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Abstract: Space-based infrared target detection can provide full-time and full-weather observation of
targets, thus it is of significance in space security. However, the presence of stars in the background
can severely affect the accuracy and real-time performance of infrared dim and small target detection,
making star suppression a key technology and hot spot in the field of space target detection. The
existing star suppression algorithms are all oriented towards the detection before track method and
rely on the single image properties of the stars. They can only effectively suppress bright stars with
a high signal-to-noise ratio (SNR). To address this problem, we propose a new method for infrared
dim star background suppression based on recursive moving target indication (RMTI). Our proposed
method is based on a more direct analysis of the image sequence itself, which will lead to more
robust and accurate background suppression. The method first obtains the motion information of
stars through satellite motion or key star registration. Then, the advanced RMTI algorithm is used to
enhance the stars in the image. Finally, the mask of suppressing stars is generated by an accumulation
frame adaptive threshold. The experimental results show that the algorithm has a less than 8.73%
leakage suppression rate for stars with an SNR ≤ 2 and a false suppression rate of less than 2.3%.
The validity of the proposed method is verified in real data. Compared with the existing methods,
the method proposed in this paper can stably suppress stars with a lower SNR.

Keywords: star background suppression; recursive moving target indication; dim space target
detection

1. Introduction

The utilization of space resources has led to an increase in space debris, asteroids,
and failed satellites, which pose a serious threat to working satellites [1,2]. Ensuring space
security is a vital mission, and the ability to surveil these space targets is essential in
achieving this goal [3,4]. Space infrared remote sensing provides full-time and full-weather
observation of objects, making it the main tool for surveilling space targets. However,
due to the long detection range, limited resolution, low radiant energy, and small target
size, these space targets appear as dim point targets in the focal plane [5–9]. These low
signal-to-noise ratio (SNR) point targets are inherently difficult to detect, especially with
complex backgrounds and noise [10–14]. Therefore, background suppression is crucial for
space target observation.

Stars are a crucial component of the deep space background and, like other space
targets, appear as point sources in images [15,16]. However, stars are a significant source
of false alarms in space target detection [17,18]. If the star background cannot be effec-
tively suppressed, it can negatively impact the accuracy and real-time performance of the
detection process [19,20]. While most algorithms proposed in the past few decades have
focused on clearing bright stars as part of high-SNR target detection, few have addressed
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the suppression of dim stars. A few algorithms that can suppress dim stars are limited
by specific application conditions. Nevertheless, the presence of dim stars in the back-
ground cannot be ignored. Therefore, this paper aims to propose a universal dim star
background suppression method that can ensure the accurate and real-time detection of
low-SNR targets.

1.1. Research Status

Detecting stars in space images can be challenging due to their similar characteristics
to other space targets. Existing algorithms can be generally classified into two kinds, which
are based on star catalogue and image. The algorithms based on images often rely on multi-
frame images to introduce kinematic characteristics. Stars, being stationary in celestial
coordinates for short periods, can be distinguished from other moving space targets [21].
Spatial–temporal correlation information is used to classify detection methods into two cate-
gories: space before time (SBT) and time before space (TBS). Previous research has explored
both approaches. SBT methods prioritize spatial information before temporal [22–26], while
TBS methods prioritize temporal information before spatial [27–31].

SBT utilizes the detection before track (DBT) method to detect potential targets, which
may include stars. Then, stars are stationary in celestial coordinates and have fixed positions
relative to each other in time, while real space targets and stars constantly change positions,
as shown in Figure 1. The blue stars present stars and the red point presents space targets.
Therefore, SBT can suppress stars from other space targets by extracting the position
information of potential targets from a single frame. This approach allows for more
accurate tracking of real space targets.
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Figure 1. The schematic of stars suppression of SBT.

For instance, Hong Zhang et al. [22] define a feature space of distance (FSD) between
stars to describe the invariance of distance among the stars. This method is used for
feature matching and image transformation to achieve image registration. After image
registration, the star background can be easily suppressed by the image difference. Other
SBT methods based on star image registration adopt different matching features and
registration algorithms. Yu Zhu et al. [23] propose the longest common sub-sequence
(LCS) to find the isomorphism sub-graph which represents the matched feature pairs.
Qingqing Luo et al. [24] introduce an iterative closest point algorithm which is a widely
used point cloud registration algorithm. They also proposed a Gaussian mixture probability
hypothesis density filter to avoid the target being mistakenly associated with stars. Feng
Liu et al. [25] apply a mature and effective triangle algorithm to register stars. Meanwhile,
target motion track detection is also considered to further suppress noise. Recently, the
interior angle matrix has been used to describe the topological invariance of stars [26].
Then, stars are suppressed by sequence frame offset statistics histogram.

