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Abstract: The automatic calculation of sediment maps from hydroacoustic data is of great importance
for habitat and sediment mapping as well as monitoring tasks. For this reason, numerous papers
have been published that are based on a variety of algorithms and different kinds of input data.
However, the current literature lacks comparative studies that investigate the performance of different
approaches in depth. Therefore, this study aims to provide recommendations for suitable approaches
for the automatic classification of side-scan sonar data that can be applied by agencies and researchers.
With random forests, support vector machines, and convolutional neural networks, both traditional
machine-learning methods and novel deep learning techniques have been implemented to evaluate
their performance regarding the classification of backscatter data from two study sites located in the
Sylt Outer Reef in the German Bight. Simple statistical values, textural features, and Weyl coefficients
were calculated for different patch sizes as well as levels of quantization and then utilized in the
machine-learning algorithms. It is found that large image patches of 32 px size and the combined use
of different feature groups lead to the best classification performances. Further, the neural network
and support vector machines generated visually more appealing sediment maps than random forests,
despite scoring lower overall accuracy. Based on these findings, we recommend classifying side-scan
sonar data with image patches of 32 px size and 6-bit quantization either directly in neural networks
or with the combined use of multiple feature groups in support vector machines.

Keywords: Sylt outer reef; side-scan sonar; sonar backscatter; marine protected area; bottom sampling;
sediment; convolutional neural network; random forest; support vector machine

1. Introduction

Numerous regulations and directives on European and national levels request a high
range of regular monitoring activities for MPAs (marine protected areas) and marine habi-
tats with anthropogenic interventions and impacts. For example, the descriptor “D6 Seabed
integrity” of the Marine Strategy Framework Directive (MSFD; directive 2008/56/EC)
“ensures that the structure and functions of the ecosystems are safeguarded and benthic
ecosystems, [. . .], are not adversely affected”, which, inter alia, relies on knowledge about
the spatial extent of habitat types.

Underwater remote sensing methods are an important tool to document seafloor
characteristics such as sediment composition, benthic communities, and human impacts
such as bottom trawling fisheries. It is a well-known fact that hydroacoustic backscatter
data summarizes information about, e.g., grain size, suspended sediment, morphological
elements, or fauna and flora—thus providing crucial information about habitat types.
Comprehensive underwater mapping by means of acoustic devices such as side-scan sonar
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(SSS) and multibeam echosounder (MBES) allows for the creation of cartographic bases to
document the status quo as well as evaluate spatial changes with the aid of time series data.

In order to meet the challenges of an increasing amount of data and the necessary
cycles of habitat evaluations in the future, greater automation and standardization of the
classification process are required. Recent years have seen progress in automated seafloor
classification, with various machine-learning classification methods employed to enhance
the identification of seafloor characteristics using hydroacoustic data, oceanographic vari-
ables, and ground-truth samples (e.g., [1–7]). Although comparative studies of some of
the applied algorithms exist (e.g., [8–10]), these studies either lack visual representation
of model performances or do not include sophisticated deep learning techniques. As a
result, there is no apparent recommendation for which of the currently available algo-
rithms is suitable, let alone a standard automatization process for the classification of
seafloor characteristics.

In addition, most of the seafloor classification approaches of past years utilized data
from multiple hydroacoustic sources, most prominently bathymetry from MBES combined
with backscatter data from SSS. While the combination of multiple data sources proves to
be valuable in many cases, the simultaneous acquisition of full-coverage, high-resolution
bathymetry and backscatter data for large areas is time consuming and cost intensive. The
same is true for ground truthing, which requires extra work on the ship as well as hours of
analysis in the lab. For large-scale standard monitoring purposes (such as in the German
EEZ of the North Sea), we consequently aim to find machine-learning algorithms and input
datasets that produce sufficient seafloor classification maps solely on the basis of SSS with
a limited amount of ground-truth data.

