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Abstract: Affected by global warming and increased extreme weather, Hunan Province saw a phased
and concentrated outbreak of forest fires in 2022, causing significant damage and impact. Predicting
the occurrence of forest fires can enhance the ability to make early predictions and strengthen
early warning and responses. Currently, fire prevention and extinguishing in China’s forests and
grasslands face severe challenges due to the overlapping of natural and social factors. Existing forest
fire occurrence prediction models mostly take into account vegetation, topographic, meteorological
and human activity factors; however, the occurrence of forest fires is closely related to the forest fuel
moisture content. In this study, the traditional driving factors of forest fire such as satellite hotspots,
vegetation, meteorology, topography and human activities from 2004 to 2021 were introduced along
with forest fuel factors (vegetation canopy water content and evapotranspiration from the top of the
vegetation canopy), and a database of factors for predicting forest fire occurrence was constructed.
And a forest fire occurrence prediction model was built using machine learning methods such as the
Random Forest model (RF), the Gradient Boosting Decision Tree model (GBDT) and the Adaptive
Augmentation Model (AdaBoost). The accuracy of the models was verified using Area Under
Curve (AUC) and four other metrics. The RF model with an AUC value of 0.981 was more accurate
than all other models in predicting the probability of forest fire occurrence, followed by the GBDT
(AUC = 0.978) and AdaBoost (AUC = 0.891) models. The RF model, which has the best accuracy, was
selected to predict the monthly forest fire probability in Changsha in 2022 and combined with the
Inverse Distance Weight Interpolation method to plot the monthly forest fire probability in Changsha.
We found that the monthly spatial and temporal distribution of forest fire probability in Changsha
varied significantly, with March, April, May, September, October, November and December being the
months with higher forest fire probability. The highest probability of forest fires occurred in the central
and northern regions. In this study, the core drivers affecting the occurrence of forest fires in Changsha
City were found to be vegetation canopy evapotranspiration and vegetation canopy water content.
The RF model was identified as a more suitable forest fire occurrence probability prediction model
for Changsha City. Meanwhile, this study found that vegetation characteristics and combustible
factors have more influence on forest fire occurrence in Changsha City than meteorological factors,
and surface temperature has less influence on forest fire occurrence in Changsha City.

Keywords: early warning of forest fire risk; random forest; live fuel moisture content; forest
fire drivers

1. Introduction

In recent years, extreme weather events such as high temperatures, droughts, high
winds and dry thunderstorms have been frequent, leading to the proliferation and reoccur-
rence of forest fires worldwide, with fire mega disasters that have shocked the world [1].
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China is facing the same disaster situation and risk, and last summer and autumn saw a
succession of phased concentrations of forest fires in Chongqing, Hunan, Guangxi and
Jiangxi, indicating that China has also entered this trending cycle. Extreme weather events
exacerbate transpiration in the vegetation canopy and reduce the live fuel moisture content
(LFMC), creating excellent conditions for forest fires to occur [2].

It is important to understand the probability of forest fires in real time and on a
large scale to provide an objective understanding of the level of forest fire risk and to
provide a scientific basis for decision making to effectively prevent forest fires [3]. There are
many drivers of forest fires, including fuel moisture content, meteorological, topographic
and human activity factors, etc. [4]. Existing forest fire prediction models mostly take
into account vegetation, topographic, meteorological and human activity factors, but the
occurrence of forest fires is closely related to the amount of forest fuels [2,5,6]. However, the
occurrence of forest fires is closely related to the live fuel moisture content and evaporation
from the top of forest vegetation canopy before the occurrence of fires [7]. It is important to
accurately obtain the live fuel moisture content and evaporation from the top of the forest
vegetation canopy before a fire occurs and add them to the database of forest fire drivers [8].
It is also important to quantify the degree of influence of different drivers on the occurrence
of forest fires, identify the main drivers affecting the occurrence of forest fires and build a
highly accurate forest fire occurrence prediction model [9].

Fuel moisture content is an important driver of combustible ignition and forest fire
spread rates [1,10,11]. It is usually divided into the combustible moisture content of growing
vegetation and the combustible moisture content of dead vegetation [12–14]. Previous
studies have demonstrated that the frequency of forest fires and the area burned tend to
increase as the moisture content of combustible material decreases [15,16]. This is due to
the fact that forest fuels with high moisture content requires more energy to evaporate the
water, reducing the probability of forest fires and their rate of spread [17].

Topography is an important parameter for topographic analysis of forest fires by
affecting airflow and local microclimate, changing the spatial distribution of forest fuel and
influencing the occurrence of forest fires. In the study of the correlation between forest
fires and topography, the influence of topography on forest fire occurrence was obtained
based on a comprehensive analysis of several factors such as topography, climate and
vegetation on forest fire occurrence and development [18,19]. Fang et al. found that the
topography factor explained 29.2% of the heterogeneity in the spatial distribution of fire
intensity through an enhanced regression number model and concluded that vegetation
and topography had a greater influence on fire intensity [20]. Kong et al. suggested
that changes in elevation, slope and slope orientation lead to changes in regional surface
moisture content and temperature and that such changes affect the spatial distribution
of surface vegetation and decomposition of surface deadfall, which in turn affects forest
fire occurrence [21]. Climatic factors affect the occurrence of forest fires by influencing the
flammability of forest fuel and the amount of combustible material accumulated on the
ground. Some studies have demonstrated that surface temperature and air temperature
are positively correlated, while there is a strong correlation between surface temperature
and forest fire occurrence [22,23], and the spatial distribution pattern of forest fire events
changes with inter-annual fluctuations in precipitation and air temperature [24]. Persistent
high temperatures cause surface soil moisture and combustible moisture content to decrease
rapidly, and surface combustibles continue to accumulate, providing a material basis for
forest fires to occur. Wind can trigger changes in the direction and speed of forest fire
spread, and sustained strong winds can also lead to evaporation of water, resulting in
a decrease in the fuel moisture content. Studies have shown that as the average annual
temperature rises, the effect of average annual temperature on the overfire area tends
to increase and then decrease [25], and the effect of average annual precipitation on the
overfire area is the same as the average annual temperature [26].

As the intensity and frequency of forest fires increase, their impacts worldwide are
elevating at an alarming rate [27]. It is important to analyse the process of the occurrence
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and development of forest fire activities under the influence of forest fire drivers and
their potential spatial interactions and feedback mechanisms in different environmental
contexts [28,29]. Modelling and outputting the probability of forest fire occurrence in
an explicit spatial form and constructing early warning models for forest fire occurrence
prediction can provide new insights in response to ongoing climate change and widespread
human activities [6]. Since the 1990s, regression models (e.g., linear regression and logistic
regression) have been widely used in forest fire probability modelling. And as an alternative
to regression models, binary statistical models have gradually started to be applied in the
field of forest fire prediction, such as frequency ratio methods (FR), weights of evidence,
deterministic factors and evidence-based belief functions (EBF) [30]. However, it has been
noted that these models are very sensitive to the quality of the input data and often mask
the true relationship between forest fires and their drivers [31]. Artificial intelligence (AI)
has been on the rise in recent years and has also proven to be efficient and accurate in the
field of predicting natural hazards [32,33]. Among these AI methods, Random Forest (RF),
Artificial Neural Network (ANN), Gradient Boosting Decision Tree (GBDT) and AdaBoost
have been shown to outperform traditional statistical methods in forest fire modelling and
its applications [5,6,25,28,34–43]. Forest fire predictive modelling, by linking the occurrence
of forest fires to changes in the variables that drive them, such as climate, fuels, terrain and
even human activity, has become an important part of the field and promises to improve
the success of forest fire prevention and control and commanded suppression [44,45]. In
addition, another advantage of AI methods is their ability to integrate seamlessly with
many other methods, thereby increasing the level of model performance [46]. Similarly,
AI methods in forest fire prediction modelling can provide detailed information such as
remote sensing image recognition, correlation analysis, and spatial pattern recognition of
fire occurrence, which can be used as input parameters for key components such as the
construction of forest fire risk early warning models.

Recent comparative studies have addressed traditional regression models, which
assume a linear relationship between forest fire occurrence and its drivers [47]. However,
such models are unable to accurately describe the currently widely accepted complex non-
linear relationship between drivers and forest fires on spatial and temporal scales, making
it difficult to accurately assess the risk of forest fire occurrence [48]. Fuel moisture content is
one of the important factors influencing forest fire occurrence, and for the selection of forest
fire drivers, some recent studies have not included it in forest fire prediction models [5,6,49].
At the same time, most of the related studies have made risk zoning of regional forest fires
on a quarterly basis, while the monthly divergence of fires in the study area is obvious, and
the seasonal changes are difficult to guide specific forest fire prevention and suppression
management [5,41]. While previous studies have constructed forest fire prediction models,
no substantial short-term predictions have been carried out in a particular region [5]. The
thematic maps produced for risk zoning did not utilise land classes to filter the interpolation
results, resulting in the generation of high-risk zones for the occurrence of forest fires falling
within Dongting Lake in Hunan Province, a rather obvious loophole [5,6].

