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Abstract: Space-time adaptive processing (STAP) approaches based on sparse Bayesian learning
(SBL) have attracted much attention for the benefit of reducing the training samples requirement
and accurately recovering sparse signals. However, it has the problem of a heavy computational
burden and slow convergence speed. To improve the convergence speed, the variational Bayesian
inference (VBI) is introduced to STAP in this paper. Moreover, to improve computing efficiency, a
fast iterative algorithm is derived. By constructing a new atoms selection rule, the dimension of the
matrix inverse problem can be substantially reduced. Experiments conducted on the simulated data
and measured data verify that the proposed algorithm has excellent clutter suppression and target
detection performance.

Keywords: space-time adaptive processing; variational Bayesian inference; clutter suppress; sparse
recovery

1. Introduction

Space-time adaptive processing (STAP) is widely studied and applied in airborne
phased array radar for clutter suppression and target detection [1–5]. The performance of
STAP is related to the clutter plus noise covariance matrix (CNCM), which is estimated
by the training samples adjacent to the cell under test (CUT). More than two times the
system degrees of freedom (DOFs) of independent and identically distributed (IID) training
samples are required to estimate the CNCM [6,7]. However, it is difficult to obtain enough
training samples in a practical environment.

Various algorithms have been proposed to improve the STAP performance with a
small number of training samples. Reduced-rank (RR) approaches make use of the struc-
tural characteristics of the covariance matrix to reduce the requirement for samples, such as
principal components (PC), the multistage winner filter (MWF), and cross-spectral metric
(CSM) [8–11]. Reduced-dimension (RD) approaches reduce the requirement for samples by
selecting space-time or angle-Doppler channels, such as joint-domain localization (JDL),
the extend factor approach (EFA), and auxiliary channel processor (ACP) [12–15]. How-
ever, the performance of the RR or RD approaches is affected due to complex practical
environments. Knowledge-aided (KA) [16–18] approaches use prior knowledge to improve
clutter suppression performance. Nevertheless, it is hard to obtain precise prior knowl-
edge. Additionally, some covariance estimation algorithms in limited samples have been
proposed, such as the fast maximum likelihood (ML) estimation [19], rank-constrained
ML estimation [20], knowledge-aided ML estimation [21], and distribution-free covariance
estimation [22]. These approaches are sensitive to model mismatch.

Motivated by the compressed sensing (CS) theory, sparse recovery STAP (SR-STAP)
methods have attracted much attention over the last few years [23–26]. Using the norm
minimization method and the sparsity of the clutter spectrum, SR-STAP approaches can
improve the clutter suppression performance with few samples or even a single sample.
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Currently, several SR methods have been proposed. In [27], a convex optimization algo-
rithm named the focal underdetermined system solver (FOCUSS) was proposed, which
uses the `p norm penalty to relax the cost function. This kind of algorithm requires a
suitable regularization parameter. However, the parameter chosen empirically is not robust
to environmental change. A greedy pursuit approach, an orthogonal matching pursuit,
is presented in [28]. It performs well when the signal sparsity is known. The difficulty in
obtaining signal sparsity in practice limits the application of this type of approach. For its
self-regularizing nature, sparse Bayesian learning (SBL) has received much attention and
has been applied to STAP [29–31]. However, the problems of heavy computational burden
and slow convergence speed prevent its practical application.

Variational Bayesian inference (VBI) can be seen as a Bayesian approximate method
that deals with the SR problem by maximizing a lower bound of likelihood function [32–34].
Compared with SBL, VBI replaces the point estimation of parameters with approximate
posterior distribution estimates, which gives it a fast convergence speed. The VBI has been
widely used in the fields of engineering and signal processing, some of which include
model degradation analysis [35], statistical properties estimation [36], and Orthogonal Time
Frequency Space (OTFS) modulation [37]. In this paper, the VBI algorithm with multiple
measurement vectors (MMV) is introduced in STAP (M-VBI-STAP). Because of the matrix
inverse operation, the computational burden is still heavy. To reduce the computational
complexity, a fast STAP algorithm based on VBI is proposed. The following are the main
contributions of this paper:

(1) The frame of VBI with multiple measurement vectors is generalized to the STAP
application. This allows for an increase in convergence speed.

(2) In order to improve computational efficiency, a fast STAP algorithm based on VBI
(M-FVBI-STAP) is proposed. A new atoms selection rule is constructed, which is able
to substantially reduce the dimension of the matrix inverse problem.

