 0.05 0.04 66.27 66.31 66.25

SKARDU 0.48 0.55 0.54 −0.32 0.11 0.21 20.17 21.10 20.17
Shiquanhe 0.79 0.78 0.82 −0.72 −0.73 −0.71 10.36 9.51 9.09
Ushkore 0.12 0.19 0.51 −0.44 −0.46 −0.43 44.46 43.27 44.90

Yasin 0.15 0.11 0.47 −0.58 −0.56 −0.56 74.50 75.36 74.81
Zani Pass 0.44 0.47 0.55 −0.15 0.13 0.05 36.43 42.10 37.34

Deosai 0.27 0.27 0.59 −0.44 −0.44 −0.41 39.48 39.32 38.36
Hushey 0.39 0.40 0.49 −0.47 −0.43 −0.43 60.07 59.84 60.30

Shendoor 0.32 0.33 0.60 −0.31 −0.24 −0.25 43.41 43.68 42.69

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 6. The spatial distribution of R (a), BIAS (b), and RMSE (c) between the observed and 
downscaled TRMM precipitation data based on the S-GWR model from 2000 to 2017. 

Table 2. The R, BIAS, and RMSE of the observed and TRMM precipitation at each meteorological 
station in the UIB.3.3. The downscaling results of TRMM precipitation datasets. 

Stations R BIAS RMSE(mm) 
 O GWR S-GWR O GWR S-GWR O GWR S-GWR 

ASTORE 0.58  0.57  0.56  −0.27  −0.23  −0.28  31.11  31.44  31.59  
CHERAT 0.74  0.76  0.83  0.42  0.31  0.34  56.00  49.06  45.62  

Chitral 0.15  0.15  0.52  0.26  0.34  0.16  57.35  59.35  57.90  
CHILAS 0.38  0.35  0.49  0.49  0.51  0.46  27.15  27.50  26.41  

DIR 0.87  0.86  0.83  −0.38  −0.30  −0.28  55.68  50.79  48.63  
DROSH 0.72  0.71  0.78  0.27  0.12  0.14  28.92  27.06  26.78  

Gilgit 0.48  0.49  0.62  0.85  0.46  0.36  33.64  27.76  30.52  
Gupis 0.27  0.25  0.59  0.17  0.18  0.15  32.90  33.55  31.96  

M-ABAD 0.85  0.85  0.85  0.01 −0.03  −0.07  73.28  73.25  73.63  
KOHAT 0.53  0.62  0.62  0.41  0.54  0.37  52.91  58.26  51.90  
KAKUL 0.72  0.72  0.78  −0.03  −0.09  −0.07  49.55  50.12  48.50  

Lower dir 0.50  0.50  0.75  0.04  −0.02  0.02  89.13  86.88  48.05  
MURREE 0.84  0.84  0.89  −0.24  −0.40  −0.40  71.40  87.81  55.58  

R-PUR 0.78  0.78  0.75  0.36  0.38  0.36  52.73  50.09  51.83  
S-SHARIF 0.77  0.77  0.83  0.25  −0.22  −0.20  57.06  40.25  40.47  
Srinagar 0.23  0.36  0.42  0.04  0.05  0.04  66.27  66.31  66.25  

SKARDU 0.48  0.55  0.54  −0.32  0.11  0.21  20.17  21.10  20.17  
Shiquanhe 0.79  0.78  0.82  −0.72  −0.73  −0.71  10.36  9.51  9.09  
Ushkore 0.12  0.19  0.51  −0.44  −0.46  −0.43  44.46  43.27  44.90  

Yasin 0.15  0.11  0.47  −0.58  −0.56  −0.56  74.50  75.36  74.81  
Zani Pass 0.44  0.47  0.55  −0.15  0.13  0.05  36.43  42.10  37.34  

Deosai 0.27  0.27  0.59  −0.44  −0.44  −0.41  39.48  39.32  38.36  
Hushey 0.39  0.40  0.49  −0.47  −0.43  −0.43  60.07  59.84  60.30  

Shendoor 0.32  0.33  0.60  −0.31  −0.24  −0.25  43.41  43.68  42.69  

To explore the result of spatial downscaling, both of the original TRMM data and S-
GWR model downscaled TRMM data were generated for the average of study period 
2000–2017 and different climate years 2001 (dry year, annual average precipitation is 301 
mm) and 2015 (wet year, annual precipitation is 622 mm) in the UIB (Figure 7). Average 
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downscaled TRMM precipitation data based on the S-GWR model from 2000 to 2017.