To address these issues, this study was based on data from 20,269 forest fire hotspots
in Hunan Province from 2004 to 2021. While integrating the traditional forest fire driving
factors such as meteorology, topography, human activities and vegetation cover, we inno-
vatively introduced combustible-related factors such as vegetation canopy water content,
forest vegetation canopy evapotranspiration and soil surface water content to construct
a database of forest fire driving factors. By screening the important forest fire driving
factors, three machine learning methods, namely AdaBoost, GBDT and RF, were used to
construct a forest fire prediction model. The optimal model is selected based on the results
of model accuracy evaluation, and the month-by-month forest fire occurrence probability
prediction map for 2022 is drawn using Changsha City as an application case. An objective
understanding of the risk level of forest fire occurrence in Changsha City in the short term
is of great significance for the scientific allocation of fire prevention resources and effective
forest fire prevention work [50].
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Therefore, the objectives of this study were (1) identification of the main driving factors
influencing the occurrence of forest fires in Hunan Province; (2) construction of a forest fire
occurrence prediction model based on AdaBoost, GBDT and RF; (3) mapping the risk of
forest fires in Changsha by month in 2022.

2. Materials and Methods
2.1. Study Area

Hunan Province is located between longitude 108◦47′–114◦15′E and latitude 24◦38′–
30◦08′N, with a horseshoe-shaped topography surrounded by mountains on three sides
and opening towards the north, and a subtropical monsoon climate with simultaneous
rain and heat [5,51,52], as shown in Figure 1. As of 2022, the forest coverage rate of Hunan
Province reaches 59.98%, the forest storage volume reaches 664 million cubic metres and
the forest fire damage rate is controlled at 0.129%. Changsha, the capital of Hunan Province,
is located in the north-eastern part of Hunan Province and belongs to the same subtropical
monsoon zone with the same climatic background [53]. As of 2022, Changsha’s forest
coverage rate is stable at 55%, ranking in the top three of China’s provincial capital cities,
and the forest storage volume reaches 30.86 million m3, a year-on-year increase of 4.05%,
or 1.2 million m3. Changsha has conducted a great deal of publicity and education work
in promoting the construction of ecological civilisation and the management of forest fire
prevention and suppression, etc. In 2022, Changsha’s GDP was CNY 139.611 billion, an
increase of 4.5% year-on-year, with a population inflow of 181.3 million people, which is
ranked first in China [54]. Due to the undulating terrain, high forest cover, high combustible
load, frequent anthropogenic activities and low rainfall in autumn and winter resulting in
low water content of combustible materials, there are significant monthly differences in
the frequency of forest fires in the region, as shown in Figure 2. Especially during the local
forest fire protection period (October to May), forest fire risk warning and control need to
be particularly strengthened.

2.2. Data Sources and Pre-Processing
2.2.1. Fire Point Data

The forest fire satellite hotspot data used in this study were obtained from the
2004–2021 satellite monitoring hotspot database provided by the Forest Fire Early Warning
and Monitoring Information Centre of the Ministry of Emergency Management of China.
This database records a large amount of attribute information of satellite hotspots, such as
longitude, latitude, time of occurrence, land type and the type of hotspots returned from
field surveys [5,6]. As shown in Figure 3, the number of historical forest fires in Hunan
Province has an obvious monthly divergence pattern, and the current research related to
forest fire occurrence trend prediction is mostly based on quarterly analysis, which has
certain limitations [5]. Generally speaking, the special protection period for forest fires in
Hunan Province is from October to May of the following year, but the frequency of forest
fires in different months also varies to some extent. To ensure data quality, this study first
screened satellite hotspot data for land types of forested land based on the type of hotspot
feedback from field surveys and removed anomalous samples from the original dataset,
such as attribute missing data and duplicate monitoring of satellite hotspot samples, to
create fire spot data for Hunan Province. Then, based on the fire point data of Hunan
Province from 2004 to 2021, random non-fire points were created in the ratio of 1:1 between
the number of fire points and non-fire points within the forest land coverage of Hunan
Province as data samples without fires, and the generated random non-fire points were
ensured to have both temporal and spatial randomness [4,41]. It should be noted that
since the spatial resolution of the thermal infrared band of the MODIS, NOAA and FY3
series satellite images used for satellite hotspot data extraction is 1 km, and the latitude
and longitude of the acquired satellite hotspots are the latitude and longitude information
of the central image element of the images, to ensure that the random non-fire points
do not overlap spatially with the fire points, a buffer zone analysis is performed on the
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fire points, and a 500 m fire point range is created for each fire point. A buffer zone was
created for each fire point, and random points that fell into the buffer zone were removed
to ensure the accuracy of the data. Finally, a new ForestFire attribute field was added to
the satellite monitoring hotspot database, setting the attribute value of real fire points to
1 and the attribute value of random non-fire points to 0. The forest land cover data of
Hunan Province used in this study to create the random non-fire point data were obtained
from the global ground cover dataset GlobeLand30 with a spatial resolution of 30 m for
extraction (http://www.globallandcover.com/ accessed on 31 December 2022) [5,6]. The
final number of fire and random points obtained for Hunan Province was 20,269, as shown
in Figure 4.
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2.2.2. Data on Forest Fuels and Vegetation

Forest fuels data are an important factor in the occurrence and development of fires,
and vegetation canopy moisture content and vegetation canopy evaporation, which charac-
terise the state of living combustible material, are also important indicators in assessing
fire risk ratings [52,55]. Vegetation canopy moisture content refers to the moisture content
of the leaves, branches and other parts of vegetation and is an important indicator for
assessing the flammability of vegetation to fire. Vegetation canopy evapotranspiration

http://www.globallandcover.com/
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is the amount of water consumed by vegetation for transpiration, which can influence
the degree of vegetation dieback and the fire risk rating. These two parameters can be
estimated from the skin_reservoir_content and evaporation_from_the_top_of_canopy_sum
provided in the ERA5-Land dataset, and these data can effectively represent the forest
fuel moisture content, which may have a significant impact on the prediction of forest fire
occurrence [56].
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Land cover data were obtained from GlobeLand30 data [57,58]. The Normalized
Difference Vegetation Index (NDVI) is a common quantitative remote sensing indicator
used not only to assess the spectral reflectance properties of vegetation but also to indicate
changes in moisture availability and vegetation growth. NDVI values are therefore impor-
tant indicators for assessing the moisture content of surface vegetation and the extent of
vegetation cover. At the same time, the location of the fire and the size of the overburdened
area are closely related to the condition of the vegetation at that time. Therefore, the as-
sessment of the interaction between vegetation and fire occurrence needs to rely on NDVI
data. In this study, we used the latitude and longitude of satellite hotspot information and
the time of fire occurrence in Hunan Province to obtain immediate NDVI information for
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each fire and non-fire site in Hunan Province from 2004 to 2021 in the Google Earth Engine
platform. Meanwhile, to predict the relationship between vegetation condition and fire
events in Changsha, we obtained the monthly mean NDVI information at 1 km interval
random points in Changsha for 2022.

2.2.3. Meteorological Data

In order to obtain more comprehensive and accurate data, in this study, with the
help of the Google Earth Engine (GEE) platform, based on the latitude, longitude and fire
occurrence time of satellite hotspot information in Hunan Province from 2004 to 2021, the
corresponding meteorological information at the time of fire occurrence was obtained by
batch matching in the ERA5-Land dataset [59,60]. Based on this, we carried out detailed pre-
processing of the meteorological data, such as removing missing data points and normalising
the data. Nine meteorological drivers were selected, namely dew point temperature, net
surface heat radiation, runoff, surface temperature, evapotranspiration, eastward wind speed,
precipitation, northward wind speed and soil moisture content [61,62]. These factors are
critical in the study of forest fire occurrence and development.

At the same time, we obtained data from 13,423 distribution points within the admin-
istrative area of Changsha at 1 km intervals and obtained monthly average meteorological
drivers from January to December 2022 using the ERA5-Land dataset to construct a database
of drivers for predicting the probability of forest fires in Changsha in 2022.

2.2.4. Topographical Data

Topographic differences have a direct impact on the composition of vegetation types
and the spatial distribution of combustible material, as shown in Figure 5, with forest fires
occurring more frequently at elevations below 700 m [63,64]. The topographic features of
the Dongting Lake region in northern Hunan Province, the Wuling Mountains–Xuefeng
Mountains in western Hunan, the Mofu Luoxiao Mountains in the east and the Nanling
Mountains in the south differ significantly in terms of topographic features and vegetation
types leading to large differences in the state of combustible material. Even at the same
altitude, the slope and aspect of the slope can lead to significant differences in vegetation
growth and local climatic conditions, which can affect the occurrence of fires, with the
northern Nanling Mountains experiencing significantly more fires than the other regions.
In addition, topography affects geographical accessibility, transportation accessibility, pop-
ulation distribution and economic development, with important implications for forest
fire prevention and management. The research data for this paper were extracted from the
United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/ accessed
on 31 December 2022) by downloading Digital Elevation Model (DEM) data for Hunan
Province at a spatial resolution of 30m for elevation, slope and slope orientation [52].