(3) Numerous experiment results on simulated data and measured data illustrate that
the proposed algorithm can achieve better clutter suppression and target detection
performance.

The remainder of this paper is outlined as follows. The signal model and Bayesian
model are introduced in Section 2. In Section 3, the VBI algorithm is extended to STAP and
proposes a fast STAP method based on VBI. Computational complexity analysis is detailed
in Section 4. Section 5 shows the experimental results. The conclusions are presented in
Section 6.

Notation: Matrices, vectors, and scalar quantities are denoted by boldface uppercase,
boldface lowercase, and lightface letters, respectively. The symbols C and I represent
the complex filed and the identity matrix. For a matrix X, (X)−1, (X)T , and (X)H denote
the inverse, transpose and conjugate transpose of X, respectively. ‖ • ‖2, ‖ • ‖2,0, and
‖ • ‖F denote the `2, `2,0 and Frobenius norms, respectively.diag(x) denotes a diagonal
matrix whose diagonal element is x. ⊗ stands for the kronecker product. 〈•〉 denotes
the expectation.

2. Signal Model and Bayesian Model
2.1. Signal Model

The system under consideration is a side-looking airborne-phased array radar with
a uniform linear array (ULA), which consists of N elements spaced at half a wavelength.
The radar transmits M pulses at a constant pulse repetition frequency (PRF) in a coherent
processing interval (CPI). Ignoring the range ambiguity, the received space-time signal is
modeled as

x = xc + xt + n

=
Nc
∑

i=1
αis( fd,i, fs,i)+αtat + n

(1)
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where xc is the clutter component; Nc denotes the number of clutter patches for each range
cell; xt stands for the target component; n denotes the complex white Gaussian noise; fd,i
and fs,i are the normalized Doppler frequency and normalized spatial frequency; αt and αi
are the complex amplitude of the target and the i-th clutter patch, respectively; at represents
the space-time steering vector of the target and s( fd,i, fs,i) is the space-time steering vector
of the clutter with the form

s( fd,i, fs,i) = st( fd,i)⊗ ss( fs,i) (2)

where st( fd,i) and ss( fs,i) are the temporal steering vector and spatial steering vector

st( fd,i) = [1, exp(j2π fd,i), · · · , exp(j2π(M− 1) fd,i)]
T (3)

ss( fs,i) = [1, exp(j2π fs,i), · · · , exp(j2π(N − 1) fs,i)]
T (4)

The optimum weight of the STAP filter is obtained from the problem,{
min

w
wHRc+nw

s.t. wHat = 1
. (5)

The optimum weight of the STAP filter can be acquired by

wopt =
R−1

c+nat

aH
t R−1

c+nat
. (6)

This assumes that the clutter and noise components are mutually uncorrelated. Then,
the clutter plus noise covariance matrix (CNCM) can be written as

Rc+n = Rc + Rn
=
〈
xxH〉+ σ2I

(7)

where Rc ∈ CMN×MN and Rn ∈ CMN×MN represent the CCM and noise covariance matrix
and σ2 is the power of the noise.

For the SR-STAP algorithms, the angle-Doppler plane is uniformly discretized into
K = NsNd grids. Here, Ns = ρsN and Nd = ρd M are the number of angle bins, and Doppler
bins, respectively. The received signal X ∈ CNM×L from L IID training samples can be
written as

X = ΦA + N (8)

where Φ = [s1, s2 · · · , sK] ∈ CMN×K is the dictionary matrix, A = [α1, α2, · · · , αL] ∈ CK×L

denotes the sparse coefficient matrix, and N = [n1, n2, · · · , nL] ∈ CMN×L represents the
noise matrix.

The angle-Doppler profile can be estimated by solving the following problem:

A = arg min
A
‖A‖2,0 s.t.‖X−ΦA‖2

F ≤ ε (9)

where ε is the noise error tolerance. Thus, the CNCM can be estimated by

~
Rc+n =

1
L

L

∑
l=1

Φdiag(α2
l )Φ

H + σ2IMN . (10)
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2.2. Bayesian Model

From a Bayesian perspective, noise is assumed to be a zero-mean complex of Gaussian
distribution. Then, the complex Gaussian likelihood for the X can be modeled as

p
(

X
∣∣∣A, σ2

)
=

L

∏
l=1
CN

(
xl

∣∣∣Φαl , δ−1IMN

)
(11)

where δ = σ−2 is the noise precision. According to the conjugate prior principle [38], the δ
follows a Gamma distribution,

p(δ) = Gamma(δ|c, d ) (12)

where Gamma(δ|c, d ) = dc

γ(c) δc−1 exp(−dδ), γ(c) is the Gamma function and c and d repre-
sent the shape parameter and scale parameter.