Ultimately, our objective is to recommend a combination of input data and machine-
learning algorithms by comparing multiple classification methods, ranging from well-
established to state-of-the-art approaches. These recommendations might then enable
researchers, people working in agencies, and other hydroacoustic users to reliably classify
their SSS data with open-source software libraries. We therefore implemented support
vector machines (SVMs), random forests (RFs), and convolutional neural networks (CNNs),
a special type of artificial neural network (ANN), as machine-learning algorithms. All
of these algorithms are comparatively easy to apply and can therefore be adapted by a
wide range of users. As input data, we calculated a variety of features, namely simple
statistical values (e.g., maximum, minimum, and mean of gray values), gray-level co-
occurrence matrices (GLCM), and Weyl coefficients, which have just been introduced for
the classification of hydroacoustic data. The performance of the algorithms and features
was then evaluated at two study sites in the Natura 2000 area.

2. Geographical Setting and Study Sites

The algorithms were tested on datasets that were gathered during research cruises
in 2022. The two study sites are situated within the MPA Sylt Outer Reef (SOR) in the
German Bight—see Figure 1. The sites, based on their relative geographical location, further
referred to as SOR NW and SOR SE, have been chosen because they show a great variety
of seafloor characteristics with frequent shifts in sediment compositions but also consist
of areas with homogenous sediment distribution. With these properties, classifying the
backscatter mosaics should pose a challenge to the algorithms and thus help to highlight
the weaknesses and strengths of the different approaches more effectively. The sites include
an area of 13.6 km2 and 12.6 km2 with an average depth of 45 m and 28 m, respectively.

The German Bight is part of the relatively shallow water body of the southern North
Sea, with a mean water depth of around 30 m. The hydrodynamic regime is dominated by
tidal currents, which are directed along the coast in a counter-clockwise direction and are
driven by tidal residual circulation [11]. The currents are further enhanced by westerly and
southwesterly winds [12]. Tidal dynamics, wave actions, wind-driven currents, and mixing
determine seabed sediment dynamics. The recent state of the geomorphology and surface
sediments of the Sylt Outer Reef is the result of several glacial advances and retreats during
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the Pleistocene. Surface sediments consist of heterogeneously distributed coarse-grained
lag deposits, which are mainly composed of reworked siliciclastic moraine deposits. The
dominant grain size of the reworked material varies from coarse sand to gravel, which
is partly mixed with pebble- to boulder-sized particles. The coarse sediments are partly
covered or surrounded by Holocene marine fine- to medium-grained sands [13]. Surficial
finer sediments are deposited by a series of sedimentary infillings, which were driven by
wind, waves, tides, and storm events during the Holocene Transgression [14].
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Figure 1. The study sites in the Sylt Outer Reef located in the eastern part of the German EEZ
North Sea; European boundary data from Ref. [15], Sylt Outer Reef coordinates from Ref. [16], and
bathymetry background data from Ref. [17].

3. Material and Methods

The acoustic classification has been carried out based on hydroacoustic backscatter mo-
saics, which were generated using SSS (side-scan sonar) data. The backscatter information
has been validated by ground-truthing taken by bottom-grab sampling. The amalgamation
of both data sources is the basis for an interpreted classification with regards to the given
geological/sedimentological background of the habitats.

Several processing steps are required to transform the raw SSS data and information
from the grab samples into datasets that can be utilized for the training of machine-learning
algorithms, ultimately allowing for the computation of a seafloor classification map. The
required steps will be explained individually in the following Sections. A generalized flow
chart of the overall process is shown in Figure 2.
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Figure 2. Schematic workflow of the overall classification algorithm; blue: processing of the SSS data;
green: processing of the grab samples; orange: generating training, test, and validation datasets; red:
building and testing a machine-learning model; yellow: calculating predictions on a regular grid
with the trained model.

3.1. Spatial Mapping with a SSS System

The SSS data were acquired in June 2022 during the survey HE602 on the RV Heincke [18]
with an EdgeTech 4200 MP SSS system (EdgeTech, Boston, MA, USA). The technical
specifications of the used system are shown in Table 1 The towed SSS dual-frequency
system EdgeTech 4200 MP was operated with a swath of 200 m (>100% coverage of the
area with a given profile distance of 75 m). During acquisition, a constant vessel speed
of approximately 5 knots was targeted to ensure homogeneous along-track resolution.
Moreover, the depth of the towfish was targeted to be at least half of the water depth to
prevent direct wave reflections inside the seafloor backscatter data.

