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Abstract: The expansion of impervious surface area (ISA) in megacities of China often leads to
land surface temperature (LST) aggregation effects, which affect living environments by impacting
thermal comfort levels, thus becoming an issue of public concern. However, from an urban–rural
synchronous comparison perspective, the study of LST responses to ISA changes is still lacking
in the central coastal megalopolises of China. To solve this issue, a collaborative methodology of
artificial digitization—fully constrained least squares mixed pixel decomposition—split-window
algorithm—PCACA model was established for Qingdao using land use dataset and remote sensing
images. The conclusions are below. Long time series of land use monitoring indicated that the
expansion ratios of urban and rural areas were 131.29% and 43.42% in the past 50 years (i.e., from
1970 to 2020). Within urban and rural areas, a synchronous ISA increase was observed, with ratios of
+9.14% (140.55 km2) and +7.94% (28.04 km2), respectively. Higher ratios and area changes were found
in the urban regions, and a similar ISA change pattern in both urban and rural regions was captured
by the ISA horizontal epitaxial expansion and vertical density enhancement. Further, the horizontal
gradient effect displayed that the mean LSTs were 28.75 ◦C, 29.77 ◦C and 31.91 ◦C in the urban areas
and 28.73 ◦C, 29.66 ◦C and 31.65 ◦C in the rural areas in low-, medium-, and high-density ISAs. The
vertical density effect showed that the LST change was 1.02 ◦C and 2.14 ◦C in the urban areas but
0.93 ◦C and 1.99 ◦C in the rural areas during the ISA-density transition from low- to medium- and
from medium- to high-density, respectively. Potential surface thermal indicators were assessed, and
the urban regions displayed higher sensible heat flux (280.13 W/m2) compared to the rural regions
(i.e., 274.76 W/m2). The mechanism effect of the ISA changes on LST in the urban and rural regions
was revealed. These findings form a new comparative perspective of the urban–rural synchronous
change in the central coastal megalopolis of China and can provide a practical reference for relevant
studies.

Keywords: land use; impervious surface area; land surface temperature; urban–rural regions;
northern China

1. Introduction

Monitoring the impervious surface area patterns and exploring their response to land sur-
face temperature is always a hot topic in the academic field. Since the 21st century, impervious
surface area (ISA) has displayed a large-scale increasing trend throughout China [1] under the
driving forces of rapid urban–rural expansion [2,3], industrial development [4], population
growth [5] and the continuous improvement of residents’ living standards [6]. ISAs are areas
where rainwater cannot penetrate and include roads, city squares, and building roofs, etc. [7,8].
These areas clearly impact the distribution of land surface radiation and the energy balance [9],
which directly influence comfortable living environments and receive widespread attention
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worldwide. Thus, ISA has become an essential indicator for land use transformation from
natural land coverage to artificial surfaces at different spatial and temporal scales [10]. In
particular, the ISA causes direct or indirect environmental influences on local and regional
surface runoff, water quality [11], energy balance, and biodiversity [12,13]. Meanwhile, an
obvious effect of the expansion pattern of ISA is the increasing land surface temperature (LST)
effect due to the inherent attributes of impervious surface area such as low albedo, large heat
capacity, and weak evaporation and transpiration [14,15]. LST plays an important role in the
exchange of matter and energy between the low boundary of the atmosphere [16], local ocean
current circulation, and climate change [17–19] and it especially impacts the near-surface
ecological environment pattern, hydropower energy consumption, and residents’ personal
health [20–23]. Therefore, the clarification of the spatiotemporal change in ISA and its LST
response characteristics is needed to reasonably lay out regional living space, production
space, and ecological space to improve ecological service functions and the quality of human
living environments.

With the development of high-resolution images and the increasing maturity of remote
sensing processing technology, the mapping of ISAs from remote sensing images has
received more attention and has become a mainstream method [24,25]. Generally, high-
resolution remote sensing images can achieve high spatial resolution mapping of ISAs,
but they are not widely popularized due to the difficulty of obtaining data sources, the
discontinuity of time, and the expense of purchasing images and hiring professionals [7].
Automatic classification has typically had difficulty in achieving high-accuracy results from
high-resolution remote sensing images because the same land-type object may display
different spectral characteristics and the same spectral characteristics may contain different
land-type objects [4,6]. Medium-resolution remote sensing images, such as those from the
Landsat program, which feature suitable spectral properties, free download, and good
accuracy, are widely used for ISA mapping [6]. For the spatial mapping methodology of
ISA, scholars have conducted extensive discussions [26,27]. The vegetation-impervious
surface-soil (V-I-S) model was proposed first [28,29]; it stated that the land surface was
composed of four land-cover components, including vegetation, bare soil, ISA, and water
bodies. This linear decomposition approach was predicted to resolve Landsat image
resolution issues, and a method was developed to assign image pixels to different land
type components (i.e., subpixel classification) [12,28]. Then, a combined method that used
the linear spectral mixture analysis model (LSMA) and the V-I-S model was established
to obtain the ISA in the Columbus, Ohio region of the United States [12,30]. Subsequent
studies also confirmed that the combination of LSMA and V-I-S models easily obtained
ISA at local, regional, and even global scales [31]. This method became widely used for
spatiotemporal mapping and monitoring the dynamic change in the ISA.

To study the LST and energy mechanisms, domestic and foreign scholars have con-
ducted extensive research on thermal infrared remote sensing data retrieved from Landsat
images. The single window algorithm model, as a local and regional surface temperature
retrieval technique for Landsat Thematic Mapper (TM) images, has been widely used
with high accuracy [32]. Subsequently, to obtain a more accurate LST spatial pattern, the
single window model was upgraded to the split algorithm model method in response to
the emergence of Landsat 8/9 Operational Land Imager (OLI) satellite imagery, which
had two thermal infrared bands [33,34]. Furthermore, the pixel component arranging and
component algorithm (PCACA) model can investigate the mechanisms of temperature
and energy changes on the land surface [35]. Through the PCACA model, the spatial
coefficients of sensible heat flux and latent heat flux were obtained; these were input into
the surface radiation energy balance model to generate mechanism indicators such as latent
heat flux, sensible heat flux, soil heat flux, and net radiation [35]. This approach provided a
basis for the exploration of LST change and its energy mechanisms.
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Spatiotemporal changes in ISA alter the land temperature and energy level, affecting
the comfort level of the living environment and thus creating an issue of public con-
cern. Although relevant studies have been conducted in some regions, the studies on the
comparison of the synchronous ISA change in the urban–rural areas and their response
characteristics to LST mechanisms are still lacking in the central coastal megalopolises
of China. This situation limits the exploration of the relationship between regional land
use changes and the thermal comfort level of living environments. To address this issue,
we need to create urban and rural boundaries, retrieve ISA density data, explore the tem-
perature effect of different ISA densities, and reveal mechanisms. Therefore, the aims of
this study are to (1) provide long time series of urban–rural land change monitoring from
1970 to 2020 to understand the historical process and heterogeneity of urban–rural regions
in the coastal areas of central China; (2) conduct land-cover mapping of the ISA compo-
nents and compare their changes from urban–rural synchronous change perspective and
(3) characterize the spatiotemporal heterogeneity of LST and further investigate tempera-
ture responses under different densities in urban and rural ISAs. In addition, the mechanism
by which impervious surface areas affect temperature is also revealed. We hope that the
analysis of land use, ISA, LST, and energy mechanisms from a comparative perspective of
the urban–rural synchronous change in the central coastal areas of China in this study can
provide a practical reference for related studies.