To model the sparse coefficient, a complex Gaussian prior is employed first for each
column of A

p(αl |λ ) =
K

∏
k=1
CN

(
ak,l

∣∣∣0, λ−1
k

)
(13)

where λ = [λ1, · · · , λk, · · · , λK]
T . A Gamma prior is assigned on the hyper-parameter λk

p(λk) = Gamma(λk|a, b ) (14)

In a word, the Bayesian model of the received signal has been established. Figure 1
shows the corresponding graphical model. Each node represents a conditional probability density.
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3. Proposed Algorithm

In this section, a VBI-based STAP algorithm is derived for the MMV case. Then, a fast
iterative structure is proposed to improve the computational efficiency of M-VBI-STAP.

3.1. VBI Algorithm

The set of hiding variables for the Bayesian model denotes Ω = [A, λ, δ]. The marginal
likelihood function p(X) needs to be calculated to obtain the closed form of the posterior
distribution p(Ω |X ). Since p(X) is intractable, it can be decomposed as

ln p(X) = L(q) +KL(q|p ) (15)

with

L(q) =
∫

q(Ω) ln
(

p(X, Ω)

q(Ω)

)
dΩ (16)

and

KL(q|p ) = −
∫

q(Ω) ln
(

p(Ω |X )

q(Ω)

)
dΩ (17)
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where q(Ω) denotes a variational distribution, L(q) is the lower bound of ln p(X), and
KL(q|p ) represents the Kullback–Leibler divergence between the p(Ω |X ) and q(Ω) regu-
larization parameters. The VBI algorithm approximates the posterior distribution using the
factorized variable distribution. Assuming the variables are independent of each other, the
factorized variable distribution can be expressed as

q(Ω) = q(X)q(λ)q(δ). (18)

Maximizing L(q), the optimal factorized variable distribution is

ln q∗(Ω) = 〈ln p(X, Ω)〉q(Ω\Ωi)
+const (19)

where Ω\Ωi means removing Ωi from Ω, and

p(X, Ω) = p(X|A , λ, δ)p(A |λ )p(λ)p(δ) (20)

Combining Equations (19) and (20), the following gives the iterative update procedure
of the variational parameters:

(1) update A

ln q∗(A) = 〈ln p(X |A , λ, δ) + ln p(A |λ )〉q(Ω\X) + const

= −δ
L
∑

l=1
‖xl −Φαl‖2

2 +
L
∑

l=1
αH

l diag(λ)αl + const
(21)

It can be found that q∗(A) obeys the Gaussian distribution

q∗(A) =
L

∏
l=1
CN (αl |µl , Σ ) (22)

where
µl = δΣΦHxl (23)

Σ = diag(λ)− diag(λ)ΦH
(

δIMN + Φdiag(λ)ΦH
)−1

Φdiag(λ) (24)

(2) Update λ

ln q∗(λ) = 〈ln p(A |λ ) + ln p(λ)〉q(Ω\λ)+const

=
K
∑

k=1

[
(a + L− 1) ln λk −

(
b +

L
∑

l=1

〈
ak,laH

k,l

〉)
λk

]
(25)

From Equation (25), q∗(λ) follows Gamma distribution and λk can be obtained by

λk =
a + L

b +
L
∑

l=1

〈
ak,laH

k,l

〉 (26)

where
〈

ak,laH
k,l

〉
= µ2

k,l + Σk,k, µk,l is the k-th element of µl and Σk,k denotes the k-th main
diagonal element of Σ.

(3) Update δ:

ln q∗(δ) = 〈ln ln p(X|A , λ, δ) + ln p(δ)〉q(Ω\δ)+const

= (MNL + c− 1) ln δ−
(〈

L
∑

l=1
‖xl −Φαl‖2

2

〉
+ d
)

δ
(27)
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Then, the result of δ is

δ =
MNL + c

‖X−Φµ‖2
F + trace(ΣΦHΦ) + d

(28)

When the maximum number of iterations or the predefined stop condition is reached,
the iterative procedure is terminated. Finally, the CNCM can be estimated by

~
Rc+n =

1
L

L

∑
l=1

K

∑
k=1
‖µk,l‖2sksH

k + σ2IMN . (29)

For clarification, the steps of the M-VBI-STAP algorithm are described in Algorithm 1.