The sonar data were recorded with EdgeTech Discover 4200 [19] and processed with
SonarWiz™ 7.09.02 [20]. The post-processing included the steps of (i) slant range correc-
tion, (ii) empirical gain normalization (EGN), and (iii) layback correction, as exemplarily
described in Ref. [21]. The EGN tables were separately calculated for both study sites. In
order to not blend any textures, the overlapping areas of individual profiles have not been
combined but instead displayed on top of each other. In accordance with the BSH guideline
for seafloor mapping in German marine waters [22], the data were exported as a mosaicked,
georeferenced TIFF file with 8-bit quantization (256 grayscale values) in spatial resolutions
of 5 m, 1 m, and 0.25 m for each of the recorded frequencies. However, in the following,
only the mosaics with a resolution of 0.25 m and a frequency of 600 kHz are utilized for
classification as they contain the most meaningful information about the surface of the
seafloor. Low backscatter areas are represented by high gray values (about 55 to 254), while
high backscatter intensity is characterized by low gray values (0 to about 54). The processed
mosaics of the high-frequency SSS data are shown in Figure 3.
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Table 1. Technical specifications of the EdgeTech 4200 MP SSS system [23].

System Frequencies Horizontal
Beam Width

Vertical
Beam Width

Across-Track
Resolution

File
Formats

EdgeTech
4200 MP

300 kHz 0.54◦
50◦

3 cm .jsf, .xtf
600 kHz 0.34◦ 1.5 cm

3.2. Ground-Truth Data from Grab Samples

Ground-truth data are crucial for the classification of non-invasively acquired data as
it provides directly measured properties of the environment. The information about the
seafloor characteristics obtained at given locations with a sediment grab sampler can be
used by humans as well as machine-learning algorithms to learn about the relationships
between the acoustic image data and the underlying real-world seafloor composition.

The ground-truth data for the two study sites were obtained with a shipek grab sam-
pler during cruise SE2233 with the RV Senckenberg in August 2022. While ideally sampling
and mapping should be done simultaneously to ensure optimal correlation, the given
time span between mapping and sampling was about two months, which is not ideal but
acceptable for the less dynamic environment of the study areas. The sample locations have
been chosen based on different visible textures (i.e., seafloor surface characteristics) from
the mosaicked SSS data at the study sites SOR SE and SOR NW. Each distinct texture was
sampled between three and six times in different locations, with the aim of maximizing the
distance between a given sample location and any visual changes in surrounding backscat-
ter patterns. The sediment samples were photographed, examined, and documented on
site; a small portion of the grab content was collected, later analyzed via 1

4 phi sieving in the
lab, and finally processed in GRADISTAT [24]. Whenever two grab samples appeared to be
close to identical on site, due to limited capacities, only one of the samples was analyzed
in the lab. The characteristics of the analyzed sample were then transferred to the related
sample. After analyzing the samples, they were manually classified based on the grab
sample surface (i.e., the photos) and the grain size distribution. The identified classes
were very fine (i.e., silty/muddy), fine (i.e., fine sand), medium fine (i.e., medium sand),
coarse (i.e., coarse sand/fine gravel), and very coarse (i.e., gravel), as well as two mixed
classes: Fine with coarse side components and coarse with very coarse side components.
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Twenty-three samples were processed for the study site SOR NW and 27 for the study site
SOR SE. The locations of the grab samples can be found in Figure 3.

3.3. Quantization Level and Size of the Image Patches for the Classification

In order to predict seafloor surface characteristics based on their backscatter intensity
(i.e., grayscale values) in SSS mosaics, it is necessary to analyze the areal properties and
patterns of the grayscale values that are present at a desired location (e.g., see Ref. [25]).
Therefore, image patches are extracted from the mosaic at the sampling locations, which
establishes a direct link between the seafloor observed in the grab sample and the texture
visible in the mosaic and hence enables machine-learning algorithms to learn relationships
between the data types.