2.2.5. Anthropogenic Activity Data

The data on the distribution of road networks and settlements used in this study
were obtained from the 1:250,000 National Basic Geographic Database on the website of
the National Basic Geographic Information Centre (http://www.webmap.cn accessed on
31 December 2022) [52]. In general, the closer the distance to roads, railways and settle-
ments, the more frequent the anthropogenic activities [65]. As for population density and
Gross Domestic Product (GDP), the data are obtained from the Resource and Environment
Science and Data Center (https://www.resdc.cn accessed on 31 December 2022) with a
resolution of 1 km in 2019 [66,67]. The more densely populated and economically devel-
oped the area is, the more activities such as trekking and travelling around the area, and
the probability of anthropogenic fire use increases the risk of forest fires [5,6,52].

https://earthexplorer.usgs.gov/
http://www.webmap.cn
https://www.resdc.cn
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2.2.6. Predictors of Forest Fire Occurrence

In this study, twenty-one forest fire occurrence prediction impact factors were selected
from the above five categories. Their names, abbreviations, resolution/units and data
sources are shown in Table 1:

Table 1. Predictors of forest fire occurrence.

Name of Predictor Abbreviations Resolution, Units Data Sources

Vegetation canopy water content Vcwc m of water equivalent https://cds.climate.copernicus.eu
accessed on 30 December 2022

evaporation from the top of canopy Eftc m of water equivalent https://cds.climate.copernicus.eu
accessed on 30 December 2022

Volume of water in soil layer 1
(0–7 cm) Vws 1 (volume fraction) https://cds.climate.copernicus.eu

accessed on 30 December 2022

Type of land use Ldu 30 m http://www.globallandcover.com
accessed on 31 December 2022

Easterly wind speed Ews m/s https://cds.climate.copernicus.eu
accessed on 30 December 2022

northerly wind speed Nws m/s https://cds.climate.copernicus.eu
accessed on 30 December 2022

Total evaporation Tev m of water equivalent https://cds.climate.copernicus.eu
accessed on 30 December 2022

Surface temperature 2 m Stem K https://cds.climate.copernicus.eu
accessed on 30 December 2022

Normalized Difference
Vegetation Index Ndvi 250 m https://cds.climate.copernicus.eu

accessed on 30 December 2022

Dew point temperature Dwp K https://cds.climate.copernicus.eu
accessed on 30 December 2022

Total precipitation Tprp m https://cds.climate.copernicus.eu
accessed on 30 December 2022

Aspect Asp 30 m https://earthexplorer.usgs.gov
accessed on 31 December 2022

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://www.globallandcover.com
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://earthexplorer.usgs.gov
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Table 1. Cont.

Name of Predictor Abbreviations Resolution, Units Data Sources

Slope Slo ◦ https://earthexplorer.usgs.gov
accessed on 31 December 2022

Elevation Eva m https://earthexplorer.usgs.gov
accessed on 31 December 2022

Nearest road and railway nrar km http://www.webmap.cn
accessed on 16 December 2022

Gross domestic product GDP RMB/km2 https://www.resdc.cn
accessed on 16 December 2022

Population density Popd persons/km2 https://www.resdc.cn
accessed on 16 December 2022

Closest distance to population centres Cdtp km http://www.webmap.cn
accessed on 16 December 2022

Longitude of the fire point Lon ◦ https://slcyfh.mem.gov.cn
accessed on 31 December 2022

Latitude of the fire point Lat ◦ https://slcyfh.mem.gov.cn
accessed on 31 December 2022

Fire point date Fpd date https://slcyfh.mem.gov.cn
accessed on 31 December 2022

2.3. Research Method

For modelling, the Random Sampling mode is used, in which the training set size is
80% and the repeat train parameter is set to 100, while both model training and prediction
processes are in stratifield. The role of the dependent variable is set as target, the role of the
20 independent variables is set as feature and the rest of the variables are set as skip, and
the machine learning models such as Random Forest, AdaBoost, and Gradient Boosting are
imported for training, respectively, and the accuracy is measured by five indexes, namely
AUC, CA, F1, Precision and Recall five indicators for accuracy evaluation.

2.3.1. Adaptive Boosting Algorithm

Adaptive Boosting (AdaBoost) is an integrated learning method. The scientific basis
for choosing the AdaBoost model for forest fire occurrence prediction is (1) Strong pre-
diction ability: AdaBoost forms a strong classifier by combining multiple weak classifiers.
It is able to better capture and utilise the relationship between features to improve pre-
diction accuracy. (2) Adaptive learning: AdaBoost adjusts the sample weights according
to misclassified samples in each iteration. This enables the model to pay more attention
to samples that are difficult to classify, thus adapting to datasets with different sample
distributions and complexities. (3) Not easy to cause overfitting: As AdaBoost adopts an
iterative training method, only some samples are selected for training in each iteration, so
it can effectively prevent the occurrence of the overfitting phenomenon [35].

In forest fire occurrence prediction, the AdaBoost model can be used to build a power-
ful classifier to identify and predict the occurrence of forest fires [36]. The basic principle of
AdaBoost is to train a series of weak classifiers through iterations and combine them into a
strong classifier. In each iteration, AdaBoost looks at samples that were misclassified in
the previous round and re-weights these samples so that the misclassified samples receive
more attention in the next round. In this way, after multiple iterations, AdaBoost can bring
the performance of a weak classifier up to the level of a strong classifier.

In forest fire occurrence prediction, fire events can be considered as a positive category
and non-fire events as a negative category [6]. First, a large amount of data on forest
fires is collected, including information on features such as combustibles, meteorological
factors, geography and vegetation conditions. These features are then used to construct
weak classifiers, each of which classifies a sample based on the features and generates
a prediction result. Next, the AdaBoost algorithm is used for iterative training. In each
iteration, AdaBoost adjusts the weights of the samples based on the classification results

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
http://www.webmap.cn
https://www.resdc.cn
https://www.resdc.cn
http://www.webmap.cn
https://slcyfh.mem.gov.cn
https://slcyfh.mem.gov.cn
https://slcyfh.mem.gov.cn
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of the previous round, increasing the weights of misclassified samples and decreasing the
weights of correctly classified samples. The adjusted sample weights are then used to train
the next round of the weak classifier. Through multiple rounds of iterations, the set of weak
classifiers is continuously optimised to form a strong classifier. Finally, new samples can be
predicted based on the strong classifier obtained from the training. Inputting the features
of the sample to be predicted, the strong classifier will classify it based on the previously
learned knowledge and determine whether it is a fire event or not. The AdaBoost model
can be expressed as follows:

h(x) =

1
0∑ J

j=1αjhj(x) ≥ 1
2∑ J

j=1αj

otherwise

 (1)

αj = log
1
β j

(2)

2.3.2. Gradient Boosting Decision Tree Algorithm

The Gradient Boosting Decision Tree (GBDT) is an algorithm for classifying or regress-
ing data by using a linear combination of basis functions and continuously reducing the
residuals generated by the training process. GBDT is also an iterative integrated learning
method that gradually improves prediction accuracy by weighting repeated training data
samples and optimising the model through a gradient descent algorithm. The scientific
basis for choosing it as the prediction of forest fire occurrence includes (1) Gradient descent:
GBDT fits the residuals iteratively and optimises the model gradually through the gradient
descent algorithm, which reduces the loss function and improves the prediction accuracy of
the model. (2) Weak Classifier Integration: GBDT adopts the integration of multiple weak
classifiers to obtain the final prediction result through weighted voting, which improves the
generalisation ability of the model. (3) Regularisation: GBDT introduces a regularisation
term in each iteration to prevent overfitting, which improves the stability and generalisation
ability of the model [5,6,36].