Algorithm 1: Pseudocode of the M-VBI.

step 1: Input: data X and dictionary Φ;
step 2: Initialize: a = b = c = d = 10−6 , λ(0) = 1;
step 3: While if it does not converge:

1. Calculate µl , and Σ by Equations (23) and (24);
2. Calculate λ by Equation (26);
3. Calculate δ by Equation (28);
End

step 4: Obtain CNCM
~
Rc+n by Equation (29);

step 5: Output: the STAP weight.

3.2. Variational Fast Solution

In a previous subsection, the updated criteria for the variational parameters were
derived. However, the real-time performance of the algorithm is also crucial due to the
matrix inverse operation in Equation (24). In addition, the overcomplete dictionaries used
in the traditional SR-STAP algorithms also affect the computational efficiency. Here, a
fast algorithm to reduce the computational complexity is introduced by analyzing the
behavior of the distribution q∗(λ). The high dimensional matrix inverse operation and a
full dictionary are not needed in the fast algorithm.

The µ2
k,l + Σk,k in Equation (26) can be rewritten as eH

k
(
µlµ

H
l + Σ

)
ek, where ek is the

k-th column of the unit matrix with the dimension K. By noting µlµ
H
l = δ2ΣΦHxlxH

l ΦΣH

and diag(λ) =
K
∑

k=1
λkekeH

k , Equation (24) is equivalent to

Σ =

(
δΦHΦ + ∑

j 6=k
λkekeH

k + λjejeH
j

)−1

= Σj −
ΣjejeH

j Σj

λ−1
j +eH

j Σjej

(30)

where the Woodbury Matrix Identity is used in the second expression, and

Σj =

(
δΦHΦ + ∑

j 6=k
λkekeH

k

)−1

.

Defining ς j = eH
j Σjej and ρj,l = δeH

j ΣjΦ
Hxl , the modified version of Equation (26) can

be obtained

λ
(t+1)
j =

(a + L)
(

1 + λ
(t)
j ς j

)
b +

L
∑

l=1

(
ρ2

j,l + ς j + λ
(t)
j ς2

j

) (31)
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where t is the number of iterations. For brevity, when setting a = b = 0, Equation (31)
can be seen as nonlinear maps λ

(t+1)
j = Γ

(
λ
(t)
j

)
. Calculating the stationary points of this

map [39], the optimal λ∗j is

λ∗j =


L
[

L
∑

l=1

(
ρ2

j,l − ς j

)]−1

,
L
∑

l=1

(
ρ2

j,l − ς j

)
> 0

∞,
L
∑

l=1

(
ρ2

j,l − ς j

)
≤ 0

(32)

This means that:

(1) If sj is excluded from the model and
L
∑

l=1

(
ρ2

j,l − ς j

)
> 0, add sj to the model;

(2) If sj is in the model and
L
∑

l=1

(
ρ2

j,l − ς j

)
> 0, re-estimate λj;

(3) If sj is in the model and
L
∑

l=1

(
ρ2

j,l − ς j

)
≤ 0, remove sj from the model.

To efficiently compute ς j and ρj,l , the dictionary and sparse coefficient are set as
Ψ(0) ∈ ∅, α(0) = 0. Thus, the Σj can be written as

Σj =

(
δΨHΨ + diag(α) δΨHsj

δsH
j Ψ δsH

j sj

)−1

(33)

Using the block matrix inversion, Equation (35) is equivalent to

Σj =

(
Σ + γjδ

2ΣΨHsjsH
j ΨΣ −γjδΣΨHsj

−γjδsH
j ΨΣ γj

)
(34)

where γj =
(

δsH
j sj − δ2sH

j ΨΣΨHsj

)−1
, Σ =

(
δΨHΨ + diag(α)

)−1 is the variance and the

mean is µl = δΣΨHxl .
Then, ς j and ρj,l can be updated as

ς j =
(

δsH
j sj − δ2sH

j ΨΣΨHsj

)−1
(35)

ρj,l = δς jsH
j xl − δ2ς jsH

j ΨΣΨHxl (36)