In general, the quantization (i.e., the number of grayscale values) and the size of
these image patches are arbitrary. However, for the given task of predicting seafloor
characteristics, there are practical limits on how to choose these parameters. A high number
of grayscale values preserve a large amount of information but might also contain noise,
whereas a smaller number of grayscale values minimizes leftover noise in the data but
reduces the available information. Larger patch sizes allow for greater generalization but
are prone to representing mixed textures of different underlying classes. Smaller patch
sizes have a higher chance of solely containing data that represents a unique seafloor
component, but simultaneously might also only contain a fraction of the information
needed to correctly approximate the underlying seafloor structure. Moreover, computation
performance plays a role, as large image patches and many grayscale values are generally
more computationally expensive to produce.

In order to find a suitable image patch size and the number of grayscale values for the
classification of SSS data acquired in the Sylt Outer Reef, we tested image patch sizes of
32 px, 16 px, and 8 px (8 m, 4 m, and 2 m per image patch with the given spatial resolution of
0.25 m per pixel) as well as 8-bit quantization (256 grayscale values) and 6-bit quantization
(64 grayscale values).

3.4. Generating Training, Test and Validation Data from Sample Locations

Most machine-learning algorithms and performance estimation methods rely on
splitting the available ground-truth information into subsets of training, test, and validation
data. While training data are used to build the prediction model itself, validation data
are used to tune model parameters [26] and prevent overfitting [27]. After the prediction
model has been built, its performance will be evaluated using the test data.

Due to the high amount of work and time that goes into gathering and analyzing grab
samples, the available dataset for the given task of seafloor classification is usually very
small. As machine-learning algorithms are dependent on large and representative datasets,
this circumstance poses a great challenge.

Fortunately, there are multiple approaches to increase the number of data points for
the training and testing of machine-learning algorithms. An often-used method to generate
data is data augmentation, in which the extracted image patches are randomly rotated,
translated, mirrored, sheared, or radiometrically altered [28]. A very recent method is the
use of generative adversarial networks (GAN), as conducted in Ref. [29], in which two
communicating artificial neural networks synthesize new image patches based on a given,
smaller dataset. However, both of these methods rely on the transformation of a given
input and thus do not create new, independent data.

Instead of artificially generating image patches, the authors in Ref. [2] artificially
generated new grab sample locations. They assume that inside a manually specified area
around the original location of a given grab sample, the seafloor is made of the same
components as the actual sampling locations (see Figure 4, left). Inside that area, image
patches can be extracted from the mosaic and treated as a fictional grab sample with the
same properties as the actual grab sample. Even though this approach is dependent on



Remote Sens. 2023, 15, 4113 7 of 22

assumptions, we chose this technique to increase the number of data points as the created
data itself is not artificially generated.
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with image patches of 16 px (4 m) size arranged in a chessboard-like pattern (note the identical
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After specifying the complete dataset, the available image patches must be split into
train, test, and validation datasets. In order to minimize correlation within the training and
test/validation data, the image patches are spatially blocked [30] in a chessboard pattern,
where either “white” or “black” patches will be used as training and the other color as
test/validation data (see Figure 4, middle). As this would result in a 50/50 split, random
image patches from the test/validation dataset (e.g., “black patches”) are transferred to the
training dataset (e.g., “white patches”) until the desired split of 60% training data is reached.
The remaining non-training patches are then equally split into 20% validation and 20% test
data. Patches from within the validation and test datasets (e.g., “black patches”) are guar-
anteed not to share any borders with each other. Thus, the possibility of underestimating
prediction errors due to spatial autocorrelation is minimized [30]. The process of assigning
the datasets is repeated ten times with random splitting and random color assignment
(e.g., “white patches” as training data and “black patches” as test/validation data, and
vice versa) for every classification. For each split, a prediction model is computed. The
estimated performance of the model is then calculated by averaging the performance met-
rics achieved by classifying the test data. The underlying splitting technique of randomly
assigning data points to training, test, and validation datasets without replacement during
multiple runs is called Monte-Carlo cross-validation (MCCV) [31,32].

It should be noted that the number of data points created this way depends on the
chosen size of the image patches. To ensure that the results are comparable, the locations
of artificially created grab samples are the same for every computation and therefore
determined by the largest image patch size (i.e., 32 px; see Figure 4, right).