In forest fire prediction, GBDT can build a powerful regression model using historical
weather data, fuel features, human activities and other relevant information [41,68]. By
learning the forest fire occurrence status (yes or no) from the training samples, GBDT can
learn the patterns and characteristics of forest fire occurrence and then make predictions
about future forest fires. GBDT can also provide an assessment of feature importance to
help identify factors that have a significant impact on the occurrence of forest fires and
provide decision support for fire prevention efforts. The training process can be represented
by the following equation [43]:

f0(x) = argmin
N

∑
i=1

L(yi, c) (3)

This step is to initialise the weak learner, where f 0(x) is the regression tree function for
the current iteration, and the next step is to calculate the residuals for each sample.

rim = −[∂L(yi, f (xi))

∂ f (xi)
]

f (x)= fm−1(x)
(4)

Negative degrees are calculated for each sample, where rim is the residual value.

f (x) = f0(x) +
M

∑
m=1

J

∑
j=1

Rjm I(x ∈ Rjm) (5)

The learner is updated by calculating the best-fit value and the resulting f (x) is the
final learner, where Rjm is the leaf node region.
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2.3.3. Random Forest Algorithm

Random Forest (RF) is a classifier that uses multiple trees to train and predict samples.
It is widely used in fields such as medicine, genetics, ecology and remote sensing because
of its ability to select important feature variables and automatically identify the importance
of the feature variables [62]. The scientific rationale for selecting the RF model for forest fire
prediction includes (1) Random sampling: the RF uses Bootstrap sampling to take samples
from the original training set with put-backs. This allows each decision tree to have slightly
different training data, increasing model diversity and reducing variance. (2) Random
feature selection: At each node, RF randomly selects a portion of features for partitioning,
which helps to reduce the correlation between features and improves the robustness of
the model. (3) Voting Integration: RF decides the final prediction result using the voting
results of multiple decision trees, which reduces the errors that may be brought by a single
decision tree [4,5,34,41,62,63,66,67].

The RF model can also be trained in parallel, thus improving operational efficiency
and maintaining good accuracy even when the training set is missing data. However, RF
model training samples require large data size and cannot make over-range predictions. In
this paper, fire point training samples were collected from a large range of Hunan Province
data, while a smaller range of 1 km random point data from Changsha City was used for
the test set. This approach helps to overcome the disadvantage of small training data and
low accuracy and uses the RF model to perform importance evaluation to screen forest fire
drivers. At the same time, adjusting the core parameters affecting the accuracy of the RF
model is important to improve the model stability and generalization ability. In this paper,
we set the decision tree trees (n_estimators) to 600, used a random sample of 80% of the
forest fire samples as the training set and determined the optimal parameters of the model
by setting up five repetitions of the training. This approach helps to improve the accuracy
and robustness of the model.

Training phase: For each tree: (1) A random set of samples with N samples is obtained
by performing a put-back sampling from the original forest fire occurrence training dataset.
(2) At each node, a subset of m features is randomly selected (m<<total number of features),
and then the best features and division points are selected for division by some division
criterion (e.g., Gini coefficient or information gain). (3) Step (2) is repeated recursively until
stopping when a stopping condition is reached (e.g., maximum depth is reached, or the
number of node samples is less than a threshold). The completed random forest model is
obtained.

Prediction phase: For each sample: (1) Forest fire occurrence is predicted on each
tree in the random forest. (2) For classification problems, a voting mechanism is used to
determine the final prediction category; for regression problems, the average of all tree
prediction outputs is taken as the final prediction.

2.3.4. Inverse Distance Weight Interpolation Algorithm

The Inverse Distance Weighting (IDW) interpolation method involves assigning differ-
ent weights to the data points according to their distance from the position to be interpolated
and then performing a weighted average. The probabilities of the obtained 1 km × 1 km
grid points in Changsha City were interpolated using the inverse distance weight model,
and the mask extraction was performed using the Changsha City forest land cover data.
The predicted distribution of monthly probability of forest fire occurrence in Changsha
City’s forest cover area was plotted. This method is more accurate for data with a relatively
dense and uniform distribution of point sets. The points sampled in the test dataset for this
study are equally spaced at 1 km intervals and are well suited to the IDW method. The core
idea of IDW is to assume that things that are closer together are more correlated and are
given more weight. In the analysis of the drivers affecting forest fire occurrence, IDW uses
measurements around the predicted location when predicting other locations that have not
been sampled. Sampled values closest to the predicted location have a greater influence on
the predicted value than sampled values further away from the predicted location. The
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inverse distance weighting method assumes that each sampling point has a local influence
which decreases with increasing distance. Its formula can be expressed as follows:

ˆ
Z(x0) =

n
∑

i=1
Z(Xi)d−r

ij

n
∑

i=1
d−r

ij

(6)

2.3.5. Accuracy Evaluation

The classification ability of different machine learning methods is evaluated using five
metrics: Accuracy, Precision, Recall, F1 (H-mean) and AUC (Area Under Curve). Ac-curacy
is the assessment of the proportion of correct predictions, precision is the assessment of the
detection rate of predicted positive cases, recall is the assessment of the detection rate of
true positive cases and F1 is used to assess the precision and recall rates. The more the area
enclosed by the ROC curve and the horizontal axis is close to 1, the better the prediction of
the model. Accuracy, Precision, Recall and F1 can be expressed by the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2× Precision× Recall
Precision + Recall

(10)

where TP is the number of positive samples for which the model predicts a positive class,
FP is the number of negative samples for which the model predicts a positive class, TN is
the number of negative samples for which the model predicts a negative class and FN is
the number of positive samples for which the model predicts a negative class.

2.3.6. Evaluation of the Importance of Characteristic Factors

After selecting the optimal model for accuracy, the relative importance of feature
variables needs to be evaluated to achieve important feature selection. In this paper, the
ranking is performed by using Gain Ratio and Gini, and the GINI ranking uses the GINI
index in the decision tree to calculate the importance of features. Specifically, it randomly
rewashes and divides the dataset, then calculates the GINI index of each feature in different
divisions and finally ranks the features according to the size of the GINI index such that
the features with higher importance are ranked higher. The formulas of Gain Ratio and
Gini index are as follows:

GainRatio(D, a) =
Gain(D, a)

IV(a)
(11)

IV(a) = −
V

∑
v=1

|Dv|
|D| log2

|Dv|
|D| (12)

Gini(D) = 1−
n

∑
i=0

(
Di
D

)
2

(13)

Gini(D|A) =
n

∑
i=0

Di
D

Gini(Di) (14)
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The information gain rate penalises attributes with more values by introducing a
penalty term called Split information (SI), where IV (a) is determined by the number of
eigenvalues of attribute A. The greater the number, the larger the IV value and the smaller
the information gain rate. This prevents the model from preferring attributes with more
eigenvalues, and if it is simply segmented according to this rule, the model will again
prefer features with fewer eigenvalues. Therefore, the attributes with higher-than-average
information gain are first identified from the candidate segmentation attributes, and the
ones with the highest gain rate are selected from them.

The Gini coefficient is used as a criterion to select the optimal segmentation attribute,
which can be used for classification and regression. Gini describes the purity, similar to
the meaning of information entropy. Gini(D) reflects the purity of the dataset D, and the
smaller the value, the higher the purity. We select the attribute in the candidate set that
makes the minimum Gini index after division as the optimal division attribute.

3. Results
3.1. Model Accuracy Validation

We used five indicators to analyse the accuracy of the three models, and the results
show that the accuracy of the three models is above 89%, among which the RF model
(AUC = 98.1%), with better accuracy in all indicators, is more suitable for constructing the
prediction model for the occurrence of forest fires in Hunan Province. It is followed by
Gradient Boosting (AUC = 97.8%) and AdaBoost (AUC = 89.1%) (Figure 6, Table 2).
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Table 2. Model accuracy comparison.

Machine Learning Algorithm Category Accuracy Precision Recall F1 AUC

SVM
Forest fire

0.779
0.768 0.801 0.784

0.847Non-forest fire 0.791 0.756 0.773

GBDT
Forest fire

0.899
0.882 0.921 0.901

0.962Non-forest fire 0.917 0.876 0.896

RF
Forest fire

0.908
0.896 0.925 0.910

0.965Non-forest fire 0.922 0.892 0.907

3.2. Characteristic Factor Importance Evaluation

Among the 21 forest fire factors, evapotranspiration from the top of the vegetation
canopy was the most important (weight: 15.4%), followed by vegetation canopy water
content (weight: 12.7%), closely followed by cumulative rainfall (weight: 12.58%), dew-
point temperature (weight: 8.2%), date (weight: 7.7%), NDVI (weight: 7.7%) and volume of
surface water in the soil (weight: 7.2%), etc. (Table 3, Figure 7).

Table 3. Ranking table for evaluating the importance of predictors.