SBT methods rely on detecting stars using a single frame, which severely limits the
SNR of suppressed stars. As a result, these methods are not suitable for aiding the detection
of very-low-SNR targets.

Figure 2 illustrates the TBS method, which utilizes the position invariant theory to
identify potential targets. The blue stars present stars and the red point presents space
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targets. The black line denotes the movement of the target and the star. Unlike SBT, TBS
accumulates the energy of potential targets from the time dimension. This allows all
potential targets to gain their corresponding route. The route of space targets is markedly
different from the route of stars, whether the field of the camera is moving or still. By
identifying the routes of space targets, TBS can suppress the stars and effectively identify
potential targets.
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The key to TBS is to identify the route difference to suppress stars. Wang Hou et al. [27]
propose a main directional suppression high pass filter for star line suppression, which
considers the phase of the spectrum as the velocity of the target. Similarly, an adaptive
linear filtering method is proposed to decrease the influence region of stars filtering uni-
formly [28]. Furthermore, the moving target indicator (MTI) algorithm is an effective
trajectory detection method that achieves target detection and star suppression through
route energy accumulation and direction judgment [29]. Another set of TBS methods
focuses on the still field of the camera. Interval frame subtraction is applied to suppress
stars, and back neighborhood frame correlation is proposed to protect the targets covered
by stars [30]. Additionally, a star subtraction mask is obtained by introducing the maximum
frame and medium frame, which can suppress the still star residues [31].

The preceding methods are highly dependent on their corresponding target detection
methods, making them challenging to apply to alternative methods. Furthermore, the use
of multiple frames superimposition is utilized to derive the star route, but this approach
has limited energy enhancement and is unable to effectively suppress stars with a very
low SNR.

The algorithms based on star catalogue are theoretically not limited by the SNR of stars.
According to the reference method of the star catalogue, it can be divided into two categories.
The first is star identification. Star identification determines the correspondence between
stars based on the feature matching of the star catalogue consisting of the observed stars in
the field of view. Star identification is the key technic of satellite position confirmation from
the star sensor. To pursue a faster and more robust star identification performance, neural
networks [32], color ratio information [33], rotation-invariant additive vector sequence [34],
and so on are introduced and have obtained good results. In the application of star
suppression, star identification matches the stars in the image for suppression. These
algorithms can suppress all the stars recorded by the star catalogue regardless of the
SNR. The second is the star map mask. These algorithms generate a star mask from the
observation direction and star catalogue [35]. Like star identification, these algorithms are
not limited by star SNR because they rely on star catalogue.

In addition to the previously mentioned methods, there exist various algorithms for
star observation. Some of these algorithms aim to suppress stars or enhance them. For
example, one approach involves using two spectral band sensors to estimate the temper-
ature of targets and differentiate stars based on temperature differences [19]. However,
this method requires high-quality detection hardware. In cases where the target is at a
finite distance and its scale is larger than 3 × 3 pixels [36], connected components analysis
can be used to cluster stars. This method cannot be generalized to other applications.
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Currently, neural networks are widely used for the classification of remote sensing image
data. An improved CBDNet network structure has been proposed for star background
suppression, which is trained using real images [37]. However, it is important to note that
the signal-to-noise ratio (SNR) of stars that this algorithm can handle is limited.

In conclusion, there is no universal infrared dim star background suppression. The
algorithms based on images are mainly used to suppress the high-SNR star background.
Although the algorithms based on star catalogue can suppress low-SNR stars, it is not
suitable for the preprocessing of space target detection and tracking. These algorithms may
suppress some stars that are not in the image, causing information loss and consuming
more computing resources. Other algorithms require specific application conditions that are
not universally applicable. If the large amounts of dim infrared stars cannot be suppressed
by preprocessing, the real-time on-board intelligent information processing would be
catastrophic. Therefore, an effective and less consuming infrared dim star background
suppression method is vitally important in practical application.

1.2. Motivation

Previous research has largely overlooked the impact of very-low-SNR stars that can-
not be detected using a single frame. While these stars may not significantly affect the
performance of DBT methods, they can still hurt real-time performance and accuracy in
TBD methods. Existing TBD methods, such as particle filter [38,39], dynamic program-
ming [40,41], and Hough transform [42,43], have primarily focused on digging targets that
are covered by heavy noise. Usually, these TBD methods need extra processes to identify
real targets and stars, which can negatively impact real-time performance and accuracy. For
instance, the particle filter may cancel the route of stars, but the small number of stars as
potential targets requires a large number of additional particles to track, which can waste
computing resources and negatively affect real-time performance.