3.5. Machine-Learning Algorithms

Prediction maps of the seafloor surface characteristics in the study sites were computed
with three different supervised machine-learning algorithms: Support vector machines
with a linear kernel (SVM-L) (e.g., [33,34]), random forests (RF) (e.g., [2,4,5,9,10,35–37]),
and convolutional neural networks (CNN) (e.g., [1,38–40]). SVMs have been widely used
in remote sensing (see [41] for a detailed review) and seafloor classification tasks. They
aim to find hyperplanes in feature space that result in an optimal separation of the classes
given in the dataset. By using the SVM with a linear kernel, linear separability of the
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dataset is assumed [42]. Non-linear data can be separated by mapping the data to a higher-
dimensional feature space (e.g., with a polynomial or radial basis function (RBF) kernel).
Nevertheless, we opted for the use of a linear kernel since, on the one hand, the comparison
of multiple kernels would make this comparative study too extensive, and, on the other
hand, RFs and CNNs are already non-linear classifiers. Thus, a linear kernel provides
valuable information regarding the linear separability of the present data. Besides the
kernel, the regularization parameter C is an important hyperparameter of SVMs [43]. In
test runs, nearly identical prediction models were observed for parameter values between
0.1 and 100. As a result, we opted for a value of C equal to 1. Additional information on
SVMs and kernel-based learning can be obtained from [42,43].

RFs are an ensemble of multiple decision tree classifiers (DTCs). A single decision tree
classifies a dataset by recursively splitting it into smaller subsets based on a feature-driven
decision that leads to the highest separation between the subsets. The quality of separation
is evaluated by a splitting criterion (i.e., subset homogeneity) [44]; for our computations, we
used the Gini impurity. By generating multiple DTCs with randomly selected sub-training
sets from the original dataset, a robust RF ensemble is created in which the most frequent
class prediction of the DTCs will be considered the RF’s prediction [45]. In accordance with
the findings in Ref. [46], we utilized 100 individual classifier trees per RF ensemble. To
avoid overfitting due to overly complex (i.e., deep) decision trees, the maximum depth of
the trees is determined using the validation data. The increase in classification accuracy
with increasing tree depth was approximated with a logistic function. As soon as a given
depth reaches the function’s supremum, that depth is chosen as the maximum tree depth
for the RF. For more information regarding RFs, see Ref. [45].

The number of features used in both SVM-L and RF is dependent on the results of the
feature extraction and feature selection algorithms, which will be explained in Section 3.6.
For the implementation of SVM-L and RF, the Python library Scikit-learn was used [47].
Hyperparameters that have not been explicitly mentioned were kept at their default values
provided by the Scikit-learn library.

RF and SVM-L are referred to as traditional machine-learning techniques, as these
algorithms require feature calculation and, if necessary, preprocessing, feature extraction,
and feature selection. Deep learning algorithms, on the other hand, are able to generate a
prediction model directly from the input data (e.g., images) without the necessity of feature
calculation [48]. For additional information on deep learning algorithms in general and
CNNs in particular, please refer to studies such as Ref. [48] or [49].

In the context of SSS imagery, deep learning has been utilized for classification, seg-
mentation, and object detection. A comprehensive study on the usage of deep learning
methods for a variety of tasks regarding the analysis of sonar imagery can be found in
Ref. [50]. For classification tasks, the go-to deep learning technique used in recent literature
is the convolutional neural network (CNN). Multiple, complex CNNs with millions of
parameters, which were originally designed to perform well on the ImageNet dataset [51],
have been used for seafloor classification in previous papers (e.g., GoogLeNet in [38] and
VGG-16, ResNet, DenseNet, and others in [40]). However, Ref. [39] showed that for small
datasets (<700 data points), a shallow CNN with two convolutional layers performs better
than a deep CNN with five convolutional layers.