The computation complexity of sequential selecting all dictionary atoms is still large.
Inspired by the marginal likelihood maximization algorithm [40], a function f

(
λj
)

can be
constructed which has a unique maximum value for λj. Combining Equations (25) and (31),
we have

f
(
λj
)
= L ln λj −

L

∑
l=1

(
ρ2

j,l − ς j

)
λk (37)

In the (t + 1) iteration, we maximize the incremental f
(
λj
)

to select a candidate atom.
The serial number z is obtained by

z = arg max
j,1≤j≤Ns Nd

[
f
((

λ∗j

)(t+1)
)
− f

((
λ∗j

)(t))]
(38)

Utilizing Equation (38), the computational complexity decreases because the number
of the selected atoms is smaller than the size of dictionary. In summary, an iterative process
to update parameter λj can be obtained. The update formulas are detailed in Appendix A.
The pseudocode of the proposed M-F-VBI algorithm is described in Algorithm 2.
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Algorithm 2: Pseudocode of the M-F-VBI.

step 1: Input: data X and dictionary Φ;
step 2: Initialize: λ(0) = 0, Ψ(0) = ∅, and E0 = I;
step 3: While, if it does not converge:

1. Calculate all λ∗j , ∀j by (31) and choose the atomic index by (38);

2. If sj is in the model and
L
∑

l=1

(
ρ2

j,l − ς j

)
≤ 0, use (44)–(47) to update parameters; If sj is in

the model and
L
∑

l=1

(
ρ2

j,l − ς j

)
> 0, use (48)–(51) to update parameters; If sj is excluded from the

model and
L
∑

l=1

(
ρ2

j,l − ς j

)
> 0, use (53)–(56) to update parameters.

3. Update δ by (28).
End

step 4: Obtain CNCM
~
Rc+n by (29);

step 5: Output: the STAP weight.

4. Computational Complexity Analysis

The computational complexity of the proposed algorithm is investigated via the
number of complex multiplications, and the lower-order terms of the multiplication are
omitted. In the proposed M-FVBI-STAP algorithm, the computational complexity is related
to the dimension of Ψ ∈ CMN×P. P is the number of selected atoms that is assumed to be
twice the rank of the clutter. The most computational part of M-VBI-STAP is Equation (24).
Table 1 shows the computational complexity of different approaches. TSBL, TFOCUSS, TVBI
and TFVBI represent the number of iterations of M-FOCUSS-STAP, M-SBL-STAP [24], M-
VBI-STAP and M-FVBI-STAP. The results are plotted in Figure 2. As the number of system
DOFs increases, it is observed that the computational complexity of the M-VBI-STAP is
lower than M-SBL-STAP and M-FOCUSS-STAP. Compared to M-VBI-STAP, M-FVBI-STAP
can improve computational efficiency.

Table 1. Computational complexity.

Algorithm Computational Load

M-SBL o
((

(MN)3 + 2K(MN)2 + K2 MN + KMNL
)

TSBL

)
M-FOCUSS o

((
(MN)3 + 2(MN)2K + MNLK

)
TFOCUSS

)
M-VBI o

((
(MN)3 + 2K(MN)2 + K2 MN + KMNL

)
TVBI

)
M-FVBI o((MNK + MNL + 4MNKP + MNLP)TFVBI)
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5. Numerical Experiments
5.1. Simulated Data

In this section, numerical experiments are conducted to illustrate the STAP and target
detection performance of the proposed algorithm on simulated data. The main parameters
of the simulations are listed in Table 2 and ρs = ρd = 5. For comparison, M-SBL-STAP
and M-FOCUSS-STAP are presented. In addition, the optimal STAP with known CNCM
and diagonal loading SMI-STAP (LSMI-STAP) are also included. The results are averaged
over 100 Monte Carlo trials, and the number of training samples used in all experiments is
ten. To measure the performance of clutter suppression, the improvement factor (IF) and
signal-to-interference plus noise ratio (SINR) loss are used, which are denoted as

IF =

∣∣wHat
∣∣

wHRc+nw
tr(Rc+n)

aH
t at

(39)

LSINR =
σ2

MN

∣∣wHat
∣∣2

wHRc+nw
(40)

Table 2. Parameters of radar system.