The main contributions of this paper are as follows: (1) Recursive moving target
indication (RMTI) is improved in a motion vector to enhance dim stars efficiently and
accurately. (2) An adaptive multi-frame accumulation threshold segmentation is proposed,
which can create an accurate star mask. Dim stars can be suppressed in real-time. (3) The set
value of key parameters is provided by analyzing the experiment. Meanwhile, a simulation
experiment was designed to verify the feasibility and robustness of this method. The
proposed algorithm fills the low-SNR star background suppression gap in space target
detection and tracking. It can be used as an efficient preprocessing step for most target
detection and tracking methods and has great practical value.

The remainder of this paper is structured as follows. Section 2 provides a detailed
explanation of our method. In Section 3, we present our experimental approach, including
the set values of main parameters and the resulting experimental results. Section 4 discusses
the performance of our proposed methods. Finally, in Section 5, we present our conclusions.

2. Methodology

Figure 3 displays the block diagram of the proposed infrared dim star background
suppression method based on recursive moving target indication. Firstly, the star motion is
extracted from the high-SNR star map or is deduced from the satellite attitude and orbit
data. Then, the RMTI is used to enhance the dim star and generate the frame mask of
multi-frame accumulation (FMMA). The FMMA carries the number of frames that have
been accumulated for each pixel. Therefore, the adaptive threshold for each pixel is derived
by FMMA. Finally, the star mask can be extracted from a multi-frame enhanced star image
using adaptive threshold segmentation. The dim stars can be suppressed by the star mask.
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2.1. The Multi-Frame Enhancement of Advanced RMTI

RMTI can produce significant SNR gains when the target motion state is known [44,45].
Unlike noncooperative targets, such as space debris, stars remain stationary relative to the
Earth. As a result, estimating the motion information of stars in an image sequence is a
relatively simple task. The phase matrix of the motion spectrum for each frame can be
calculated based on the star motion information, and the spectrum of the current enhanced
frame can be obtained by multiplying the phase matrix of the motion spectrum for the
current frame and the spectrum of the previous enhanced frames. In the space domain,
RMTI enhances stars by registration and accumulation [46]. RMTI processes each frame
and stores the result for further processing. The output of the previous frame is used as the
input for the next frame, allowing for easy adaptation to digital processing.

To continuously, accurately, and efficiently enhance the star, we improve the RMTI in
the motion vector. The multi-frame enhancement of RMTI for stars proceeds is described
below. The signal intensity of the star in the focal plane is denoted by s(r, nt0), where
r represents the coordinate of stars, and t0 is the image sampling period. The star state
transition function is defined as

s(r, nt0) = s(r− vnt0, (n− 1)t0) (1)

where vn is the velocity of the stars in nt0. The image y(r, nt0) can be described as:

y(r, nt0) = s(r, nt0) + n(r, nt0) (2)

where n(r, nt0) represents the noise of the image. The two-dimensional spatial Fourier
transform of the image is:

Y(k, nt0) = Sn−1(k)exp{−ik · vnt0}+ N(k, nt0) (3)

where k denotes a two-dimensional spatial wavenumber vector. Sn−1(k) denotes the
two-dimensional spatial Fourier transform of the star signal of the previous frame, and
N(k, nt0) is the two-dimensional spatial Fourier transform of noise. The star registration of
adjacent frames in the space domain can be achieved by multiplying exp{−ik · vnt0} in the
frequency domain. For convenience, let αn = exp{−ik · vnt0}. αn is the phase matrix of the
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motion spectrum for nt0. When n = 0, the two-dimensional spatial Fourier transform of
the image is:

Y(k, 0) = S0(k) + N(k, 0) (4)

Let X0(k) = Y(k, 0), where Xn(k) denotes the enhanced frequency spectrum of stars.
When n = 1, the two-dimensional spatial Fourier transform of the image is:

Y(k, 1) = S0(k)α1 + N(k, 1) (5)

Since the noise in different positions and times is mutually uncorrelated, we can
describe X1(k) as:

X1(k) = Y(k, 1) + X0(k)α1 (6)

Similarly, when n = 2, X2(k) is defined as:

X2(k) = Y(k, 2) + X1(k)α2 (7)

Therefore, the enhanced frequency spectrum of stars in n can be represented as:

Xn(k) = Y(k, n) + Xn−1(k)αn (8)

To obtain the frequency spectrum of all the superposed frames, we can add the two-
dimensional spatial Fourier transform of the current frame to the frequency spectrum of all
the previous superposed frames, as shown in Equation (8). The result of the current frame
will be superposed by the next frame, and this iteration can output the frequency spectrum
of the enhanced stars of every frame easily.