Based on these findings, we implemented the shallow CNN architecture with two
convolutional layers presented in Ref. [39] with some minor modifications. The adopted ar-
chitecture consists of 32 kernels (i.e., neurons) in the first convolutional layer and 64 kernels
in the second convolutional layer, both of which use the ReLu (rectified linear unit) activa-
tion function. The kernel size is set to 3 × 3 px and the pooled area to 2 × 2 px. Instead
of 1024 units in the penultimate dense layer (or fully connected layer), we chose to use
64 units, which proved to deliver comparable results with a fraction of the computation
time. The last layer activation function was set to the softmax function, as it is commonly
applied for multiclass single-label classification [49]. To prevent overfitting, we further
added a batch normalization layer [52] as well as dropout regularization [53]. According to
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Ref. [54], batch normalization and dropout regularization should not be applied directly
one after the other. To avoid a drop in model performance, we implemented the batch
normalization after the first convolution operation and the dropout regularization after the
first dense layer with a dropout of 20%, as recommended in Ref. [54]. RMSprop, developed
in Ref. [55], was chosen as the optimization function for stochastic gradient descent. As a
multiclass classification task is given, categorical cross-entropy is used as the loss function.

Finally, we utilized the early stopping technique (see Ref. [56]), in which the training
of the CNN is aborted as soon as the validation loss stops increasing for ten consecutive
training epochs. The learning rate has been set manually in order to ensure a satisfactory
learning process without fluctuations. The deep learning algorithms have been imple-
mented in Python with the Keras software library [57]. Again, default hyperparameters
were applied when not specifically stated otherwise, as tuning hyperparameters based on
small datasets could lead to the prediction model not being independent of the test data,
which could bias the model’s performance.

3.6. Input Data and Input Data Processing

As mentioned, traditional machine-learning algorithms such as SVMs and RFs rely on
features as input data. The features are derived from the image patches extracted from the
processed SSS mosaics (see Figure 3). We tested three different types of feature groups for
their ability to discriminate the seafloor classes present in the Sylt Outer Reef: aggregation
functions, textural features from gray-level co-occurrence matrices, and Weyl coefficients.

A straightforward method of image patch analysis is the use of aggregation functions
(hereafter abbreviated as AGG), which return simple statistical values. We include the
minimum and maximum gray values, and the mode, mean, and variance of the gray values
in that feature group.

The downside of aggregation functions is that they do not describe the pattern of
image patches. Therefore, a more sophisticated approach to describing image patches
is the gray-level co-occurrence matrices (GLCM) proposed in Ref. [58]. GLCM textural
features have been widely used for seafloor classification and habitat mapping and have
been proven to be suitable for sonar imagery classification (e.g., see Refs. [34,59–61]). In a
GLCM, the distribution of co-occurring gray values in the image patch is stored for a given
interpixel distance (i.e., a spatial component) and a given calculation angle. That matrix
is then used to derive multiple features to describe the texture of the image patch [58].
According to Ref. [62], broadly used GLCM features are angular second moment, contrast,
correlation, dissimilarity, entropy, and homogeneity, as well as mean and variance (not to
be confused with mean and variance values of the aggregation functions). These features
correlate with the features used in the papers mentioned above, which is why we included
these eight features in our computations. In accordance with the findings of Ref. [9], we
chose interpixel distances of 5 px and 10 px and averaged the textural feature values for
the four available directions of 0◦, 45◦, 90◦, and 135◦.

A relatively new approach to describing the texture of image patches with Weyl coeffi-
cients was introduced in Ref. [63] and successfully adapted for seafloor classification data in
Ref. [2]. The Weyl coefficients result from the so-called Weyl transform (WT), for which the
covariance matrix of the given image patch and the multiscale signed permutation matrices
from the binary Heisenberg–Weyl group are utilized. As the number of coefficients grows
by n4 (where n is the size of the image patch), the calculation of Weyl coefficients is only
suitable for very small image patches. For this reason, Ref. [63] split larger image patches
into 4 × 4 px sub-patches and aggregated their absolute coefficient values per sub-patch.
With this technique, 256 Weyl coefficients were calculated for each image patch, regardless
of their size. A detailed mathematical description of the calculation steps can be found in
Refs. [2,63].