Name of Predictor Gain Ratio Gini

Evaporation from the top of canopy 12.22% 15.40%
Vegetation canopy water content 10.05% 12.70%

Total precipitation 9.95% 12.58%
Dew point temperature 6.35% 8.21%

Fire point date 5.98% 7.74%
Normalized Difference Vegetation Index 5.79% 7.74%
Volume of water in soil layer 1 (0–7 cm) 5.52% 7.19%

Type of land use 11.47% 6.61%
Surface temperature 2 m 4.61% 6.10%

Total evaporation 2.86% 3.90%
Latitude of the fire point 2.79% 3.80%

Longitude of the fire point 1.06% 1.46%
northerly wind speed 1.04% 1.42%

Elevation 0.40% 0.56%
Slope 0.34% 0.48%

Population density 0.33% 0.46%
Gross domestic product 0.39% 0.40%

Nearest road and railway 0.23% 0.32%
Easterly wind speed 0.18% 0.25%

Closest distance to population centres 0.07% 0.10%
Aspect 0.04% 0.06%

Evaporation from the top of the vegetation canopy (weight: 15.4%) is related to factors
such as forest soil moisture and atmospheric humidity. When evaporation from the top
of the vegetation canopy is low, the moisture content of the forest soil decreases and the
environment becomes drier, thus increasing the probability of fire. Evapotranspiration from
the top of the vegetation canopy affects meteorological factors such as temperature, relative
humidity and wind speed, which in turn further affect the probability of fire occurrence.
For example, low relative humidity and strong winds will reduce the forest fuel moisture,
increasing the probability of fire. Evaporation from the top of the vegetation canopy
is influenced by the degree and type of vegetation cover. Dense cover and flammable
vegetation types can increase the rate and intensity of fire spread. As shown in Figure 8,
evaporation from the top of the vegetation canopy reached nearly 12,000 fires in a relatively
small interval, with a significant impact.
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The canopy water content of vegetation (weight: 12.7%) is the amount of water in
the plant canopy and is one of the most important factors affecting the probability of
forest fires. Changes in the moisture content of the plant canopy can affect the occurrence
and spread of fires and are therefore of great importance for forest management and fire
prevention. The higher the canopy moisture content of vegetation, the more difficult it is to
start a fire before it burns and the lower the burning rate when it burns, as having enough
moisture will weaken burning and fire spread. Therefore, if the vegetation is sufficiently
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rich in canopy water content, it will reduce the probability of forest fires. On the other
hand, when the canopy water content of vegetation is too low, the plants will lose their
natural fire protection capacity. Plants lose moisture in dry weather and become dry and
flammable, and fires can easily spread once the source of the fire comes into contact with
the vegetation. Therefore, the probability of forest fires increases when the canopy moisture
content of vegetation is too low. The canopy moisture content of vegetation is a key factor
in the probability of forest fires. Keeping the vegetation canopy moisture content within
an appropriate range will reduce the risk of fire occurrence and spread and enable better
forest management and fire prevention. As shown in Figure 9, the number of forest fires
occurring at low vegetation canopy moisture content reached over 14,000, with particularly
significant impacts.
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Total precipitation (weight: 12.58%) is the total amount of rainfall over a period of time.
It is one of the most important factors affecting the probability of forest fires. The higher
the total precipitation, the greater the moisture content in the vegetation, thus reducing
the probability of forest fires. Firstly, rainfall increases the moisture content of vegetation.
In times of drought, the moisture in the vegetation gradually evaporates away, making it
easier to burn and increasing the probability of fire. However, if there is sufficient rainfall
to continuously recharge the water, the vegetation will be wetter and harder to catch fire,
thus reducing the probability of fires. Secondly, rainfall can control the occurrence and
spread of fires. Fires are often difficult to control during periods of drought. Because dry
vegetation burns easily, fires tend to spread quickly. However, in the event of rainfall,
the rain can reduce the ambient temperature, slowing down the fire and aiding in fire
suppression efforts. At the same time, rainfall also makes the vegetation around a fire more
moist and less likely to catch fire or spread. However, a relatively water-poor situation
can be predicted by a pre-rainfall analysis, and fire prevention efforts can be advanced
by increasing artificial rainfall, for example. Conversely, if rainfall reaches a certain level,
it may also cause natural disasters such as flooding, which can create new problems. In
summary, total precipitation is one of the most important factors affecting the probability of
forest fires. By consistently increasing total precipitation, the moisture content in vegetation
can be increased, reducing the distribution of drought-prone flammable vegetation and



Remote Sens. 2023, 15, 4208 18 of 27

effectively preventing forest fires from occurring. As shown in Figure 10, when the total
precipitation is small, the number of forest fires exceeds 18,000, indicating that this indicator
has a significant impact on the occurrence of forest fires and that measures should be taken
to take special precautions when the total precipitation is in this range.
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Figure 10. Statistical map of the number of forest fires under different total precipitation conditions,
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coordinate is the number of forest fires and the dark blue line represents the mean value.

The dew point temperature (weight: 8.21%) is a measure of the moisture content of the
air and has a significant impact on the probability of forest fires. The lower the dew point
temperature, the lower the moisture content of the air and the more likely vegetation will
dry out, thus increasing the likelihood of forest fires. Specifically, when there is insufficient
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moisture in the air, the wetness of the vegetation surface is reduced and the vegetation
itself is more likely to dry out, making it easier for a fire to spread if it encounters a source
of ignition. In addition, the lower the moisture content in the air, the faster the fire spreads
and the more severe the damage caused by the fire. Conversely, when there is sufficient
moisture in the air, the vegetation surface is relatively more moist and therefore less likely
to dry out and catch fire. In the event of a fire, fire spread is also somewhat inhibited as
higher air humidity slows the spread of fire. Thus, higher dew point temperatures are
more conducive to reducing the probability of forest fires. In conclusion, the effect of dew
point temperature on the occurrence of forest fires depends on the moisture content of
the air. When the moisture content of the air is low, the lower the dew point temperature,
the greater the probability of fire occurrence; conversely, the lower the probability of fire
occurrence. Therefore, in forest fire prevention and monitoring, attention should be paid to
the moisture content of the air and reasonable control of the moisture content of the air to
maintain the moisture balance of the vegetation, thus reducing the probability of forest fires.
As shown in Figure 11, the influence of dew point temperature on the number of forest
fires spans a wide range and the degree of influence is not very concentrated compared to
combustible related factors.
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According to the results, forest fuels have a strong influence on the occurrence of forest
fires, with meteorological factors having a secondary effect on forest fires. In general, long
periods of increased air temperature and decreased relative humidity lead to increased
transpiration and decreased fuel moisture content in forest areas, therefore increasing the
flammability of fuel in forest areas and leading to an increased probability of forest fires.
In contrast, an increase in rainfall and relative humidity increases the water content of
combustible material and reduces the risk of forest fires. Furthermore, in addition to the
important indicator of daily rainfall, the effect of rainfall on forest fires is also related to
total precipitation. In other words, even though vegetation has the ability to regulate and
adapt, its flammability gradually increases if there is a prolonged lack of rainfall. Wind
speed has been used in forest fire-related research mainly to study its effect on the direction
and speed of spread and propagation of forest fires. However, its effect is due to its ability
to change the relative humidity of the air and heat, among other things.
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Vegetation factors have a greater impact on the probability of forest fires compared
to topography and human activity factors. Areas with high forest cover tend to have
more dry, dead wood and vegetation, which can burn easily and spread more quickly,
so the probability of forest fires is higher in areas with high forest cover. Areas with
high grass cover have a relatively lower probability of forest fires because grass has a
shorter growth cycle, is easier to clear and manage, and does not create contiguous burning
areas as forests do. In addition, accelerated urbanisation can upset the original ecological
balance and increase the risk of forest fires. Water areas can reduce the incidence and rate
of spread of forest fires. Land cover is therefore an important factor in determining the
probability of forest fires and needs to be taken into account in forest management and
prevention measures.

As for the topographic factors, their influence on forest fire occurrence is small. The
order of contribution is elevation, slope and slope direction, with slope direction having
a relatively small effect, probably because differences in elevation affect climatic condi-
tions (e.g., air humidity, air temperature, rainfall, etc.) and vegetation conditions (e.g.,
combustible species, combustible water content and load). The ability of the terrain to
retain moisture is negatively correlated with slope size, with steeper slopes leading to mois-
ture loss, which can lead to faster drying of combustibles and a reduction in combustible
moisture content.

The contribution of human activity to the forest fire risk early warning model is
relatively small among all the drivers, with the order of contribution being GDP, closest
distance to road and rail lines, population density and closest distance to residential areas.
As China’s forest fire prevention education has intensified and people’s awareness of forest
fire prevention has gradually increased, for example, there have been no forest fires for
many years in the scenic area of Mount Yuelu, which is heavily trafficked during holidays
and weekends.

3.3. Mapping of Forest Fire Risk for Different Months

In this study, the RF model with optimal performance was selected, and important
characteristic factors (evaporation from vegetation canopy, water content of vegetation
canopy, cumulative rainfall, dew point temperature, date, NDVI, volume of water in
the 0–7 cm soil layer, land class, surface temperature 2 m, total evaporation, latitude,
longitude, etc.) were input for Changsha City month by month in 2022. The inverse
distance weighting method was used to interpolate the predicted points to generate a
monthly forest fire probability distribution map for Changsha City. The fire risk level in
this study was divided into five levels (I–V), I: the probability range of 0.0–0.2 represents
the no-risk zone, where forest fires are almost impossible; II: the probability range of
0.2–0.4 represents the medium-risk zone, where forest fires are less likely to occur; III: the
probability range of 0.4–0.6 probability range represents a higher risk zone, with a higher
likelihood of forest fires; IV: 0.6–0.8 probability range represents a high risk zone, with a
high likelihood of forest fires and V: 0.8–1.0 probability range represents an extremely high
risk zone, with an extremely high likelihood of forest fires, and is represented by red on the
indicated in red on the graph.