Parameter Value Unit

Number of elements 8 /
Number of pulses 8 /

Wavelength 0.3 m
Bandwidth 2.5 MHz

Height of platform 150 m/s
Velocity of platform 9000 m

Pulse repetition frequency (PRF) 2000 Hz
Clutter to noise ratio (CNR) 40 dB

The STAP performance in terms of Capon spectra is first investigated. Figure 3a
plots the optimal spectrum with known CNCM. From Figure 3b–f, it can be noted that the
estimation results of the proposed M-FVBI, M-VBI algorithm, and M-SBL-STAP are close to
the optimal spectrum. In addition, the spectra of M-FOCUSS-STAP have an extension in
the main-lobe region. It can also be seen that the spectrum is inaccurate when estimated
by LSMI-STAP due to the lack of training samples. Figure 4 plots the Capon spectra with
gain–phase (GP) error, which are set as 0.05 and 2◦. Compared to Figure 3a, it can be seen
that the results of the proposed M-FVBI, M-VBI algorithm, and M-SBL-STAP are close to
the optimal spectrum.
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Then, the IF curves of different approaches against the normalized Doppler frequency
in the main beam direction are presented in Figure 5. It is shown in Figure 5 that M-
FVBI-STAP, M-VBI-STAP, and M-SBL-STAP have a similar performance, which is near
the optimal performance. In the main-lobe area, the curves of the M-FOCUSS-STAP are
broader than others.

For the next experiment, the average SINR loss curves versus the number of training
samples are plotted in Figure 6, which were calculated as the mean SINR loss curves for
fd = (−0.5,−0.1) ∪ (0.1, 0.5). It can be seen from Figure 6 that all the approaches achieved
a relatively stable performance when the number of training samples was more than three,
and the stable performance of M-FOCUSS-STAP was worse than others. The M-VBI-STAP
and M-FVBI-STAP had the best performance.

For a clearer illustration, the target detection performance of the proposed algorithm
was accessed. According to [41], the probability of detection (PD) versus the probability of
false alarm (PFA) is defined as

PD = PFA
1

1+ξ (41)

where ξ is the output signal-to-clutter-plus-noise ratio (SCNR). We set the target located in
the main beam direction.
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Figure 5. IF against the normalized Doppler frequency.

As shown in Figure 7, the receiver operating characteristics (ROC) (i.e., PD versus PFA)
are plotted with the target signal-to-noise ratio (SNR), 0 dB and −4 dB, respectively. The
normalized Doppler frequency is fd = 0.1. It can be seen that the detection performances
of the M-SBL-STAP, M-VBI-STAP, and M-FVBI-STAP are close to optimal. Another notable
result is that the detection performances increased with the growth of the SNR value. The
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ROC results with fd = 0.3 are shown in Figure 8. The detection performance increased
compared to fd = 0.1. In both cases, M-VBI-STAP and M-FVBI-STAP are considered optimal.
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Finally, the average running time for different cases is summarized in Table 3. The
experiments were conducted by MATLAB 2017b on the computer equipped with Intel(R)
Xeon(R) E5-2620 CPU @ 2.10Hz 2.10Hz and 64G RAM. It was found that the average
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running time of M-VBI-STAP was less than M-SBL-STAP. M-FVBI-STAP significantly
accelerated the average running time.

Table 3. The average running time (second).

Algorithms Running Time

M-SBL 34.88 s
M-FOCUSS 11.16 s

M-VBI 3.70 s
M-FVBI 0.05 s

5.2. Measured Data

In this subsection, the performance of the proposed algorithm is accessed with publicly
available data from Multi-Channel Airborne Radar Measurement (MCARM) data [42]. The
airborne radar of the MCARM can be viewed as side looking. In CPI data, the number
of coherent pluses, array elements, and range cells are 128, 22, and 630, respectively. For
12 pluses, data from the first space channels are selected for experimental analysis. There
is a target added in the 320th range cell. Since the first 150 range cells cannot be used,
the clutter power spectrum shown in Figure 9 was estimated using ten training samples
selected from ye 151st range cell to the 630th range cell. It can be seen that all the approaches
can recover the clutter ridge. The spectra of the M-FOCUSS-STAP have an extension in
the main-lobe region. In addition, M-FVBI-STAP estimated CNCM by selecting the atoms.
Thus, the clutter ridge of the M-FVBI-STAP is concentrated on a diagonal line.
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M-VBI-STAP; (d) Capon spectrum estimated by the M-FVBI-STAP.
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The STAP output power from the 280th range cell to the 360th range cell is depicted in
Figure 10. The generalized inner product (GIP) method [43] was used to select ten range
cells of the twenty range cells around the CUT as the training samples. Additionally, four
range cells on each side of the CUT were chosen as the guard cells. It can be observed that
all algorithms clearly detected the target. To further illustrate the detection performance,
the output signal to clutter plus noise ratio (SCNR) was calculated at the target range cell.
The result corresponding to the algorithms is listed in Table 4. The proposed algorithm
clearly had the best detection performance of all approaches.
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Table 4. The output SCNR (dB).