In practical applications, digital images are represented by integer coordinates, and
the velocity of stars needs to be converted to an integer to avoid artifacts. Let I(x, y, f ) be
the input image with pixel coordinates x, y and frame number f . The image size is M× N,
and x = 1, . . . , M, y = 1, . . . , N. The two-dimensional spatial Fourier transform of the input
image is given by:

FI(u, v, f ) =
M−1

∑
x=0

N−1

∑
y=0

I(x, y, f )e−i2π( ux
M +

vy
N ) (9)

where (u, v) denotes the two-dimensional spatial wavenumber vector.
However, the velocity of stars in the f -th frame, denoted by Vx( f ) and Vy( f ), is

typically non-integer. To address this, we introduce an offset of velocity (Dx−o f f set( f ) and
Dy−o f f set( f )) to compensate for the error of converting velocity to an integer. This allows
us to obtain a more accurate representation of the image without introducing artifacts. To
determine the motion vector of the current frame (Dx( f ) and Dy( f )), we need to consider
the offset of the velocity of the previous frame and the velocity of the current frame together.
This ensures that the motion vector accurately reflects the movement of the stars in the
image. The offset of the velocity of the previous frame and the velocity of the current frame
is given as follows: Dx( f ) = round

[
Vx( f )t0 + Vx−o f f set( f − 1)t0

]
Dy( f ) = round

[
Vy( f )t0 + Vy−o f f set( f − 1)t0

] (10)

{
Dx−o f f set( f ) = Dx( f )−Vx( f )t0
Dy−o f f set( f ) = Dy( f )−Vy( f )t0

(11)

where round(·) means the process of rounding off. When f = 1, Vx−o f f set and Vy−o f f set are
equal to 0. Now, we can deduce the phase matrix of motion spectrum as follows:

α = exp
{
−i
(

Dxu + vDy
)}

(12)
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Hence, according to Equations (9) and (12), Equation (8) can transform as:

FEI(u, v, f ) = FI(u, v, f ) + FEI(u, v, f − 1) · α (13)

Notably, the enhanced spectrum is equivalent to the original spectrum for the first
frame component (FEI(u, v, 1) = FI(u, v, 1)). Furthermore, in actual observations, the vi-
sual field undergoes slow movement, with a maximum motion of two pixels per frame [47].
To optimize computing resources, a lookup table is introduced to determine the phase
matrix of the motion spectrum, as shown in Figure 4. This approach allows for efficient
processing as each iteration only requires the operation of Equations (9) and (13) and a
single lookup.
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Furthermore, the stars that have just entered the field of view have fewer superposed
frames than those almost leaving the field of view. Stars that have more superposed frames
are enhanced to a greater degree. Therefore, to achieve adaptive threshold segments for
different pixels, a mask of superposed frames is introduced. This mask helps to differentiate
between pixels that have a high degree of superposition and those that do not, resulting in
a more accurate representation of the image. The generation of this mask is similar to the
star enhancement and can be described as follows:

FM(u, v, f ) = E(u, v) + FM(u, v, f − 1) · α (14)

Here, FM(u, v, f ) is the spectrum of the mask of superposed frames, E(u, v) denotes
the two-dimensional spatial Fourier transform of the unit image, and alpha is a constant.
In particular, FM(u, v, 1) = E(u, v). Figure 5 shows the generation of this mask. Owing
to the invariability of the unit image of each frame, the procedure is easy to compute
and implement.
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2.2. Adaptive Star Map

In order to improve the accuracy of star detection, an adaptive threshold segmentation
approach is employed. This approach adjusts the threshold based on the number of
superimposed frames for each pixel. Pixels with fewer superimposed frames are assigned
a higher threshold to avoid false detection, while pixels with more superimposed frames
are assigned a lower threshold to improve the detection rate. By using this approach, the
algorithm can effectively detect stars while minimizing the impact of noise.

To determine the threshold for star detection, it is important to understand the proba-
bility distribution of stars, background, and noise. According to engineering practice, the
noise in infrared images is distributed nearly normally [48]. Additionally, the temperature
of deep space is less than 4 K [49], which has a negligible effect on stars. Therefore, in
this paper, the background and noise are estimated using the normal distribution function.
Suppose the distribution of background and noise is N

(
µnoise, σnoise

2). Then, the stars can
be expressed as N

(
µnoise + Istar, σnoise

2), where µnoise and σnoise represent the mean and
standard deviation of the noise, and Istar denotes the responsive intensity of the stars. Since
the background noise is independent between different pixels and different frames, after
n frames accumulation the distribution of the star and noise is still Gaussian, with the
mean amplified by n times and the standard deviation amplified by

√
n times. The noise

and stars distribution will change to N
(
nµnoise, nσnoise

2) and N
(
nµnoise + nIstar, nσnoise

2),
respectively. Ideally, the SNR of the stars will increase by a factor of

√
n. This superimposed

process makes star detection easier, as shown in Figure 6.
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The calculation of the adaptive threshold is introduced in detail below. Firstly, the
enhanced star image EI(x, y, f ) and the mask of superposed frames M(x, y, f ) is obtained
by applying the inverse transformation of two-dimensional spatial Fourier as follows:

EI(x, y, f ) =
1

MN

U−1

∑
u=0

V−1

∑
v=0

FEI(u, v, f )ei2π( ux
M +

vy
N ) (15)

M(x, y, f ) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

FM(u, v, f )ei2π( ux
M +

vy
N ) (16)

Then, we apply median filtering to eliminate stars and other targets. Once the back-
ground is relatively clean, we can estimate the mean (Imean) and standard deviation (I std)
of the background. These values are used to calculate the threshold for eliminating noise
and stars. We use the three sigma criteria along with an analysis of the probability distribu-
tion of stars and noise. By applying these criteria, we obtain the threshold for eliminating
noise (TEN) and the threshold for detecting stars (TDS) as follows:

TEN(x, y, f ) = Imean( f ) ·M(x, y, f ) + CσN · Istd( f ) ·
√

M(x, y, f ) (17)

TDS(x, y, f ) = [Imean( f ) + Psnr · Istd( f )]M(x, y, f ) + CσS · Istd( f ) ·
√

M(x, y, f ) (18)
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where Psnr denotes the lowest signal-to-noise ratio of the stars that plan to suppress. This
parameter can limit the lower limit of the star SNR that needs to be suppressed and enhance
the robustness of the proposed method for blurred images. Then, CσN and CσS are the
coefficients of sigma for eliminating noise and the coefficients of sigma for detecting stars,
respectively. The effectiveness of noise suppression in the image processing algorithm
is directly proportional to the value of CσN . However, it is important to note that an
excessively high value of CσN may result in the erroneous detection of stars. Similarly, the
selection of CσS should aim to balance noise suppression and star detection. Typically, a
value of CσN greater than 4.5 and a value of CσS greater than 3 are recommended. The
specific parameter selection will be explained in Section 3.2. The optimal values of CσN
and CσS can be increased with a higher Psnr. In practical applications, these parameters
can be adjusted based on the acceptable level of false positives and missed detections. To
obtain the final threshold (Tstar), Equations (17) and (18) are used to calculate the number
of frames that make TEN and TDS equal. The final threshold is obtained by fusing the two
thresholds as in the below equation:

Tstar(x, y, f ) =


TEN(x,y, f )+TDS(x,y, f )

2 M(x, y, f ) >
(

Cσ1+Cσ2
Psnr

)2

TEN(x, y, f ) M(x, y, f ) ≤
(

Cσ1+Cσ2
Psnr

)2 (19)

It is crucial to note that the selection of the final threshold depends on the number of
available frames. Figure 7 depicts the probability distribution of star superposition with
different frame numbers and the selection principle of the final threshold. In Figure 7a, the
noise and the star have a lot of overlap, and it is not good to separate the two. Our primary
objective is to eliminate noise and prevent false detection when the number of frames is less.
Owing to the lack of enhanced frames, the stars are mixed with noise, thereby preventing
false detection as the main object. Conversely, if we have sufficient frames, we have the
conditions to distinguish the stars from the noise. Then, we will select the middle value of
the threshold for eliminating noise and detecting stars as the final threshold, as shown in
Figure 7b.
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After the above steps, the adaptive threshold is used to segment the mask of stars
from the enhanced star image. The detection of stars can be suppressed to avoid their
influence on the detection of other space objects. In some cases, it may be beneficial to
further improve the suppression of the star background by applying a morphology dilation
operation to the mask. This process should be chosen based on the specific optical system
under consideration.

3. Experiment and Parameter Setting

In this section, we provide a detailed explanation of the experimental design. Mean-
while, the set value of the main parameters is discussed in order to obtain a good perfor-
mance. Finally, the experimental results compared with other new methods are presented.

3.1. Experimental Setup

In this paper, three satellite real star data were used to verify the robustness and
effectiveness of the proposed method. The parameters of the infrared camera used in this
satellite are listed in Table 1.

Table 1. The parameters of infrared camera used in the satellite.

Parameters Value

Format 512 × 512

The angle resolution of pixel 0.02464◦

The angle of field of view 12.6◦ × 12.6◦

Framerate 20 Hz

Bits per pixel 14 bits

Spectrum 2.1~3.3 µm

Field direction
Seq.1: De = 340.668 Ra = −46.885
Seq.2: De = 298.808 Ra = −59.196
Seq.3: De = 252.166 Ra = −69.028