According to Figure 12, the monthly spatial distribution of forest occurrence risk
in Changsha City varies significantly. Overall, the period from October to May is the
high incidence period of forest fires, of which March, April, May, September, October,
November and December are the months with high forest fire risk in Changsha City.
January and February have low temperatures, low rainfall, a long rainy season and high
water content of combustible materials, which makes the risk relatively low. Areas with
high probability of forest fires in March are mainly located in parts of central Ningxiang
and eastern Changsha County. April is the month with the highest probability of forest
fires in Changsha, in which a larger part of the northern part of Ningxiang is an extremely
high-risk area, and there are high-risk distribution areas around the main urban area, in
the south and in the northeastern part of the Liuyang area, and there are higher-risk areas
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distributed throughout most of the city. This phenomenon is mainly due to the fact that
the Qingming Festival on 5 April each year is a traditional Chinese holiday, which requires
people to go up to the mountains to carry out sacrificial activities and set off fireworks,
leading to a sharp increase in the risk of forest fires. The areas with a high probability of
forest fires in May are mainly located in the eastern part of Changsha city and part of the
southwestern and northern parts of Ningxiang. In September, areas with high probability
of forest fires were mainly located in the western and northern parts of Ningxiang, the
central and western parts of Changsha City and a small part of the eastern part of Liuyang.
In October, high-risk areas were mainly distributed in the northern part of Ningxiang, and
higher-risk areas were mainly distributed in parts of Ningxiang City, central Changsha
County and southern Liuyang. In November, the high-risk areas were mainly located in
southern and northern Ningxiang and central Liuyang City, and the higher-risk areas were
mainly located in central Ningxiang, central and northern Changsha County, and around
the urban area of Liuyang City. In December, except for parts of western Ningxiang and the
Liuyang area, the northern, central and western parts of Changsha were in the high-risk
and higher-risk zones.
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Although the temperatures in Changsha City in June, July and August are the highest
in the year, the mapping results show that the probability of forest fires is small and the
probability of forest fires is not proportional to the temperature. This result is caused
by a combination of several factors. Firstly, Changsha region belongs to the subtropical
monsoon climate zone. The evaporation from the top of the vegetation canopy and the
water content of the vegetation canopy are usually high in June, July and August each year.
Vegetation is relatively well supplied with water in the summer months, which reduces
the risk of forest fires. Secondly, these three months are a period of higher rainfall, higher
cumulative rainfall during the same period and lower risk due to the high water content of
combustible materials during the same period of rain and heat. In addition, Changsha has
higher relative humidity and higher soil surface water volume during these three months.
This allows for timely replenishment of the water needed for plant growth and slows down
the possibility of forest fires caused by wilting vegetation.

4. Discussion

Three machine learning algorithms are used in this study, namely Adaptive Augmen-
tation Algorithm (AdaBoost), Gradient Boosted Tree (GBDT) and Random Forest (RF). All
three algorithms are common classification algorithms with a wide range of application
scenarios and good predictive performance. The results show that the accuracy of all three
models is above 0.89, which is a substantial improvement in accuracy relative to recent
related studies [5,6,25,28,36–43]. Among them, the RF model (AUC: 0.981) in this study has
the best prediction effect and further improves the accuracy by 1–2% relative to tan (AUC:
0.972), shao (AUC: 0.951) [5,41]. The GBDT model (AUC: 0.978) improves the accuracy by
3–6% relative to tan (AUC: 0.958), shao (AUC: 0.912) [5,41]. The AdaBoost model (AUC:
0.891) with relatively poor prediction accuracy also has higher accuracy than some recent
studies [35]. Meanwhile, both related studies and this paper found that the accuracy of
the RF model is better relative to other methods, which means that early warning of forest
fires using the RF machine learning model is relatively reliable [5,6,37,41]. The AdaBoost
model has high accuracy and adaptive adjustment ability in forest fire prediction and can
provide relatively accurate prediction results (AUC: 0.891) [39]. However, it is sensitive to
noise and has a long training time, requiring careful parameter selection. Therefore, when
using AdaBoost for forest fire prediction, attention needs to be paid to noise handling and
parameter tuning to achieve the best results, and AdaBoost is not an optimal choice when
dealing with the problem of forest fire occurrence prediction. Gradient Boosting Decision
Tree (GBDT) is an integrated algorithm based on decision trees that can process nonlinear,
nonconvex, and nonsmooth data. GBDT can adaptively select features and is robust and
adaptive [69]. However, GBDT requires a large amount of data for training, and if the
dataset is small, it is easy to overfit and requires careful parameter tuning. In this study, the
amount of data is relatively large, and the prediction accuracy of the GBDT algorithm is
high (AUC: 0.978), but there is still a certain gap compared to the RF algorithm. Random
Forest is an integrated algorithm based on decision trees, which is based on random ideas
and reduces the risk of overfitting by constructing multiple decision trees. RF is more
tolerant to noise and missing data and can effectively assess complex interactions and
nonlinear relationships between explanatory variables. The RF algorithm uses a tree-based
approach, and the tree structure has a great advantage over other data structures in terms
of interpretability and visualization [5,6,25,41,43]. In this study, the RF algorithm has the
best prediction accuracy (AUC: 0.981), indicating that the RF algorithm is more suitable for
forest fire occurrence prediction models than other algorithms.

When predicting the occurrence of forest fires, related research mainly introduces four
major categories of driving factors, such as meteorology (temperature, humidity, wind
speed, wind direction), vegetation (NDVI, land type), topography (elevation, slope, slope
direction) and socio-humanities (GDP, population density, distance from settlements, and
distance from highway lines and railway lines) [5,6,23,40–42,49,52,66,69]. In this study,
we innovatively introduced forest fuel factors (vegetation evapotranspiration, vegetation
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canopy water content) to construct a forest fire prediction model on the basis of the previous
study [2,12,14,16,70,71]. By evaluating the importance of these factors, we found that
canopy evapotranspiration, canopy moisture content, cumulative rainfall and dew point
temperature were the four factors that contributed most to the construction of the forest
fire risk prediction model, and vegetation canopy evapotranspiration and canopy moisture
content, which characterise the fuel state, ranked as the top two factors, which proved
that the fuel factor has a significant impact on forest fire occurrence. By introducing the
fuel matter factor, the prediction accuracy of the model reached more than 98%, which
was further improved compared with the previous related studies [5,41,49]. This result
suggests that more attention needs to be paid to vegetation characteristics and combustible
material status, especially the water content and evaporation of combustible material,
when predicting forest fire occurrence. Meanwhile, the results of this paper show that the
influence of surface temperature on the occurrence of forest fires in Changsha is ranked
low, with a proportion of 6.1%. In other studies, the proportion of temperature is high,
and probably the effect of temperature is very important [5,25,36,41,45,72,73]. However,
temperature is not the most important factor in Changsha, and the forest fire driving
factors cannot be simply transplanted to Changsha for analysis. The local vegetation
characteristics and meteorological conditions need to be fully considered before introducing
the impact parameters.

In order to prevent and control forest fires more effectively, this study also has iden-
tified some areas that deserve further research. For example, in the process of sample
data set construction, a spatio-temporal random method was used to generate random
non-fire points, although the process of generating these points avoided overlapping with
the original fire points as much as possible, but whether the different random generation
methods would affect the accuracy of the model needs to be further explored. Whether
the accuracy of acquiring relevant parameters of meteorological reanalysis data affects the
accuracy of the model also needs to be further investigated. The interactions between the
various factors need to be further investigated in the future.

5. Conclusions

In terms of model prediction, three machine learning methods, AdaBoost, GBDT and
RF, were used to predict the probability of forest fire occurrence in Changsha City. From
the accuracy validation results, the accuracy of these three models is better than 89.1%.
Among them, RF has the highest generalisation ability in predicting forest fire occurrence
in Changsha City, which has an AUC of 98.1%, an accuracy of 93.5%, a precision of 93.9%,
a recall of 94.0% and an F1 of 93.5%. This indicates that the RF model can better predict the
probability of forest fire occurrence in Changsha, and the results can provide a reference for
future forest fire risk prediction in Changsha.