To explore the result of spatial downscaling, both of the original TRMM data and
S-GWR model downscaled TRMM data were generated for the average of study period
2000–2017 and different climate years 2001 (dry year, annual average precipitation is
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301 mm) and 2015 (wet year, annual precipitation is 622 mm) in the UIB (Figure 7). Av-
erage annual precipitation (435 mm) varies widely (11–1296 mm) across the UIB due to
topography and moisture sources, presenting an increasing feature from northeast to south-
west (Figure 7a–c). Generally, the original TRMM data has a mosaic distribution due to
its coarse resolution; undoubtedly, both downscaled TRMM data maintained the spatial
patterns and improved the expression of the spatial information. However, the S-GWR
model downscaled TRMM data was more consistent with original TRMM data, and the
spatial variation exhibits a clearer pattern in both the climatic years, especially in the high
elevations with little precipitation (black circles drawn over some regions in Figure 7).
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Figure 8 shows the spatial distribution of the original and downscaled TRMM data
by the GWR and S-GWR model in typical months from 2000 to 2017. Compared with the
original TRMM data, both the downscaled TRMM data has improved spatial resolution in
all the months, and the spatial distribution is more refined, which can better represent the
patterns of the local precipitation. However, these two models’ downscaled TRMM data
are similar in spatial distribution at the monthly scale.
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4. Discussion
4.1. Environmental Variables Filtration

Less environmental variables, such as NDVI and DEM, may not meet the require-
ments of collaborative inversion of high-resolution precipitation under the influence of
multiple variables [35,36]. When all the variables relating to the land-surface environment
are taken into account, multicollinearity problems could also be present. As a result, fil-
tering environmental variables should come before downscaling [50]. Based on the SRA
model, we explore the non-stationarity [49] of the interactions between precipitation and
environmental variables in this work. The SRA model has the advantage of retaining the
variables with the greatest influence as suggested by Teegavarapu and Goly [51] and can
be used for variables filtration. We discovered that there is spatiotemporal variability in the
associations between precipitation and variables, which is different from studies that do not
consider the monthly relationships between precipitation and environmental factors. Fur-
ther research should address both the spatial and temporal aspects of the non-stationarity
connections because different environmental variables have varied effects during different
months (216 months in total, Figure 3c) [35,36,49].
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The most frequent factors to explain the variability in precipitation in the UIB are
elevation, longitude, NDVI, and latitude, whereas aspect is the least frequent variable. This
is essentially compatible with the findings of Wang et al. [52], despite the fact that NDVI
was excluded from their study. Because the UIB has a significant elevation change, the
elevation has a significant influence in the downscaling. The elevation decreases from
northeast to southwest, while the precipitation shows the opposite trend that increases
from northeast to southwest. This pattern is mainly influenced by climatic systems which
are also influenced by the geographical characteristics of elevation, longitude and latitude.
Studies have shown that westerly winds dominate in the northeastern part of the UIB, with
westerly transport accounting for 70% of precipitation [43]. However, the Indian monsoon
has an impact on the UIB’s southeast region, so the water vapor there primarily comes
from the Indian Ocean and Bay of Bengal [43]. Additionally, because vegetation responds
immediately to precipitation and is affected by variations in temperature and humidity, it
is possible to explain precipitation using NDVI at a monthly scale [53]. As a result, there
is a fair amount of correlation between elevation, longitude, NDVI, and fluctuations in
precipitation across time in the UIB.

The fact that summer precipitation is mostly regulated by the monsoon, whereas
spring and winter precipitation is primarily regulated by westerly winds, may explain why
environmental factors vary dramatically in summer [43]. The Indian summer monsoon’s
vigor primarily determines the season’s precipitation. More moisture was present on the
southern slope as a result of the Karakoram Mountains blocking water vapor from the south-
west [54]. Due to the abrupt change in topography in the western part of the Himalayas,
water vapor from the Arabian Sea and the Bay of Bengal creates intense topographic rainfall
that exceeds 1000 mm/year in the southwestern part of the basin [55–57]. The extension
of water vapor also exhibits a progressive decreasing pattern from the southwest to the
northeast, which is obstructed by the Himalayas (Figure 7). The circulation is affected
dynamically and thermally by plateau blockage and topographic friction. As a result, there
is a strong link between elevation, longitude, latitude and monthly precipitation in the UIB.