2. Materials and Methods
2.1. Study Area

Qingdao is in the coastal area of central China, with a longitude ranging from 119◦30′

to 121◦00′E and a latitude ranging from 35◦35′ to 37◦09′N (Figure 1a,b). Qingdao has
played an important role nationally in the development of the modern marine industry; it
is an international shipping hub in northeast Asia, and a leading region for economic and
trade cooperation between China, Japan, and South Korea. At the end of 2022, the resident
population of Qingdao was 10.34 million, with an urbanization rate of 77.32%. The gross
domestic product was 1492.075 billion yuan, and the structure of the primary, secondary,
and tertiary industries was 3.2%, 34.8%, and 62.0%, respectively. This region has a northern
temperate monsoon climate. The digital elevation model (DEM) shows that Qingdao is
high in the east and low in the west (Figure 1c). The high terrain regions in the east are
mainly mountainous, while residential regions are concentrated in the west, which can
be recognized in the remote sensing images shown in Figure 1d. There are 33 large rivers
with a drainage area of over 100 km2, which are divided into three major water systems,
including the Dagu River, Beijiaolai River and coastal areas. The soil mainly consists of five
soil types: brown soil, sandy ginger black soil, tidal soil, brown soil, and saline soil. This
study focuses on the central city of Qingdao, which includes the Shinan, Shibei, Licang,
Laoshan and Chengyang Districts.



Remote Sens. 2023, 15, 4265 4 of 23

Figure 1. Geographic location of the study area (i.e., the red region). (a) The global location of the
study area, (b) The location of the study area along the central coast of China, (c) The DEM and the
distribution of administrative divisions, and (d) Remote sensing images from Landsat Operational
Land Imager synthesized by false colors.

2.2. Flowchart of This Study

The technical process of this study was shown in the following Figure 2. Firstly, this
study conducted the long time series of urban–rural change monitoring and its regional
differences through 50 years from 1970 to 2020, to understand the historical process and
heterogeneity of urban–rural regions in the coastal areas of China; to obtain the latest land
use mapping, the human–computer interactive interpretation method of remotely sensed
information to interpret the Landsat digital images was applied to establish new land use
maps in 2020 using the national land use/cover database of China in 2015 and remote
sensing images. After producing the land use data in 2020, the accuracy evaluation was
conducted using the method of a layered random sampling scheme. The obtained land
use accuracies were both over 92%. The long time series of spatiotemporal features of
urban–rural differences were compared. Secondly, we conducted the land-cover mapping
of urban–rural ISA components and compared the changes in their differences. For gener-
ating the ISA within the urban and rural areas, the Vegetation—Impervious surface—Soil
(V-I-S) model was used to obtain the optimal endmembers of the different types of land
covers from remote sensing images, which were input with the least squares mixed pixel
decomposition model to generate the densities of high albedo objects, low albedo objects,
vegetation objects and bare soil objects. These four densities, as well as other indexes, were
used to generate the land covers of impervious surface area, vegetation, bare soil, and
water bodies using a decision tree classifier. The remaining few unclassified areas were
classified through unsupervised classification and manual recognition. The cover of ISA
types was then extracted and superimposed to the densities of high albedo objects and low
albedo objects to generate the ISA component data. Using the urban–rural boundaries, the
ISA in urban–rural areas were clipped and analyzed. Thirdly, a split window algorithm
was used to generate a surface temperature pattern. The surface radiation energy balance
model, PCACA model and TVDI model were then used to obtain variously spatialized
thermal comfort indicators, including the sensible heat flux, latent heat flux, etc. Then, the
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urban–rural temperature effect of ISA was revealed as well as its surface thermal attribute
mechanism.

Figure 2. The flowchart of this study.

2.3. Production of Land-Use Data in 2020 and Extraction of Urban–Rural Boundaries from
1970 to 2020
2.3.1. Land Use Data Acquisition

Land-cover data of the study area in 1970, 1980, 1990, 1995, 2000, 2005, 2010 and 2015
were sourced from the land-use/cover change (LUCC) dataset of the national resources
and environment remote sensing spatiotemporal information platform of the Chinese
Academy of Sciences. These data had a comprehensive evaluation accuracy of over 90.00%
for first-class land type. The data format was a vector polygon file. Land data from 2015
were used to produce the land cover of the study area in 2020.

2.3.2. Land Classification System Description of Urban and Rural Areas

The land-use classification system in this study was consistent with the LUCC dataset
of the Chinese Academy of Sciences [36], including six first-level land categories of cropland,
woodland, grassland, construction land, water land, and unused land, accompanied by land
type codes of 10, 20, 30, 40, 50 and 60, respectively [37]. These six first-level categories were
further divided into 25 secondary categories. One advantage of this land data classification
system was that the construction land (i.e., code 50) was divided into three categories of
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urban land (i.e., code 51), rural land (i.e., code 52), and independent industrial and mining
land (i.e., code 53) [36,37], compared to most other land data classification systems that set
construction land as only one land category layer [38,39]. In the land data classification
system of the Chinese Academy of Sciences data, urban land refers to built-up areas in large,
medium, and small cities, as well as counties, and rural land refers to rural settlements that
are independent of urban land [37]. The urban and rural land boundaries of this dataset
achieved good results in many studies on land use and land use change monitoring [36,40].
In this study, urban and rural lands were used to analyze spatiotemporal changes and
further served as masks for urban and rural ISAs.

2.3.3. Remote Sensing Image Download and Data Preprocessing

To produce the land data for 2020, the Landsat images with good quality were filtered
from the USGS official website (http://glovis.usgs.gov/, accessed on 11 March 2022) to
avoid interference from bad pixels, stripes, clouds, and rain on the images. The time of
the images was set as summer (i.e., from July to September), which was conducive to
distinguishing different land-cover types in the Landsat images. The downloaded high-
quality images were input into the ENVI platform for spatial registration and band fusion
purposes. Gram–Schmidt pan sharpening algorithms fused the Landsat multispectral band
and panchromatic band, increasing the image resolution from 30 m to 15 m resolution. The
image adopted a false color synthesis method, as false color is commonly used for land
change monitoring and interpretation.