In terms of the importance of forest fire occurrence driving factors, the evaluation
results showed that the vegetation characteristics had the highest importance, and the
meteorological factors were the next most important. In this study, evapotranspiration from
the top of the vegetation canopy (weight: 15.4%) and water content of the vegetation canopy
(weight: 12.7%) were innovatively introduced. We found that they were the two factors
that had the greatest influence on the construction of forest fire prediction models, which
suggests that the characteristics of the vegetation itself and the state of combustibles are
more important factors that deserve attention when predicting the occurrence of forest
fires. Meanwhile, we found that the temperature (weight: 8.2%) among the meteorological
factors has relatively little influence on the construction of the forest fire prediction model
in Changsha. The discovery of this law can, to a certain extent, influence people’s subjective
view that air temperature is closely related to the occurrence of forest fires and provide a
new way of thinking for the optimisation of the index system for predicting the occurrence
of forest fires. It is conducive to improving the ability of forest fire prediction in subtropical
monsoon climate zones.
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By producing monthly forest fire occurrence probability prediction maps for Changsha
City, the results show that the monthly difference of forest fire risk in Changsha City is
obvious, and March, April, May, September, October, November and December are the
seasons of high forest fire risk in Changsha City, with a large area of medium-high fire
risk area, mainly distributed in the central and northern areas of Changsha City. Areas in
central and northern Changsha City with a high probability of forest fires should be closely
monitored during the period of high forest fire risk, so that forest fires can be prevented
early and a quick response can be made if a fire occurs. At the same time, the forest fire risk
map drawn can further optimise the spatial distribution of forest fire monitoring equipment
and the rational allocation of fire prevention and suppression resources. Meanwhile, June,
July and August are the highest temperature periods of the year, but the probability of
forest fires is relatively low, and we found that the occurrence of forest fires in Changsha
City is not proportional to the temperature. In the future, we hope to optimise the model
by using combustible data and meteorological data with higher timeliness and accuracy
and further study the important factors affecting the occurrence of forest fires in different
climatic environments.

Author Contributions: X.W. conceived and designed the study; X.W., Z.Y., Y.Y., G.Z., Z.P. wrote the
first draft, collected the data and wrote the code to process the data; G.Z., Z.Y., Y.Y., Z.P., S.T. and
Z.P. provided innovative insights in editing the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China Youth
Project (grant no. 32201552), Science and Technology Innovation Platform and Talent Plan Project of
Hunan Province (grant no. 2017TP1022), Youth Project of Hunan Provincial Philosophy and Social
Science Foundation (grant no. 21YBQ054), Changsha City Natural Science Foundation (grant no.
kq2202274) and Hunan Forestry Science and Technology Research and Innovation Project (grant no.
XLKY202331).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clarke, H.; Nolan, R.H.; De Dios, V.R.; Bradstock, R.; Griebel, A.; Khanal, S.; Boer, M.M. Forest fire threatens global carbon sinks

and population centres under rising atmospheric water demand. Nat. Commun. 2022, 13, 7161. [CrossRef] [PubMed]
2. Xie, J.; Qi, T.; Hu, W.; Huang, H.; Chen, B.; Zhang, J. Retrieval of Live Fuel Moisture Content Based on Multi-Source Remote

Sensing Data and Ensemble Deep Learning Model. Remote Sens. 2022, 14, 4378. [CrossRef]
3. Justino, F.; Bromwich, D.H.; Schumacher, V.; Dasilva, A.; Wang, S.-H. Arctic Oscillation and Pacific-North American pattern

dominated-modulation of fire danger and wildfire occurrence. NPJ Clim. Atmos. Sci. 2022, 5, 52. [CrossRef]
4. Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using

Random Forest Algorithm. Forests 2020, 11, 507. [CrossRef]
5. Tan, C.; Feng, Z. Mapping Forest Fire Risk Zones Using Machine Learning Algorithms in Hunan Province, China. Sustainability

2023, 15, 6292. [CrossRef]
6. Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest Fire Occurrence Prediction in China Based on Machine

Learning Methods. Remote Sens. 2022, 14, 5546. [CrossRef]
7. Wang, L.; Quan, X.; He, B.; Yebra, M.; Xing, M.; Liu, X. Assessment of the dual polarimetric sentinel-1A data for forest fuel

moisture content estimation. Remote Sens. 2019, 11, 1568. [CrossRef]
8. White, D.A.; Balocchi-Contreras, F.; Silberstein, R.P.; de Arellano, P.R. The effect of wildfire on the structure and water balance of

a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser.) forest in central Chile. For. Ecol. Manag. 2020, 472, 118219.
[CrossRef]

9. Li, W.; Xu, Q.; Yi, J.; Liu, J. Predictive model of spatial scale of forest fire driving factors: A case study of Yunnan Province, China.
Sci. Rep. 2022, 12, 19029. [CrossRef]

10. Sun, J.; Qi, W.; Huang, Y.; Xu, C.; Yang, W. Facing the Wildfire Spread Risk Challenge: Where Are We Now and Where Are We
Going? Fire 2023, 6, 228. [CrossRef]

11. Rossa, C.G. The effect of fuel moisture content on the spread rate of forest fires in the absence of wind or slope. Int. J. Wildland
Fire 2017, 26, 24–31. [CrossRef]

https://doi.org/10.1038/s41467-022-34966-3
https://www.ncbi.nlm.nih.gov/pubmed/36418312
https://doi.org/10.3390/rs14174378
https://doi.org/10.1038/s41612-022-00274-2
https://doi.org/10.3390/f11050507
https://doi.org/10.3390/su15076292
https://doi.org/10.3390/rs14215546
https://doi.org/10.3390/rs11131568
https://doi.org/10.1016/j.foreco.2020.118219
https://doi.org/10.1038/s41598-022-23697-6
https://doi.org/10.3390/fire6060228
https://doi.org/10.1071/WF16049


Remote Sens. 2023, 15, 4208 25 of 27

12. Costa-Saura, J.M.; Balaguer-Beser, Á.; Ruiz, L.A.; Pardo-Pascual, J.E.; Soriano-Sancho, J.L. Empirical Models for Spatio-Temporal
Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological
Data. Remote Sens. 2021, 13, 3726. [CrossRef]

13. Konings, A.G.; Saatchi, S.S.; Frankenberg, C.; Keller, M.; Leshyk, V.; Anderegg, W.R.L.; Humphrey, V.; Matheny, A.M.; Trugman,
A.; Sack, L.; et al. Detecting forest response to droughts with global observations of vegetation water content. Glob. Chang. Biol.
2021, 27, 6005–6024. [CrossRef] [PubMed]

14. Luo, K.; Quan, X.; He, B.; Yebra, M. Effects of Live Fuel Moisture Content on Wildfire Occurrence in Fire-Prone Regions over
Southwest China. Forests 2019, 10, 887. [CrossRef]

15. Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest
burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [CrossRef]

16. Chuvieco, E.; González, I.; Verdú, F.; Aguado, I.; Yebra, M. Prediction of fire occurrence from live fuel moisture content
measurements in a Mediterranean ecosystem. Int. J. Wildland Fire 2009, 18, 430–441. [CrossRef]

17. Yin, S.; Shan, Y.; Tang, S.; Douglas, G.; Yu, B.; Cui, C.; Cao, L. Study on the Limit of Moisture Content of Smoldering Humus
during Sub-Surface Fires in the Boreal Forests of China. Forests 2023, 14, 252. [CrossRef]

18. Lehmann, C.E.R.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.;
Fensham, R.J.; Felfili, J.; et al. Savanna Vegetation-Fire-Climate Relationships Differ Among Continents. Science 2014, 343, 548–552.
[CrossRef] [PubMed]

19. Zhang, H.; Qi, P.; Guo, G. Improvement of fire danger modelling with geographically weighted logistic model. Int. J. Wildland
Fire 2014, 23, 1130–1146. [CrossRef]

20. Fang, L.; Yang, J.; Zu, J.; Li, G.; Zhang, J. Quantifying influences and relative importance of fire weather, topography, and
vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 2015, 356, 2–12. [CrossRef]

21. Fan-Hua, K.; Xiu-Zhen, L.; Hai-Wei, Y. Landscape change on burned blanks in Daxing’s Mountains. J. For. Res. 2004, 15, 33–38.
[CrossRef]

22. Akther, M.S.; Hassan, Q.K. Remote sensing-based assessment of fire danger conditions over boreal forest. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2011, 4, 992–999. [CrossRef]

23. Fry, D.L.; Stephens, S.L. Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the
southeastern Klamath Mountains, California. For. Ecol. Manag. 2006, 223, 428–438. [CrossRef]

24. Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts
of Anthropogenic Climate Change on Wildfire in California. Earths Futur. 2019, 7, 892–910. [CrossRef]

25. He, W.; Shirowzhan, S.; Pettit, C.J. GIS and Machine Learning for Analysing Influencing Factors of Bushfires Using 40-Year
Spatio-Temporal Bushfire Data. ISPRS Int. J. Geo Inf. 2022, 11, 336. [CrossRef]

26. Sun, L.; Yang, L.; Xia, X.; Wang, D.; Zhang, T. Climatological Aspects of Active Fires in Northeastern China and Their Relationship
to Land Cover. Remote Sens. 2022, 14, 2316. [CrossRef]

27. Kumari, B.; Pandey, A.C. MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spat. Inf. Res. 2019,
28, 87–99. [CrossRef]

28. Rodrigues, M.; De la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ.
Model. Softw. 2014, 57, 192–201. [CrossRef]

29. Nami, M.H.; Jaafari, A.; Fallah, M.; Nabiuni, S. Spatial prediction of wildfire probability in the Hyrcanian ecoregion using
evidential belief function model and GIS. Int. J. Environ. Sci. Technol. 2017, 15, 373–384. [CrossRef]

30. Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of general indicators influencing on forest fire and its
susceptibility modeling using different data mining techniques. Ecol. Indic. 2016, 64, 72–84. [CrossRef]

31. Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol. Inform.
2017, 39, 32–44. [CrossRef]

32. Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.-X.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment
in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total
Environ. 2017, 621, 1124–1141. [CrossRef] [PubMed]

33. Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel ensembles of adaptive
neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018, 615, 438–451. [CrossRef]

34. Guo, F.; Zhang, L.; Jin, S.; Tigabu, M.; Su, Z.; Wang, W. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China
Using Logistic Regression and Random Forests. Forests 2016, 7, 250. [CrossRef]

35. Rosadi, D.; Andriyani, W.; Arisanty, D.; Agustina, D. Prediction of Forest Fire using Hybrid SOM-AdaBoost Method. In Journal of
Physics: Conference Series; IOP Publishing: Bristol, UK, 2021.