Algorithms Results

M-SBL 16.43 dB
M-FOCUSS 16.89 dB

M-VBI 18.86 dB
M-FVBI 19.58 dB

6. Conclusions

In this paper, the framework of VBI into the STAP algorithm has been developed,
which can improve the convergence speed compared to SBL. Due to the heavy compu-
tational burden caused by the matrix inverse operation, a fast iterative algorithm was
derived. The numerical results of the simulated data and measured data demonstrate that
the proposed algorithm has superior STAP and target detection performance and can effec-
tively reduce computational complexity. VBI still belongs to SR algorithms, which require
dictionary construction. When the grid mismatch exists, the performance of VBI decreases.
The direction for future research is mitigating the grid mismatch effect on SR-STAP.
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Appendix A

(1) Update formulas for removing the atoms.

We define the Σj as

Σj =

(
δΨH

j
Ψj + diag(αj) δΨH

j
sj

δsH
j Ψj δsH

j sj

)−1

(A1)

where Ψj and αj are the dictionary and sparse coefficient by removing sj and λj. Using the
block matrix inversion, Equation (A5) is equivalent to

Σj =

~
Σ + γjδ

2
~
ΣΨH

j
sjsH

j Ψj

~
Σ −γjδ

~
ΣΨH

j
sj

−γjδsH
j Ψj

~
Σ γj

 (A2)

where γj =

(
δsH

j sj − δ2sH
j Ψj

~
ΣΨH

j
sj

)−1
,

~
Σ represents the variance of the current model,

~
Σ =

(
δΨH

j
Ψj + diag

(
αj

))−1

=

[
Σ−

ΣejeH
j Σ

eH
j Σej

]
jj

(A3)

and the mean of the model is

~
µl =

[
µl −

ΣejeH
j µl

eH
j Σej

]
j

(A4)

Then, ς j and ρj,l can be updated as

ς j =

(
δsH

j sj − δ2sH
j Ψj

~
ΣΨH

j sj

)−1
(A5)

ρj,l = δς jsH
j xl − δ2ς jsH

j Ψj

~
ΣΨH

j xl (A6)

(2) Update the formulas of re-estimating atoms.

The variance of the current model is

~
Σ = Σ− κΣejeH

j Σ (A7)

where κ =
λj−eH

j α

1+
(

eH
j Σej

)(
λj−eH

j α
) . The mean of the model is

~
µl = µl − κeH

j ΣejeH
j µl (A8)

Then, ς j and ρj,l can be updated as

ς j =

(
δsH

j sj − δ2sH
j Ψ

~
ΣΨHsj

)−1
(A9)

ρj,l = δς jsH
j xl − δ2ς jsH

j Ψ
~
ΣΨHxl (A10)
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(3) Update the formulas for adding atoms.

The variance of the current model can be defined as

~
Σ =

(
δΨHΨ + diag(α) δΨHsj

δsH
j Ψ δsH

j sj

)−1

(A11)

where sj /∈ Ψ. Using block matrix inversion, Equation (A5) is equivalent to

~
Σ =

(
Σ + γjδ

2ΣΨHsjsH
j ΨΣ −γjδΣΨHsj

−γjδsH
j ΨΣ γj

)
(A12)

where γj =
(

δsH
j sj + λj − δ2sH

j ΨΣΨHsj

)−1
. The mean of the model is

~
µl = δ

~
ΣΨH

j xl (A13)

where Ψj =
[
Ψ, sj

]
. Then, ς j and ρj,l can be updated as

ς j =

(
δsH

j sj + λj − δ2sH
j Ψj

~
ΣΨH

j sj

)−1
(A14)

ρj,l = δς jsH
j xl − δ2ς jsH

j Ψj
~
ΣΨH

j xl (A15)
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