2.3.4. Digital Visualization and Acquisition of Urban–Rural Dynamic Land

The human–computer interactive interpretation method of remotely sensed informa-
tion to interpret the Landsat digital images was applied to establish a new land use map in
2020, using the land use/cover data in 2015 and Landsat images in 2020. The projection
and coordinates of land use data and remote sensing images were first set the same to
ensure spatial position matching. Then, taking the remote sensing images in the year 2020
as the first layer data on the ArcGIS platform, we superimposed the land-use vector data in
the year 2015 onto these images, and thus the land-use data was as the second layer data.
An attribute table named land 2020 was created in land use data for storing the required
2020 land cover type code. After that, the human–computer interactive interpretation tech-
nology was used to depict the land use in the year 2020, using the professional knowledge
of identifying color, brightness, and texture features for cropland, forest land, grassland,
water land, urban land, rural land, and other lands in the remote sensing images. When a
land cover type was identified on remote sensing images, A numerical code was assigned
to this land cover and was filled in the attribute table (i.e., land 2020). If the land cover type
was difficult to identify, online historical Google images and high-resolution satellites were
used as auxiliary reference data to identify this land type. We repeated this process until all
regions were interpreted through human-computer interaction. Then, the attribute table
(i.e., land 2020) recorded the codes for all 2020 land use types.

To ensure the quality of the land use data, we conducted data checks through different
persons. Dynamic land-use patches from 2015 to 2020 were first extracted through the
attribute Table 2015 and the attribute Table 2020. Then, the different professionals rechecked
whether the land code was correct or not using the Landsat images on the ArcGIS platform.
After that, a data quality accuracy evaluation was performed. The 2-m Google Image in the
study area was used as an accuracy evaluation image data source and was downloaded
through a paid and professional software platform (i.e., Bitmap). A hierarchical random
sampling method was used to obtain the confusion matrix. In this confusion matrix, the
producers’ accuracy and users’ accuracy of land use in 2020 were calculated, and further,
the comprehensive accuracy of the land use in 2020 was obtained with a value exceeding
90% in this study. This means that the data had good accuracy and could be used for
scientific investigation in this study.

http://glovis.usgs.gov/
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Then, the boundaries of the urban and rural land changes during the period of
2015–2020 were extracted from this study using the land use in the years 2015 and 2020.
Additionally, the urban–rural dynamic lands were also extracted from 1970 to 2015 from
the land-use/cover data of the Chinese Academy of Sciences using the land use in the years
1970, 1980, 1990, 1995, 2000, 2005, 2010 and 2015. Finally, the urban–rural dynamic lands in
the past 50 years from 1970 to 2020 were formed to conduct land change monitoring in this
study.

2.4. Establishment of the Impervious Surface Area Component in Urban–Rural Regions
2.4.1. Preprocessing of Remote Sensing Images and Obtaining the end Elements of
Different Land Types

All remote sensing images were first pre-processed through radiometric calibration
and atmospheric correction, which was then used to determine the accurate radiation value
at the sensor inlet and eliminate errors caused by atmospheric scattering, absorption, and
reflection. Then, a spectral fusion approach was applied to set the image resolution to 15 m.
Minimum noise fraction rotation (MNF) concentrated the spectral features of different land
surface types in the first three bands of the remote sensing images. Afterward, the V-I-S
model was used to select four types of end elements: vegetation, bare soil, low-reflection
objects, and high-reflection objects. The selection of spectral end-elements was conducted
via a dynamic optimization process. In this process, to obtain accurate and pure end-
elements of these four types of objects, high-resolution Google satellite images were used
for interpretation and sampling to obtain the surface area of different objects. At each
sampling region, we manually drew the land-use area within each 15 m square (i.e., a
sampling grid) and used it as a reference area for the linear decomposition result. If the areas
of the sampling grids from the high-precision image and from the decomposed result were
basically consistent, good end-elements were obtained for one object. Then, we obtained
the end-elements of the other three objects. Otherwise, if the areas of sampling grids from
the high-precision image and from the decomposed result had obvious differences, the
end-elements were rescreened until the areas of the two were basically consistent. By
continuously optimizing the end-elements and comparing the results with samplings,
the good end-elements of vegetation, bare soil, low-reflection objects, and high-reflection
objects were obtained, which were then input into the decomposition model to obtain the
component maps of these four objects.

2.4.2. Fully Constrained Least Squares Mixed Pixel Decomposition Model

For the selection of the decomposition models, although the ordinary linear spectral
decomposition models can achieve land use decomposition, it was difficult to ensure that
their output components were in a numerical range between 0 and 1. A fully constrained
least squares mixed pixel decomposition (FCLS) model was applied for the linear decom-
position of the remote sensing images to obtain the component maps of vegetation, bare
soil, low-reflection objects, and high-reflection objects in this study. The advantage of
this approach was that the digital number (DN) values of the abundance maps for each
end-element within each pixel can ensure its range from 0 to 1, ensuring a high accuracy.
The principle of this model can be found in Equation (1) [41,42].

Riλ =
n

∑
k=1

fkiCkλ + εiλ (1)

where Riλ is the albedo for the i-th pixel in band λ, fki is the ratio of the area occupied by
the k-th basic component in the i-th pixel, Ckλ is the albedo for the k-th basic component in
band λ, and εiλ is the residual value.

2.4.3. Obtaining the Impervious Surface Area Component in Urban and Rural Regions

Through the FCLS model, four land-cover components were obtained, including
the vegetation component, the bare soil component, the high-albedo component and
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the low-albedo component. In general, the ISA component was calculated using spatial
analysis technology to calculate the sum of the high-albedo component and the low-albedo
component. However, the results often contained interference from low-albedo objects
(i.e., water bodies) and high-albedo objects (i.e., exposed soil). These interferences had
to be eliminated before calculating the sum of the low- and high-albedo objects. The
improved modified normalized water index (MNDWI) was applied and was proven to
be an effective method for extracting water bodies from remote sensing images, and the
threshold of the MNDWI (Equation (2)) was set to zero to exclude water body pixels from
low-albedo objects. Similarly, the soil index was used to exclude bare soil pixels from
high-albedo objects. Afterward, the spatial summation of the low- and high-albedo objects
was performed to obtain the ISA. Finally, the urban and rural land boundaries extracted
from the land-use vector data were used to clip the ISA component, thereby obtaining the
ISA component within the urban and rural regions for mapping and spatiotemporal feature
analysis.

MNDWI =(ρgreen − ρMIR)/(ρgreen + ρMIR) (2)

where ρgreen is a green band such as ETM band 2 and OLI band 3, and ρMIR is a middle
infrared band such as ETM+ band 5 and OLI band 6.

2.5. Land Surface Temperature Retrieval and Calculation of Corresponding Energy Mechanisms

The remote sensing images used for LST retrieval came from the USGS official website.
The screened images were captured in summer, along with sunny, no-cloud and no-wind
weather conditions, which helped reduce systematic errors and obtain accurate LST results.
The split algorithm model was applied in this study to obtain the LST. The principles of
LST retrieval are displayed below.