36. Coughlan, R.; Di Giuseppe, F.; Vitolo, C.; Barnard, C.; Lopez, P.; Drusch, M. Using machine learning to predict fire-ignition
occurrences from lightning forecasts. Meteorol. Appl. 2021, 28, e1973. [CrossRef]

37. He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine
Learning Methods. Remote Sens. 2021, 13, 1572. [CrossRef]

38. Reyes-Bueno, F.; Loján-Córdova, J. Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for
Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador. Forests 2022, 13, 474. [CrossRef]

https://doi.org/10.3390/rs13183726
https://doi.org/10.1111/gcb.15872
https://www.ncbi.nlm.nih.gov/pubmed/34478589
https://doi.org/10.3390/f10100887
https://doi.org/10.1038/s41467-021-27225-4
https://doi.org/10.1071/WF08020
https://doi.org/10.3390/f14020252
https://doi.org/10.1126/science.1247355
https://www.ncbi.nlm.nih.gov/pubmed/24482480
https://doi.org/10.1071/WF13195
https://doi.org/10.1016/j.foreco.2015.01.011
https://doi.org/10.1007/BF02858007
https://doi.org/10.1109/JSTARS.2011.2165940
https://doi.org/10.1016/j.foreco.2005.12.021
https://doi.org/10.1029/2019EF001210
https://doi.org/10.3390/ijgi11060336
https://doi.org/10.3390/rs14102316
https://doi.org/10.1007/s41324-019-00275-z
https://doi.org/10.1016/j.envsoft.2014.03.003
https://doi.org/10.1007/s13762-017-1371-6
https://doi.org/10.1016/j.ecolind.2015.12.030
https://doi.org/10.1016/j.ecoinf.2017.03.003
https://doi.org/10.1016/j.scitotenv.2017.10.114
https://www.ncbi.nlm.nih.gov/pubmed/29074239
https://doi.org/10.1016/j.scitotenv.2017.09.262
https://doi.org/10.3390/f7110250
https://doi.org/10.1002/met.1973
https://doi.org/10.3390/rs13081572
https://doi.org/10.3390/f13030474


Remote Sens. 2023, 15, 4208 26 of 27

39. Rubí, J.N.; de Carvalho, P.H.; Gondim, P.R. Application of machine learning models in the behavioral study of forest fires in the
Brazilian Federal District region. Eng. Appl. Artif. Intell. 2023, 118, 105649. [CrossRef]

40. Saha, S.; Bera, B.; Shit, P.K.; Bhattacharjee, S.; Sengupta, N. Prediction of forest fire susceptibility applying machine and deep
learning algorithms for conservation priorities of forest resources. Remote Sens. Appl. Soc. Environ. 2023, 29, 100917. [CrossRef]

41. Shao, Y.; Feng, Z.; Sun, L.; Yang, X.; Li, Y.; Xu, B.; Chen, Y. Mapping China’s Forest Fire Risks with Machine Learning. Forests 2022,
13, 856. [CrossRef]

42. Tariq, A.; Shu, H.; Siddiqui, S.; Munir, I.; Sharifi, A.; Li, Q.; Lu, L. Spatio-temporal analysis of forest fire events in the Margalla
Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. J. For. Res.
2021, 33, 183–194. [CrossRef]

43. Xie, L.; Zhang, R.; Zhan, J.; Li, S.; Shama, A.; Zhan, R.; Wang, T.; Lv, J.; Bao, X.; Wu, R. Wildfire Risk Assessment in Liangshan
Prefecture, China Based on An Integration Machine Learning Algorithm. Remote Sens. 2022, 14, 4592. [CrossRef]

44. Adab, H.; Kanniah, K.D.; Solaimani, K.; Sallehuddin, R. Modelling static fire hazard in a semi-arid region using frequency
analysis. Int. J. Wildland Fire 2015, 24, 763–777. [CrossRef]

45. Jaafari, A.; Zenner, E.K.; Pham, B.T. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of
decision tree based classifiers. Ecol. Inform. 2018, 43, 200–211. [CrossRef]

46. Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based
neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For.
Meteorol. 2017, 233, 32–44. [CrossRef]

47. Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire Risk Assessment Using Neural Network and Logistic Regression.
J. Indian Soc. Remote Sens. 2016, 44, 885–894. [CrossRef]

48. Vecín-Arias, D.; Castedo-Dorado, F.; Ordóñez, C.; Rodríguez-Pérez, J.R. Biophysical and lightning characteristics drive lightning-
induced fire occurrence in the central plateau of the Iberian Peninsula. Agric. For. Meteorol. 2016, 225, 36–47. [CrossRef]

49. Zhao, P.; Zhang, F.; Lin, H.; Xu, S. GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing.
Remote Sens. 2021, 13, 3704. [CrossRef]

50. Rodrigues, M.; Zúñiga-Antón, M.; Alcasena, F.; Gelabert, P.; Vega-Garcia, C. Integrating geospatial wildfire models to delineate
landscape management zones and inform decision-making in Mediterranean areas. Saf. Sci. 2022, 147, 105616. [CrossRef]

51. Wang, S.; Zhang, G.; Tan, S.Q.; Wang, P.; Wu, X. Assessment of forest fire risk in Hunan province based on spatial logistic model.
J. Cent. South Univ. For. Technol. 2020, 40, 88–95.

52. Yang, X.; Jin, X.; Zhou, Y. Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests
2021, 12, 1299. [CrossRef]

53. Luo, F.; Wang, C.; Lei, H.; Xiao, Z. Young adults’ perception of forests using landscape-image-sketching technique: A case study
of Changsha, Central China. Int. J. Environ. Res. Public Health 2023, 20, 2986. [CrossRef]

54. Hu, T.; Dong, J.; Hu, Y.; Qiu, S.; Yang, Z.; Zhao, Y.; Cheng, X.; Peng, J. Stage response of vegetation dynamics to urbanization in
megacities: A case study of Changsha City, China. Sci. Total Environ. 2023, 858, 159659. [CrossRef]

55. Liu, Z.H.; Yang, J.; He, H.S.; Chang, Y. Spatial point analysis of fire occurrence and its influence factor in Huzhong forest area of
the Great Xing ‘an Mountains in Heilongjiang Province, China. Acta Ecol. Sin. 2011, 31, 1669–1677.

56. Bhattarai, N.; Dahal, S.; Thapa, S.; Pradhananga, S.; Karky, B.S.; Rawat, R.S.; Windhorst, K.; Watanabe, T.; Thapa, R.B.; Avtar, R.
Forest Fire in the Hindu Kush Himalayas: A Major Challenge for Climate Action. J. For. Livelihood 2022, 21, 14–31. [CrossRef]

57. Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m
resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [CrossRef]

58. Li, Y.; Feng, Z.; Chen, S.; Zhao, Z.; Wang, F. Application of the Artificial Neural Network and Support Vector Machines in Forest
Fire Prediction in the Guangxi Autonomous Region, China. Discret. Dyn. Nat. Soc. 2020, 2020, 1–14. [CrossRef]

59. Son, R.; Stacke, T.; Gayler, V.; Nabel, J.E.M.S.; Schnur, R.; Silva, L.A.; Mesa, C.R.; Winkler, A.; Hantson, S.; Zaehle, S.; et al.
Integration of a deep-learning-based fire model into a global land surface model. J. Adv. Model. Earth Syst. 2023.

60. Eddin, M.H.S.; Roscher, R.; Gall, J. Location-Aware Adaptive Normalization: A Deep Learning Approach for Wildfire Danger
Forecasting. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [CrossRef]

61. Maffei, C.; Menenti, M. Predicting forest fires burned area and rate of spread from pre-fire multispectral satellite measurements.
ISPRS J. Photogramm. Remote Sens. 2019, 158, 263–278. [CrossRef]

62. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean
Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [CrossRef]
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