To evaluate the effectiveness of the proposed method quantificationally in this paper,
we made use of a star table obtained from NASA’s Wide-field Infrared Survey Explorer
(WISE) [50]. Figure 8 shows the procedure for simulating star images. Each color in the
picture corresponds to a star. Arrows indicate camera acquisition direction. The main
method was referenced from star identification described by Zhang Guangjun [51]. The
simulation procedure involved the establishment of a celestial, satellite camera, and image
coordinates. Next, rotation transformation and perspective projection transformation
were employed to convert the stars in the star table to image coordinates. The response
intensities of the stars in the resultant image were then calculated based on factors such
as the minimum detectable star magnitude, corresponding SNR, as well as the star’s
magnitude in the star list. Subsequently, each star was simulated using the point diffusion
function and its response intensity, as well as its sub-pixel position concerning the camera.
It is worth noting that the point diffusion function was approximated by the circular
symmetric two-dimensional Gaussian distribution. In addition to the aforementioned
techniques, a nearly constant velocity model for camera motion was used following the
method in [52]. A randomized approach was adopted to generate the initial right ascension
and declination of the camera, as well as its initial moving speed within the range of
1~3 pixels/frame. Other simulation parameters, as well as their relevant values, are listed
in Table 2. Overall, these simulation procedures accurately reflected the expected behavior
of the proposed method in different scenarios, which validates the effectiveness of the
proposed solution.
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Table 2. The parameters of star map simulation.

Parameters Value

Format 320 × 256

The angle resolution of pixel 0.01784◦

The angle of field of view 4.568◦ × 5.710◦

Framerate 30 Hz

Bits per pixel 14 bits

Spectrum 3 µm

Minimum detectable magnitude (corresponding SNR = 1) 9.56

To quantitatively analyze the effectiveness of the proposed method, three testing
metrics are introduced: the accuracy of star suppression Rts, the ratio of star suppression
Rss, and the average running time per frame Tp f . Suppose the number of stars suppressed
by the method is Ns, and the number of stars correctly suppressed by the method is Ntrue.
Furthermore, the number of stars whose SNR is larger than the lowest SNR of the stars that
plan to suppress is Ntotal . Then, these metrics can be defined as follows:

Rts =
Ntrue

Ns
(20)

Rss =
Ntrue

Ntotal
(21)

3.2. Parameter Setting

To effectively suppress stars, it is crucial to determine the appropriate coefficients of
sigma for both eliminating noise and detecting stars. To test the effectiveness of different
coefficients, we conducted simulations and analyzed the results. Based on our findings, we
will recommend the coefficients for optimal star suppression.

Where N f s f (n) refers to the frame amount that falsely suppressed the nth flickering
pixel. As mentioned above, the evaluation of flickering pixel suppression uses simulation
data. Therefore, the Nr f (n), N f s f (n), and Nms f (n) in Equations (13) and (14) can be
recorded while the simulation is underway.

We introduce Rts × Rss to evaluate the performance of the proposed method. This
index expresses the suppression precision and the suppressing rate, with a range of 0 to 1.
A large value of Rts × Rss can only be obtained when the suppressed stars are many and
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accurate. We simulate hundreds of star image sequences, each using different values of CσN ,
CσS, and SNR to suppress stars. The results of these tests are shown in Figures 9–11, with
SNR values of 1, 1.5, and 2, respectively. Figures 9–11 (a) show the 3D map of Rts× Rss with
different values of CσN and CσS, while Figures 9–11 (b) show the distribution of Rts × Rss
for different values of CσN under maximum CσS, and Figures 9–11 (c) show the distribution
of Rts × Rss for different values of CσS under maximum CσN . It is clear that the suppression
performance is better when CσN is between 4 and 5 and when CσS approaches 6. Table 3
provides a list of typical parameter selections.
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Figure 9. The distribution of Rts × Rss in Psnr = 1. (a) The 3D map of Rts × Rss with different values
of CσN and CσS; (b) the distribution of Rts × Rss for different values of CσN under maximum CσS;
(c) the distribution of Rts × Rss for different values of CσS under maximum CσN .
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Figure 10. The distribution of Rts × Rss in Psnr = 1.5. (a) The 3-D map of Rts × Rss with different
values of CσN and CσS; (b) the distribution of Rts × Rss for different values of CσN under maximum
CσS; (c) the distribution of Rts × Rss for different values of CσS under maximum CσN .
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3.3. Experimental Result 
With the above experimental data and evaluation criterion, the proposed method is 

compared with star map registration via topology invariance (SMRTI) [26] and an en-
hanced moving target indicator (EMTI) [29]. The SMRTI and EMTI are the most recently 
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Table 3. The typical selection of parameters.

Psnr CσN CσS

1 4.2~4.8 5.5~6.0

1.5 4.0~4.6 5.6~6.0

2 4.0~4.4 5.8~6.0

3.3. Experimental Result

With the above experimental data and evaluation criterion, the proposed method
is compared with star map registration via topology invariance (SMRTI) [26] and an
enhanced moving target indicator (EMTI) [29]. The SMRTI and EMTI are the most recently
proposed SBT and TBS, respectively. The proposed method uses the following parameter
setting: CσN = 4.6, CσS = 6, Psnr = 1. The proposed method and other methods are
implemented under MATLAB R2018a with an Intel Core 2.80 GHz processor and 8 GB of
physical memory.