Ts = B0 + B1T10 − B2T11 (3)

B0 = [D11(1− C10 − D10)/(D11C10 − D10C11)]α10−
[D10(1− C11 − D11)/(D11C10 − D10C11)]α11

(4)

B1 = 1 + D11/(D11C10 − D10C11)+[D 11(1−C 10D10)/(D 11C10−D10C11)]b11 (5)

B2 = D10/(D11C10 − D10C11) + [D10(1− C11 −D11)/(D11C10 − D10C11)]b11 (6)

Ci = εiτi(θ) (7)

Di = [1− τi(θ)][1 + (1− εi)τi(θ)] (8)

where Ts is the surface temperature,T10 and T11 are the brightness temperatures from Landsat
images, and B0, B1 and B2 are process indicators that can be calculated from Equations (3)–(5).
For C and D in Equations (3)–(5), which were obtained from Equations (6)–(8), ε and τ(θ) are
the surface emissivity and atmospheric transmittance, respectively. For more formulas and
parameters of LST retrieval, please refer to the research from Rozenstein’s study [43].

In addition to LST, this study calculated indicators of land surface energy mechanisms,
such as sensible heat flux, latent heat flux, soil heat flux, and net radiation, through the
radiation balance and energy balance equation. The core equation is as follows.

Rn − Gsoil = SF + LF (9)

where SF is sensible heat flux, LF is latent heat flux, Gsoil is soil heat flux and Rn is net
radiation [44].
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In this process, to obtain the sensible heat flux (SF) and latent heat flux (LF), the
parameters of net radiation (Rn) and soil heat flux (Gsoil) should be calculated. The Rn is
first calculated below (i.e., Equations (10–16)).

Rn = (1− α)Rsd + Rld − Rlu (10)

where α is albedo (see Equation (11)), Rsd is shortwave radiation (see Equation (12)), Rld
is downwelling longwave radiation (see Equation (13)), and Rlu is upwelling longwave
radiation (see Equation (14)).

α = 0.160band1 + 0.291band2 + 0.243band3 + 0.116band4 + 0.112band5
+0.081band7− 0.0015

(11)

Rsd = Gsc cos(θ)τ/(dr)2 (12)

Rld = εσTs
4 (13)

Rlu = εaσTa
4 (14)

where in Equations (11)–(14), band1, band2, band3, band4, band5, and band7 are the remote
sensing image bands; Gsc is solar constant with a value of 1367 (W/m2). θ is the solar
zenith angle and is that obtained from Modis imagery. τ is atmospheric transmittance
and dr is the distance between the sun and the earth, and τ and dr are obtained from the
Modis image; ε is surface emissivity, σ is the Stefan–Boltzmann constant, which equals
5.6704 × 10−8 wm−2 k−4, and the Ts is the land surface temperature (K); εa is the atmo-
sphere emissivity (see Equation (15)). σ is the Stefan–Boltzmann constant with a value of
5.6704 × 10−8 wm−2 k−4, and Ta is the mean atmosphere temperature (see Equation (16)).

εa = 1.08(Inτ)0.265 (15)

Ta = 16.0110 + 0.92621Tair (16)

where τ is atmospheric transmittance. Tair is the mean air temperature and is calculated
through the combination of meteorological stations, elevation data, and the “inverse dis-
tance weight” method.

For the calculation of soil heat flux, it is obtained from the Equation (17).

Gsoil = (Ts − 273.15)/α(0.0038α + 0.0074α2)(1− 0.98NDVI4)Rn (17)

where α is albedo, NDVI is vegetation normalization index, and Rn is net radiation.
After the calculation of Rn and Gsoil, the sensible heat flux (SF) and latent heat flux

(LF) are obtained from Equations (18) and (19).

SF = H/(Rn − Gsoil) (18)

LF = E/(Rn − Gsoil) (19)

where the H map is the ratio of sensible heat flux to available energy and the E map is the
ratio of latent heat flux to available energy, both indicators are generated by pixel compo-
nent arranging and component algorithm (PCACA) model and Temperature Vegetation
Dryness Index (TVDI) model.

3. Results
3.1. Analysis of Spatiotemporal Characteristics and Regional Differences in Urban and Rural Land
Use from 1970 to 2020
3.1.1. Analysis of the Quantity and Spatial Change Characteristics of Urban and
Rural Regions

The quantity of changes in urban and rural land showed a differential process in
the past 50 years. In the initial year (i.e., 1970), the total urban–rural land area was
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232.91 km2 (Figure 3), of which the urban and rural coverage areas were 158.90 km2 and
74.01 km2, respectively. Correspondingly, the ratios of these two land types were 68.22%
and 31.78%, respectively. Then, for urban land, rapid urbanization was monitored in the
past 50 years. The urban land area reached a total area of 367.52 km2 in the final year
(i.e., 2020), accompanied by an overall growth rate of 131.29%. From 1970 to 2020, the
fastest urban expansion occurred between 2000 and 2005. Meanwhile, rural land reached a
coverage area of 106.15 km2 during the 50 years, displaying a total growth rate of 43.42%.
This suggests that rural expansion accounted for 33.07% of the urban expansion in this
region. Furthermore, unlike the continuous expansion of urban land, the quantity of rural
land displayed a fluctuating feature of first rapidly increasing, then slightly decreasing,
and then steadily increasing.

Figure 3. Spatial land use change maps with a total of 50 years from 1970 to 2020.

For the spatial change patterns, in 1970, urban land was mainly distributed in the
southeast region of the study area, and the ratio of urban land to the entire region was
14.52%. To the west and south of the urban land was the ocean, which was very beneficial
for improving the climate comfort level of the living environment and attracting tourists for
sightseeing. After 1970, urban land underwent a continuous expansion process. The direc-
tion of expansion was to advance northwards due to the spatial constraints inherent to the
geographical location. In addition to the oceans in the western and southern regions, which
cannot undergo large-scale urban expansion, the Laoshan Mountains in the eastern region
hinder urban expansion. Therefore, large-scale urban expansion can extend only north-
wards, from the Shinan District to Shibei District and then to the Licang and Chengyang
Districts. During 1970–2020, the spatial pattern of the urban land gradually extended from
the southwest portion of the research area to the north, forming an expansion concept of
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the central axis, which divided the research area evenly and symmetrically on the west and
east sides.

Meanwhile, for the rural land, in 1970, the rural settlements were mainly distributed
in scattered points. Then, the rural land in the research area underwent a transition from
thatched houses to brick and tile houses. This has brought about a trend of rural settlements
expanding from the original residential areas to the surrounding areas, such as the spread
of cakes in rural regions. Rural settlements gradually expanded, and some villages were
already interconnected, forming large villages in 2020. However, villages that were closer
to urban land were engulfed by urban expansion and disappeared. Therefore, for land
use monitoring, the time series of urban–rural changes displayed that the expansion ratios
of urban and rural areas were 131.29% and 43.42% in the past 50 years, accompanied by
differentiated spatial patterns.