4.2. TRMM Data Downscaling in the UIB

Existing studies have shown that the TRMM precipitation data outperformed other
gridded precipitation products in the UIB [31,32], so the TRMM data was selected for
downscaling, and we believed that this dataset is applicable in the UIB even though there
are fewer observational data for evaluation due to data availability. After comparative
analysis of the relationships between observed stations and the original TRMM data and
downscaled TRMM data by GWR and S-GWR models, we found that the annual and
monthly of downscaled precipitation by S-GWR model has higher correlations with the
observed stations than that with the original TRMM data and GWR model downscaled
TRMM data. Generally, the downscaling of environmental variables is a crucial step
to improve the downscaling accuracy of gridded data, which is compatible with the
findings of Wang et al. (2022) [52]. Additionally, Arshad et al. (2021) [33] applied a Mixed
Geographically Weighted Regression (MGWR) model to downscale precipitation in the UIB.
Although the spatial distribution characteristics of the downscaled TRMM data remained
unaltered, it has more spatial information and higher resolution. However, the correlations
between the downscaled TRMM precipitation data and the observed data are considerably
lower than those found by Arshad et al. (2021) [33], which may be due to the different
observed stations, different time periods and different non-stationary relations that were
employed. We also found that the TRMM data failed to capture the peak of precipitation,
especially at high elevations, which is consistent with the finding that the reliability of the
original TRMM data is essential to the success of downscaling [21,49]. Because the objective
of this study was to downscale the TRMM data based on the non-stationary relations
at monthly scale, we did not include calibration after downscaling. However, research
suggested that bias correction after downscaling could be another option for retrieving
high-resolution precipitation data [33,34]. Additionally, other investigations discovered
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that despite the original TRMM data having relative higher relationship with observed
data, the TRMM data either overestimated precipitation in alpine mountains regions [26]
or overestimated precipitation at the daily scale [58]. Therefore, more research is needed on
the spatiotemporal accuracy and downscaling of the TRMM data.

4.3. Uncertainty Analysis and Future Directions

The retrieval of high spatiotemporal resolution precipitation is still the bottleneck prob-
lem in the data-scarce mountainous region [35,52]. We tried to downscale the TRMM data
by using both the SRA model and the GWR model for environmental variables filtration
and data downscaling in the UIB, respectively. Although the filtration of environmental
variables and downscaled TRMM data produced reasonably trustworthy results, uncertain-
ties remain during these processes. Although geographical location and topographic factors
were taken into account during variable filtration and data downscaling, however, there are
some other environmental variables (e.g., surface temperature, soil moisture, cloud cover
and wind speed etc.) that may also influence the variability of the precipitation [33,59–61].
Thus, different environmental variables might lead to different downscaling results.

Additionally, more observed stations are desperately needed for downscaling of
precipitation data in the UIB, especially in the high mountainous region. Some high
elevation stations are not yet available due to data scarcity in this study. Because most of
the stations are in low elevations in the southwestern part of the UIB and have relatively
short time periods, they cannot fully represent the variability of precipitation. This may
be the cause of the study’s lower correlations and higher RMSE. We acknowledge that
uncertainties remain.

Precipitation and environmental variables were shown to have yearly and multi-
year average stationary relationships in earlier research [21,33]. Inspired by Xu et al. [49],
we selected the environmental variables using a monthly downscaling algorithm based
on the SRA in the UIB from 2000 to 2017. This allowed us to identify non-stationary
relationships between precipitation and environmental variables and to determine the ideal
set of variables for each month within the study area. However, because of the complex
interactions between the land and atmosphere in this mountainous region, atmospheric
factors such as atmospheric circulation pattern, wind direction and wind speed etc. may
also contribute to increasing the accuracy of downscaling in the future. The results of this
work will aid in hydrological studies in the UIB region, and the methods can be applied to
other mountainous regions that require more precise precipitation data.

5. Conclusions

This study introduced environmental variables filtration developed for the downscal-
ing of both monthly and yearly TRMM precipitation data in the range of 0.25◦ to 1 km.
Environmental variables were filtered first based on the SRA model, and later downscaling
took into consideration the non-stationary relationships between precipitation and environ-
mental variables at each month. We also assessed the TRMM data’s accuracy with respect
to the observed precipitation before and after downscaling. Overall, there were three or
four variables, which are the most frequent variables that participated in the downscaling
process of the UIB. The variables that might explain the variation in precipitation are
elevation, longitude, NDVI and latitude, while aspect is the variable that occurs the least
frequently after the variables filtration. In terms of the evaluation indicators (R, BIAS and
RMSE), the downscaled TRMM data by the S-GWR model has relative higher accuracy
than the original and GWR model downscaled TRMM data, and it offers more spatial
information at a higher resolution in the UIB. Additionally, we find that the correctness
of the original TRMM data strongly influences the findings of the downscaled TRMM
data; hence, data evaluation and additional bias correction should be taken into account
for lowering uncertainty. This study showed that additional research is urgently required
to address the non-stationary interactions between precipitation and variables at various
scales, even if uncertainties still exist due to the lack of data. The integrated variable
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filtration and data downscaling method may generally be used to successfully increase the
spatial estimation of gridded precipitation at monthly and annual scales over the UIB, and
it can be significant for other data downscaling research in mountain regions abroad.
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