Figures 12–14 show the experimental results of real data Seq.1, Seq.2, and Seq.3, where
(a), (b), and (c) are the result of the proposed method, SMRTI, and EMTI, respectively.
The green star represents the real stars in the image. The red circle represents the stars
suppressed by the proposed method in this paper. The blue box represents the stars
suppressed by SMRTI, and the yellow triangle represents the stars suppressed by EMTI.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 19 
 

 

Figure 10. The distribution of 𝑅 × 𝑅  in Psnr = 1.5. (a) The 3-D map of 𝑅 × 𝑅  with different 
values of 𝐶   and 𝐶  ; (b) the distribution of 𝑅 × 𝑅   for different values of 𝐶   under maxi-
mum 𝐶 ; (c) the distribution of 𝑅 × 𝑅  for different values of 𝐶  under maximum 𝐶 . 

 
(a) (b) (c) 

Figure 11. The distribution of 𝑅 × 𝑅  in Psnr = 2. (a) The 3-D map of 𝑅 × 𝑅  with different 
values of 𝐶   and 𝐶  ; (b) the distribution of 𝑅 × 𝑅   for different values of 𝐶   under maxi-
mum 𝐶 ; (c) the distribution of 𝑅 × 𝑅  for different values of 𝐶  under maximum 𝐶 . 

Table 3. The typical selection of parameters. 𝑷𝒔𝒏𝒓 𝑪𝝈𝑵 𝑪𝝈𝑺 
1 4.2~4.8 5.5~6.0 

1.5 4.0~4.6 5.6~6.0 
2 4.0~4.4 5.8~6.0 

3.3. Experimental Result 
With the above experimental data and evaluation criterion, the proposed method is 

compared with star map registration via topology invariance (SMRTI) [26] and an en-
hanced moving target indicator (EMTI) [29]. The SMRTI and EMTI are the most recently 
proposed SBT and TBS, respectively. The proposed method uses the following parameter 
setting: 𝐶 = 4.6, 𝐶 = 6, 𝑃𝑠𝑛𝑟 = 1. The proposed method and other methods are im-
plemented under MATLAB R2018a with an Intel Core 2.80 GHz processor and 8 GB of 
physical memory. 

Figures 12–14 show the experimental results of real data Seq.1, Seq.2, and Seq.3, 
where (a), (b), and (c) are the result of the proposed method, SMRTI, and EMTI, respec-
tively. The green star represents the real stars in the image. The red circle represents the 
stars suppressed by the proposed method in this paper. The blue box represents the stars 
suppressed by SMRTI, and the yellow triangle represents the stars suppressed by EMTI. 

 
(a) (b) (c) 

Figure 12. The experimental results with Seq.1 real data: (a) proposed method; (b) SMRTI; (c) EMTI. Figure 12. The experimental results with Seq.1 real data: (a) proposed method; (b) SMRTI; (c) EMTI.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

 
(a) (b) (c) 

Figure 13. The experimental results with Seq.2 real data: (a) proposed method; (b) SMRTI; (c) EMTI. 

 
(a) (b) (c) 

Figure 14. The experimental results with Seq.3 real data: (a) proposed method; (b) SMRTI; (c) EMTI. 

Figure 15 presents the experimental results of the proposed method. In Figure 15a, 
the key frames of the simulated star image are shown, where most stars are obscured by 
noise. Figure 15b displays the enhanced star images using the proposed method, revealing 
many low-SNR stars that were previously hidden. Figure 15c shows the stars detected by 
the proposed method, with the blue block indicating the detected stars and the red stars 
representing the actual stars present in the images. While there were a few mistaken de-
tections, the proposed method successfully identified most of the stars, with only a small 
quantity of stars being missed. 

 
(a) 

Figure 13. The experimental results with Seq.2 real data: (a) proposed method; (b) SMRTI; (c) EMTI.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

 
(a) (b) (c) 

Figure 13. The experimental results with Seq.2 real data: (a) proposed method; (b) SMRTI; (c) EMTI. 

 
(a) (b) (c) 

Figure 14. The experimental results with Seq.3 real data: (a) proposed method; (b) SMRTI; (c) EMTI. 

Figure 15 presents the experimental results of the proposed method. In Figure 15a, 
the key frames of the simulated star image are shown, where most stars are obscured by 
noise. Figure 15b displays the enhanced star images using the proposed method, revealing 
many low-SNR stars that were previously hidden. Figure 15c shows the stars detected by 
the proposed method, with the blue block indicating the detected stars and the red stars 
representing the actual stars present in the images. While there were a few mistaken de-
tections, the proposed method successfully identified most of the stars, with only a small 
quantity of stars being missed. 