3.1.2. Analysis of the Differences in Urban–Rural Land Use in Different
Administrative Districts

The analysis of different administrative regions can further clarify the differences
in the original land type background and its change process of urban–rural land. In
1970, the maximum value of the ratio of urban land in the corresponding administrative
region occurred in Shibei District and Shinan District (Table 1), namely, 89.63% and 82.52%,
respectively. This implied that the entire area was essentially covered by urban land,
followed by the Licang District (i.e., 45.12%). Low values appeared in the Chengyang and
Laoshan Districts, and both regions were less than 10%.

Table 1. Statistics on the differences in the land area and ratio changing process of urban–rural
regions in different administrative districts during 1970–2020.

Year Index Unit
Chengyang

District
Laoshan
District

Licang
District

Shibei
District

Shinan
District

Urban Rural Urban Rural Urban Rural Urban Urban

1970
Area (km2) 22.80 52.09 14.56 19.18 42.24 2.75 56.16 23.14
Ratio (%) 4.35 9.94 3.77 4.97 45.12 2.94 89.63 82.52

1980
Area (km2) 22.93 52.30 15.68 19.21 44.39 2.78 56.51 23.98
Ratio (%) 4.38 9.98 4.07 4.98 47.41 2.97 90.18 85.51

1990
Area (km2) 23.81 52.64 16.14 19.43 46.51 2.79 58.08 24.32
Ratio (%) 4.54 10.04 4.19 5.04 49.68 2.98 92.69 86.73

1995
Area (km2) 28.67 53.53 23.14 19.46 53.31 1.93 60.02 24.76
Ratio (%) 5.47 10.21 6.00 5.05 56.94 2.07 95.78 88.30

2000
Area (km2) 30.66 53.59 26.8 19.5 54.01 1.8 60.47 26.98
Ratio (%) 5.85 10.23 6.95 5.05 57.69 1.92 96.5 96.2

2005
Area (km2) 49.69 73.18 34.67 25.76 60.76 3.18 60.47 26.99
Ratio (%) 9.48 13.97 8.98 6.68 64.9 3.4 96.49 96.2

2010
Area (km2) 141.92 72.15 42.97 27.23 72.67 0.97 61.18 27.02
Ratio (%) 27.09 13.77 11.13 7.06 77.63 1.04 97.63 96.35

2015
Area (km2) 142.55 73 43.48 27.51 72.91 1.13 61.18 27.03
Ratio (%) 27.21 13.94 11.27 7.13 77.88 1.21 97.63 96.36

2020
Area (km2) 161.03 77.34 44.54 27.51 73.74 1.3 61.18 27.03
Ratio (%) 30.74 14.76 11.54 7.13 78.77 1.39 97.63 96.36

In the past 50 years, each administrative district underwent a different urban expansion
process. Due to the suitable environment and unconstrained terrain conditions, Chengyang
District had the largest increase in urban land area. This has led to an increase in the
proportion of urban land in administrative divisions from 4.35% in 1970 to 30.73% in 2020,
a change of 26.39%. The Licang and Laoshan Districts experienced similar urban land
expansion, along with ratio increases of 33.65% and 7.77%, respectively. Meanwhile, the
Shibei and Shinan Districts exhibited the changing ratio increments of 8.00% and 13.84%;
the ratios of urban land in the corresponding administrative region were up to 97.63%
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and 96.36% in the Shibei and Shinan Districts, respectively. These two administrative
regions were basically covered by urban land in 2020. For the rural land ratio changes in the
different administrative regions, the increase in rural areas was generally low. The changing
ratio of rural land in its administrative region was 4.82% in Chengyang District, 2.16% in
Laoshan District. In contrast, the corresponding value was −1.55% in Licang District due
to urban land expansion and the restricted administrative area during 1970–2020.

3.2. Analysis of the Spatiotemporal Pattern of Urban–Rural Impervious Surface Area

In the initial year, the total cover of the ISA was 173.16 km2, accounting for 15.85% of
the whole study area (Figure 4). The ISA covers in urban and rural regions were 126.18 km2

and 46.98 km2, along with the average ISA densities of 63.43% and 62.63%, respectively.
The data displayed that the average ISA density of urban regions was slightly higher than
that of rural regions, with a difference between the two of 0.70.

Figure 4. Changing patterns of urban ISA from 2000 to 2020. Note: (a1) and (a2) are the same location
in the urban region in 2000 and 2020, and (b1) and (b2) are the same location in the rural region in
2000 and 2020, respectively.

From 2000 to 2020, China’s urban and rural regions underwent a rapid development
process, along with periodic policies. As of 2003, real estate has become an important
pillar industry of the national economy, effectively promoting the rise of concrete building
structures in urban regions. In 2006, the national implementation of the “Village-to-Village
Highway” project led to a significant expansion in rural regions of hardened roads with
asphalt or cement pavement surfaces. The construction goals of international port cities,
China’s megacities, and coastal central cities have improved Qingdao’s infrastructure and
vastly improved its level of construction. In the context of the rapid modernization of urban
and rural infrastructure, there was large-scale growth of ISA.

By the end of the year, the ISA covers increased by 168.59 km2, reaching 341.74 km2.
The ratio of this ISA value to the whole study area was 31.24%, indicating a total ISA
increment ratio of 97.36% compared to the ISA ratio in the initial year in the whole study
area. Meanwhile, the ISA in urban and rural regions increased by 140.55 km2 and 28.04 km2,
along with the average ISA densities of 72.57% and 70.67%, respectively. Therefore, the
increments of average ISA density per unit pixel of urban and rural areas were 9.14%
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and 7.94%. A synchronous increase in both the urban and rural ISA was observed. The
increased changes in urban ISA were relatively higher than those of the rural region at the
pixel scale, with a different value of 1.20%.

3.3. Analysis of the Response Characteristics of Urban–Rural Impervious Surface Area to Land
Surface Temperature
3.3.1. Analysis of Land Surface Temperature in the Whole Region and in Different
Administrative Regions

Considering the differences in the meteorological and environmental conditions dur-
ing different periods and further avoiding systematic temperature errors, we used only
remote sensing images from the summer of 2020 as an example to retrieve and compare the
LST. The range of the LST change throughout the entire research area was 18.03–47.47 ◦C.
According to the investigation, the lowest LST mainly occurred in the lake areas, while the
highest LST occurred in the large, concentrated ISA area. The average LST of the entire
study area was 29.47 ◦C, showing a relative coolness compared to inland regions at the
same latitude or the southern regions in China.

The LST also displayed differentiation across various urbanization-level areas. In the
old, traditionally urban areas, namely, the Shinan and Shibei Districts, the average surface
temperatures of these two regions were generally higher than those of other districts,
with values of 29.75 ◦C in Shinan and 31.20 ◦C in Shibei (Figure 5), due to the existence
of a large amount of urban and rural construction land in 1970 and coupling with the
urbanization process from 2000 to 2020. However, the highest temperature occurred in the
Chengyang District (i.e., 47.47 ◦C), although its average surface temperature was 29.10 ◦C,
which was lower than that of the Shinan and Shibei Districts. Through investigation, it can
be concluded that the large cover of ISA in the central and northern parts of Chengyang
District had a strong LST aggregation effect, resulting in the highest temperature in the
whole region, but the lowest temperature also occurred in this region due to the presence
of lakes in the eastern part, which made the average LST in the region not high. The
lowest average temperature appeared in the Laoshan District because of the presence of
the Laoshan Mountains, where dense mountain forests formed a large low-temperature
zone. In summary, the average LSTs at the district level, listed from high to low, were
Shibei, Shinan, Licang, Chengyang and Laoshan, along with patterns of higher average
temperature in the central axis in the north–south direction and lower values on both sides
of the study area.

Figure 5. Spatial characteristics of the LST in the study area.
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3.3.2. Comparison of the Differences in Land Surface Temperature between Urban and
Rural Regions

The same temperature classification standard can effectively depict the difference
between urban and rural regions. In this study, the LST was divided into five categories,
namely, extremely low-temperature areas (<20 ◦C), low-temperature areas (20–25 ◦C),
medium-temperature areas (25–35 ◦C), high-temperature areas (35–40 ◦C) and extremely
high-temperature areas (≥40 ◦C), to compare the differences between urban and rural
regions.

The statistical table shows that the LST in both urban and rural regions was mainly
covered by medium-temperature areas, with corresponding coverage areas of 338.42 km2

and 100.93 km2, which accounted for 92.18% and 95.22% of the total area of urban and rural
regions (Table 2), respectively. The data showed that the ratio of medium-temperature areas
in rural regions was higher than that in urban regions. This can be attributed to the higher
density of the ISA in the urban region, resulting in stronger temperature aggregation, and
thus, the ratio of the high-temperature area in the urban region was 6.69% (i.e., 24.55 km2),
which was obviously higher than that (3.77%, i.e., 4 km2) of the rural region. Similar results
were also observed in extremely high-temperature areas of urban and rural regions, with
corresponding ratios of 0.21% (i.e., 0.79 km2) and 0.07% (i.e., 0.07 km2), respectively. From
another perspective, although extremely high-temperature regions were much lower in the
rural regions than in the urban regions, there was also a high degree of ISA aggregation in
the rural regions, resulting in the emergence of extremely high-temperature regions. For
the low-temperature and extremely low-temperature regions, the summed ratio of the two
categories accounted for approximately 0.9% of the area in both the urban regions and the
rural regions, respectively, which was relatively close. Therefore, there were significant
differences between the urban and rural regions in each LST classification.

Table 2. Statistics on the area and ratio of different LST classification types in urban and rural areas.

Types
Urban Region Rural Region

Area (km2) Ratio (%) Area (km2) Ratio (%)

EHTA 0.7865 0.2142 0.0727 0.0685
HTA 24.5488 6.6868 3.9954 3.7693
MTA 338.4178 92.1814 100.9302 95.2168
LTA 3.3523 0.9131 1.0013 0.9446

ELTA 0.0162 0.0044 0.0009 0.0008
Abbreviations: EHTA, HTA, MTA, LTA and ELTA represent the LST classifications of extremely high-temperature
areas, high-temperature areas, medium-temperature areas, low-temperature areas and extremely low-temperature
areas, respectively.

3.3.3. Response Characteristics of Urban and Rural Land Surface Temperature to
Impervious Surface Area

To facilitate the exploration of the LST response of different ISA levels, the ISA was
merged into three categories, including low-density ISA (i.e., ISA component from [0.001%,
33.33%)), medium-density ISA (i.e., ISA component from [33.33%, 66.66%)) and high-
density ISA (i.e., ISA component from [66.66%, 100%]), according to the isodensity approach.
Overall, the LST displayed an increasing trend as the ISA coverage increased. Specifically,
in the low-density ISA area, the mean LST was 28.74 ◦C. Then, in the medium- and high-ISA
areas, the mean LSTs were 29.73 ◦C and 31.81 ◦C, respectively. The data indicated that
the difference values of the mean LST were continuously increasing, and the contribution
of the ISA to the LST displayed an accelerating upward feature as the ISA changed from
low- to medium- and from medium- to high-density areas, which provided the overall
and quantitative LST differences under different ISA levels in the central coastal region of
China.

In the urban and rural regions, there were differences in the effects of LST on ISA
changes. At the same ISA level, for low-, medium-, and high-density ISA areas, the
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corresponding mean LSTs in the urban regions were 28.75 ◦C, 29.77 ◦C and 31.91 ◦C,
respectively; at the same time, these values were 28.73 ◦C, 29.66 ◦C and 31.65 ◦C in the
rural regions (Figure 6). The data showed that the LST in rural regions was slightly lower
than that in urban regions at the same ISA level. This may be because of the aggregated
LST effect of large-scale ISA and the obstruction effect on the airflow from tall buildings in
urban regions. In contrast, in rural regions, the size of the ISA was relatively small, and
the building height was generally low, making the heat easily spread to the surrounding
areas from the villages. This can be called the horizontal gradient effect of the LST from
urban to rural regions. Furthermore, at different ISA levels, the change in the ISA was
1.02 ◦C and 2.14 ◦C in the urban region, while it was 0.93 ◦C and 1.99 ◦C in the rural region
during the changing process from low- to medium- and from medium- to high-density
ISA, respectively. The data showed that the different LST values between urban and rural
regions at different ISA levels gradually increased. Therefore, the LST in the cities was
slightly higher than that in the villages, whether at the same or different ISA levels. The
horizontal gradient effect of the LST from urban to rural regions was also first reported.

Figure 6. Spatial distribution characteristics of LST in the study area. (a) was the Mean LST in different
ISA densities, and (b) was the Mean LST changes in different ISA densities. Abbreviations: ML-LISA:
Mean LST from low-density ISA, ML-MISA: Mean LST from medium-density ISA, ML-HISA: Mean
LST from high-density ISA, MLC-LMISA: Mean LST changes from low- to medium-density ISA,
MLC-MHISA: Mean LST changes from medium- to high-density ISA.

3.4. Mechanism Analysis of LST Response to ISA Changes in Urban and Rural Regions

This section focuses on the response mechanism between the ISA and the LST through
the radiation balance and the energy balance equation of the land surface. The land surface
received visible and near-infrared radiation from sunlight, triggering land thermal infrared
wave radiation. The thermal radiation was absorbed through water vapor and carbon
dioxide near the ground, heating the air near the ground. The surface roughness of different
land-cover types varied: ISA expansion into surrounding green lands and water bodies in
urban and rural regions disrupted the air near the surface, generating air turbulence. The
albedo (i.e., the characteristic of the surface roughness, Figure 7a) of the urban region was
lower than that of the rural region. The low albedo in urban regions implied that more
heat was absorbed by the ground, leading to more air turbulence being transferred from
the ground to the near-surface air. These air turbulences transported the near-surface hot
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air upwards. The upwelling airflow then mixed with local horizontal advection, causing
an increase or decrease in the LST. More expansion of the ISA in the urban areas brought
more upward air turbulence, which can be described as the sensible heat flux because
sensible heat flux is usually considered the amount of heat that we can directly feel from
the surrounding environments. Therefore, the sensible heat flux (Figure 7b) was higher in
the urban regions than in the rural regions, with corresponding values of 280.13 W/m2 and
274.76 W/m2, respectively. More sensible heat flux release often leads to less latent heat
flux stored on the land surface. Based on model simulation and statistical results, less latent
heat flux (Figure 7c) was displayed in the urban region (174.71 W/m2) than in the rural
region (180.20 W/m2). The data showed that in the changing process of this mechanism,
more heat energy developed in the urban regions, indicating a more acute LST response to
the ISA changes in the urban than in the rural regions.