 
(a) 

Figure 14. The experimental results with Seq.3 real data: (a) proposed method; (b) SMRTI; (c) EMTI.



Remote Sens. 2023, 15, 4152 14 of 18

Figure 15 presents the experimental results of the proposed method. In Figure 15a,
the key frames of the simulated star image are shown, where most stars are obscured by
noise. Figure 15b displays the enhanced star images using the proposed method, revealing
many low-SNR stars that were previously hidden. Figure 15c shows the stars detected
by the proposed method, with the blue block indicating the detected stars and the red
stars representing the actual stars present in the images. While there were a few mistaken
detections, the proposed method successfully identified most of the stars, with only a small
quantity of stars being missed.
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We evaluated the performance of the three methods by recording the accuracy of
star suppression (Rts), the ratio of star suppression (Rss), and the average running time
per frame (Tp f ) using a hundred simulation sequences. The results, presented in Table 4,
demonstrate that the proposed method outperforms the other methods in terms of both
speed and accuracy. Specifically, the proposed method achieves the task quickly and
effectively, as evidenced by its high Rts and low Rss values.

Table 4. The experimental result of methods.

Method Rts Rss Tpf

Proposed method 98.72% 98.82% 0.0031 s

SMRTI 98.19% 69.88% 0.2490 s

EMTI 98.59% 73.28% 0.0640 s

To offer a more intuitionistic star suppression result, the ratio of star suppression on a
different SNR partition is recorded and mapped as follows.

4. Discussion

In the experiment with real data, the proposed method has an obvious advantage over
other methods, as shown in Figures 12–14. The proposed method only misses a few stars.
The effectiveness and robustness of the proposed method are demonstrated.

The working process shown in Figure 15 explains why the proposed method can
suppress a dim star background. The proposed method for suppressing a dim star back-
ground is based on the core idea of treating stars as targets. By enhancing the SNR of stars
through multi-frame accumulation, as shown in Figure 15b, the enhanced stars can be
easily detected through threshold segmentation. Finally, the detected stars in Figure 15c
are suppressed. The proposed method is capable of suppressing the majority of stars in the
field of view, as seen in Figure 15c. However, a small minority of stars may be missed or
wrongly suppressed in the top right corner of the subgraph of Figure 15c due to the lack
of superimposed frames. If we do not accept the suppression results of this region, the
accuracy of star suppression and the ratio of star suppression will be further improved.
However, this comes at the expense of the field of view. Therefore, this promotion scheme
should be considered according to the actual application situation. It is worth noting that
the results compared with SMRTI and EMTI in Table 4 and Figure 16 are evaluated from
the entire field of view.

Space target detection under a star background has been extensively researched, with
a recent focus on high-SNR star suppression and corresponding DBT target detection
methods. As shown in Table 4, the proposed star suppression method has a significant
advantage in the ratio of star suppression. This advantage is mainly due to the effective
suppression of low-SNR stars, as demonstrated in Figure 16. When the SNR is larger
than five, these three methods are evenly matched. When the SNR ratio is smaller, the
advantages of the proposed method are more obvious. The SMRTI and EMTI methods
can suppress a few stars when the SNR is lower than two, and EMTI can suppress more
stars than SMRTI when the SNR is between two and five. This is because EMTI adopts
limited energy accumulation first. However, the proposed method enhances low-SNR stars
through RMTI, resulting in stable and efficient star suppression when the SNR is lower
than five. Although low-SNR stars do not interfere with SMRTI and EMTI, the proposed
method’s ability to suppress them is vital to TBD methods. This is the most significant
contribution of our proposed method. The suppression of a low-SNR star background
is an urgent issue, and the proposed method is on par with EMTI and SMRTI in terms
of the accuracy of star suppression, with all three methods achieving over 98% accuracy.
Additionally, the proposed method has a certain advantage in running time. These results
demonstrate that the proposed method can be widely used in preprocessing for low-SNR
target detection and tracking.
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5. Conclusions

To address the limitation of existing star suppression algorithms in effectively sup-
pressing very-low-SNR star backgrounds, a dim star background suppression algorithm
via RMTI is proposed in this paper. The proposed method involves enhancing the dim
stars using advanced RMTI, followed by an adaptive threshold segmentation to filter out
stars precisely. The experimental results using simulated star images demonstrate that
the proposed method can stably and reliably suppress stars with an SNR of less than
2, with a star suppression rate of over 91%, and an overall star suppression accuracy of
over 98.7%. Compared to the existing star suppression algorithms, the proposed method
exhibits significant improvements in real-time performance and low-SNR star suppression
ability. For real image processing, this method still maintains a good performance. As a
preprocessing step for many TBD methods, the proposed method can effectively reduce
the false detection rate of infrared dim small target detection and tracking and improve the
real-time performance.
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