Figure 7. Resultant maps of the land surface temperature mechanism indicators.

4. Discussion
4.1. The Horizontal Gradient Effect and Vertical Density Effect of Land Surface Temperature on
Impervious Surface Area in Urban and Rural Regions of Central Coastal Region of China

An analysis of the spatiotemporal expansion pattern of the ISA and its response
characteristics to the LST from the perspective of synchronous urban–rural changes was
first performed in the central coastal region of China; this research can compensate for
the lack of research on urban and rural ISA and LST changes from different dimensions
(i.e., the horizontal gradient effect and the vertical density effect). The findings showed
that at the same ISA level (i.e., the horizontal gradient effect), the mean LSTs were 28.75 ◦C,
29.77 ◦C and 31.91 ◦C in the urban regions and 28.73 ◦C, 29.66 ◦C and 31.65 ◦C in the rural
regions (Figures 4 and 5) from the low-, medium-, and high-density ISA areas, respectively,
displaying gradually increasing differences of 0.02 ◦C, 0.11 ◦C, and 0.26 ◦C. At the different
ISA levels (i.e., the vertical density effect), the changes in the LST were 1.02 ◦C and 2.14 ◦C
in the urban region, while they were 0.93 ◦C and 1.99 ◦C in the rural region during the
changing process from the low- to medium- and from the medium- to high-density ISA. The
findings showed that the response values of the LST to the ISA in the urban regions were
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higher than those in the rural regions, both horizontally and vertically; the quantitative
values were provided for this study. In the horizontal direction, the high-density ISA of
cities meets the needs of commercial, residential, and public transportation [45,46] for many
urban residents, and large areas of ISA often lead to higher temperature aggregation effects
compared to rural areas, where the rural boundaries are relatively small and the ISA density
is slightly lower [47]. In the vertical direction, the dense high-rise buildings in urban areas
have a certain blocking effect on the horizontal air turbulence, causing temperatures to rise
more vertically and forming a relatively high heat island effect [9,48]. Compared to this
phenomenon, buildings in rural settlements were generally lower and more susceptible to
wind and other factors.

The comparative study on the response changes in the LST to the ISA in urban
and rural regions had many practical values. First, the comparison of the differences in
the ISA structure between urban and rural areas helped in understanding the impacts
of hardening urban and rural roads, home construction, and the density of community
buildings [49] while also indirectly reflecting the greening situation in urban and rural
regions, as demonstrated through community planning maps (i.e., the layout of the ISA and
green spaces) [46,49]. Second, the differences in the energy aggregation between the urban
and rural regions can be compared to provide a reference for relevant research in other
regions, considering that the total amount of solar radiation that each region can receive
is different. As in Harbin, located in a cold temperate zone of Northeast China [50,51],
the LST polymerization from the LST was weaker than in our research area, the central
coastal region of China and the warm temperate zone. Third, the development of tourism
for the whole territory should be promoted. The comfort level of the residential thermal
environment is often a significant factor that tourism management departments and tourists
need to consider because extremely high temperatures and heatwaves often make people
feel uncomfortable [52]. Through spatial mappings of the ISA and the LST, as well as their
corresponding energy analysis in urban and rural regions, management departments can
effectively understand the ISA and energy distribution of urban and rural regions and
establish reasonable urban and rural tourism routes to provide tourists with a very good
tourism experience while ensuring the comfort level of the thermal environments.

4.2. Differences in Characteristic Patterns of Urban Impervious Surface Areas in Different Regions
and Potential Eco-Environmental Effects

Currently, there have been many studies on the ISA in different regions [9,47,53],
which have displayed different characteristics. In this study, the evaluated ratio of the ISA
to its built-up area was 63.43% in 2000 and 72.57% in 2020, showing an increase of 9.14% in
the ratio of the ISA in urban regions (Figure 4). This value was reflected not only in the
old urban area but also in the difference across the whole region in the average ISA ratio
of the built-up area in 2000 and 2020, displaying a drastic pattern of ISA spatiotemporal
change. Similarly, in Harbin, another megacity in the same region (i.e., Northern China),
the ratio of the ISA to the built-up area was 43.92% in 2001 [54]. This value was much lower
than the corresponding ISA ratio in the initial year of this study. Then, the ratio of the
ISA in Harbin increased to 49.14% by 2015, with an average annual growth ratio of 0.348%
from 2000 to 2015 [54], which was also lower compared to our research area (which had an
average annual growth ratio of 0.457%). The data showed that the growth rate of ISA in
our research area was higher than that in this megacity in northern China.

Furthermore, the ISA comparison of our study city with a higher-level city (i.e., Beijing,
one of the six highest-level cities, the capital city and political, economic, and external
centre of China) was conducted in Northern China. The ISA ratio was 65.9% in 1981 and
73.9% in 2021 [46], showing an annual average increment rate of 0.2% from 1981 to 2021,
which accounted for only half of the ISA growth rate in our research area. This may be due
to the high ratio of ISA in Beijing in 1981 [46], which was higher than that of our study area
(i.e., 65.9% in 1981 in Beijing vs. 63.3% in 2000 in Qingdao), and the further increment of
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ISA space was limited in Beijing, considering the impact of retaining a portion of residential
green environment land within the built-up area [46,47].

In addition to comparing the spatiotemporal heterogeneity of ISA in northern China,
the differences in ISA change under different climate backgrounds should also be compared
in all of China. Our research area was located along the central coast of China in the humid
climate zone. Therefore, the ISA of cities in the arid climate zone, Urumqi, the largest city
in China’s arid climate zone [55], was considered in this study. The ratio of ISA in built-up
areas was 63.20% in 2000 and 73.56% in 2015 [56], and the ratio of ISA in Urumqi was
higher than that in our study area. According to our investigation, the urban buildings
in Urumqi were mainly compact, and the vegetation greening was relatively low in this
arid climate [55,56]. However, our research area was located in a coastal area, and there
was a large amount of vegetation in the city for ecological systems. The city’s ISA and
green spaces were more like a mosaic pattern to enhance the comfort level of the living
environments.

For the eco-environmental effects of ISA, the changes in ISA can first bring about water
environmental effects [57,58]. The rapid expansion of ISA changed the surface hydrological
process. The speed and peak value of surface runoff formed by rainfall were much higher
in regions with high ISA than in those with low ISA. Large runoff in the rainstorm season
was prone to overflow pollution, and nonpoint source pollution led to changes in the
indicators of dissolved oxygen, ammonia nitrogen, total phosphorus, chemical oxygen
demand, etc. [59–61]. Therefore, it is necessary to regulate and manage the threshold effect
of watershed ecosystems and nonpoint source pollution in areas with high ISA expansion
or concentrated ISA regions. Another environmental effect of ISA was energy [62]. As is
well known, the accumulation of ISA often brings about urban heat island effects in hot
summers in humid regions [63]. In contrast, in arid regions, the larger thermal capacity of
sand allows it to display higher temperatures compared to ISA, forming a cold island effect
in ISA regions [64–66].

4.3. Rural Settlements in China Experienced Drastic Structural Evolution

Although this study found that increases in the ISA area in urban regions were greater
than those in rural regions, the expansion of the ISA in rural regions in our study area was
still very intense. This was different from the rural settlements in Europe [53], where the
spatial structure of the rural settlements was basically stable and there were few large/acute
changes [53,67]. Furthermore, in this study, a new finding was found with the dual effects
of the ISA in rural areas, namely, the horizontal expansion effect of the acute ISA expansion
outside the original village boundaries and the vertical rise effect of the increased ISA
density within the original village boundaries, implying dramatic horizontal and vertical
ISA evolutionary processes in the rural settlement structure of the study area. In fact, the
evolution of the rural settlements in the research area was a microcosm/sample of the rural
changes in China [68,69].

Since 1970, China strived to solve the basic problem of food and clothing for its people.
After China joined the World Trade Organization in 2001 [70], its economy grew rapidly.
In this process, the income of farmers also clearly increased. Through these individual
incomes, many original earthen houses were demolished, and large tiled houses have
sprung up one by one [71,72]. This indicates that the living standards of rural residents
have been upgraded. In addition to improving the village environment by the farmers
themselves, the Chinese government implemented a series of rural policies, such as the
“Village-to-Village Connection Project” [73], which includes roads, electricity, living and
drinking water, telephone networks, cable television networks, and the internet. Among
these, the village-to-village road project (i.e., the roads inside and outside the villages)
aimed to construct asphalt or cement roads in all villages, to break the transportation
bottleneck of rural economic development and to solve the travel challenges faced by
farmers [73]. Under this background, the spatial ISA of rural areas rapidly increased.
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Furthermore, the Chinese government further implemented the ‘rural revitalization
strategy’, which further promoted spatial ISA structure changes, such as the construction
of squares, elderly activity centers, hospitals and service stations within the village bound-
aries [74,75], to enhance rural life. At the same time, the central government of China
is also testing policies for the construction of rural ecological civilization [76,77], such as
greening in rural areas to enhance the comfort level of the rural living environment and
to reasonably optimize the spatial layout of the ISA and greenery. Additionally, some
rural issues, including the low population in Northeast China [78] and population aging
throughout China [79], are also emerging and urgently need to be addressed to enhance
rural development. Measures to remove small villages and merge them into large villages
are also gradually being implemented [80,81]. These new issues and policies drive the need
for obvious changes in the ISA structural patterns and the greening layout of rural areas in
China, which will become the focus of our continuous attention to future rural issues in
China.

4.4. Shortcomings and Prospects of Research

Although there were currently many studies on the impact of ISA on LST, there was
still a lack of analysis from an urban–rural comparison perspective. This study investigated
the ISA patterns and their response to the LST mechanism from an urban–rural synchronous
comparison perspective in the Megacity, Qingdao, the coastal areas of China. For exploring
the temperature mechanism, the indicators of surface energy radiation balance, including
the latent heat flux, sensible heat flux, soil heat flux, and net radiation were calculated,
using the PCACA model and TVDI model. But the city in the study area was single and
there were insufficient manual observation experiments. For a more in-depth exploration in
the future, more cities in different regions of China, such as Guangzhou in southern China,
Beijing in northern China, Harbin in northeastern China, Urumqi in northwestern China,
and Lanzhou in southwestern China, will be screened as the study area, to provide the
synchronous comparison of the response characteristics of LST to ISA in urban and rural
areas. For the method, more accurate micrometeorological modeling should be excavated,
and more flux observation experiments should also be included, to provide more accurate
results.

5. Conclusions

To solve the lack of the response of LST to ISA changes from an urban–rural syn-
chronous comparison perspective in a central coastal megalopolis of China, this study took
Qingdao as an example using the methodology of artificial digitization—fully constrained
least squares mixed pixel decomposition—split-window algorithm—PCACA model. The
main conclusions were below. Long time series of land use monitoring indicated that the
expansion ratios of urban and rural areas were 131.29% and 43.42% in the past 50 years,
accompanied by differentiated spatial patterns. Then, a synchronous ISA increase in both
the urban and the rural regions was monitored, with the increment by 140.55 km2 and by
28.04 km2, separately. By 2020, the ISA increases in the urban regions were higher than
those in the rural regions, but the patterns of the ISA in both regions exhibited similar fea-
tures of horizontal epitaxial expansion and vertical density enhancement. For the response
of LST to ISA, the aggregated LST effect was revealed, namely, the horizontal gradient
effect displayed that the mean LSTs were 28.75 ◦C, 29.77 ◦C and 31.91 ◦C in the urban
regions and 28.73 ◦C, 29.66 ◦C and 31.65 ◦C in rural regions from low-, medium-, and
high-density ISA areas, respectively. The vertical density effect displayed that the changes
in LST were 1.02 ◦C and 2.14 ◦C in the urban region, while they were 0.93 ◦C and 1.99 ◦C
in the rural region during the changing process from low- to medium- and from medium-
to high-density ISA, respectively. Meanwhile, the potential surface energy indicators were
evaluated to explain the mechanism effect of the ISA changes on the LST in the urban and
rural regions.
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The main contribution of this study to the fields of land use, impervious surface area,
land surface temperature, and surface energy radiation balance can be summarized below:
(1) The long time series of spatiotemporal land change patterns were monitored in urban
and rural areas in the past 50 years (i.e., 1970–2020). (2) The horizontal and vertical effects
of the different ISA densities in urban and rural areas were revealed. And (3) the differences
in surface thermal properties mechanism between urban and rural areas were calculated
and compared.

This study was related to the contents of the current situation and challenges of urban
development, one aspect of the Sustainable Development Goals (SDGs). The history of
urban development over the past 50 years in this study was evaluated, which provided the
basic reference for population urbanization for the year 2030 SDGs. Meanwhile, the thermal
environmental effects of the different ISA densities were beneficial for urban planning
departments and managers to provide important practical data for the layout of urban
parks, block green spaces, and ecological corridor planning, serving the well-being of urban
living and the harmonious of urban development and nature environments.
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