The features of the three feature groups (AGG, GLCM textural features, and Weyl
coefficients) were either combined into a single classification or used separately in order
to evaluate their impact on the classification result. To account for different scales of and
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correlations between features, all used features are normalized with min–max feature scal-
ing and then transformed into uncorrelated principal components (PCs) using a PCA [64]
(feature extraction). As suggested in Ref. [64], the PCs with the greatest explained variance
were retained until their cumulative contribution reached 90% of the total variance present
in the dataset. In the last step, recursive feature elimination (RFE; [65]) is used so that only
those features are kept for classification with the traditional machine-learning algorithms
that contribute to the given task (feature selection).

While CNNs do not need input features and can be trained solely with image patches,
the possibility of using Weyl coefficients for CNNs is described in Ref. [66]. The authors
proposed to use the symmetrical and skew-symmetrical matrix of the image patch (instead
of its covariance matrix) to calculate the Weyl coefficients. The patch Weyl transform (PWT)
generates as many coefficients as there are gray values in the image patch (n × n) and can
thus be interpreted as an image patch itself. The resulting PWT patches for the symmetrical
and skew-symmetrical matrices of the SSS image patch were therefore used as additional
color channels of the image patch and then fed into the CNN.

4. Experimental Results

Although the two study sites in the Sylt Outer Reef are comparably heterogenous with
frequent shifts in the seafloor sediment composition, the area size of assumed homogeneity
was set to 64 × 64 m2 with the original grab sample in the center. Assuming homogeneity
over such an area was made possible by specifically choosing sampling locations with a
preferably large distance to visual changes in the pattern of the backscatter mosaic. With the
resulting two-sided buffer of 32 m and the maximum image patch size of 32 × 32 px (which
is equivalent to 8 × 8 m for a 0.25 m resolution of the backscatter mosaic), 64 artificial grab
sample locations were generated for every original grab sample (see Figure 4). This results
in a total of 1536 data points for the study site SOR NW and 1728 data points for the study
site SOR SE. The distribution of the classes in the datasets can be seen in Figure 5. From
these 64 artificial locations per sample, 60% (38) were assigned to the training and 20%
(13) to the test and validation datasets. The datasets were generated using the splitting
technique described in Section 3.4 to minimize spatial correlation within the validation and
test data. As mentioned, the training process of the models was repeated ten times with
different compositions of training, test, and validation datasets.
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Figure 5. Frequency of the seafloor classes given in the datasets of the two study sites.

For each of the data points, the features required for the model training and evaluation
of the prediction model are calculated based on the underlying backscatter intensities.
Table 2 shows the number of data points for which the features can be calculated within a
time span of one second.
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Table 2. Approximate number of data points for which all required features can be calculated within
one second; used system: Intel® Core™ i5-1135G7 @ 2.40 GHz, 8 GB RAM, Intel® Iris® Xe Graphics
(Intel, Santa Clara, CA, USA).

Used Features
32 px 16 px 8 px

8-bit 6-bit 8-bit 6-bit 8-bit 6-bit

SVM-L and RF

All 8 12 15 45 20 114
AGG 1389 1316 1493 1453 1429 1431

GLCM 17 303 22 327 21 322
WT 13 12 50 52 168 172

CNN
All 13 12 309 304 1190 1272

Gray * - - - - - -
PWT 13 12 309 304 1190 1272

* Using only gray scale image patches requires no additional computation time.

To address the present class imbalance, the class weights during training have been
adjusted inversely proportional to the class frequencies during training of the models.
Additionally, the Matthews correlation coefficient (MCC; [67]) was calculated from the
model’s performance on the test data. The MCC is a useful metric when dealing with
unbalanced data and serves as a more reliable performance measure than Cohen’s kappa,
according to Ref. [68]. An MCC close to 1 indicates a very good classification model,
whereas a model with an MCC of 0 performs as well as classification with random chance.
Negative values imply a negative correlation between the model and prediction [69]. The
MCC values scored with the tested machine algorithms using different input data can be
found in Tables 3 and 4 for the study sites SOR NW and SOR SE, respectively.

Table 3. Mean MCC values from ten runs for different classification algorithms in the study site
SOR NW; highest and lowest MCC for varying image patch sizes and number of grayscale values
are denoted in bold and italic, respectively; highest MCC for a given machine-learning algorithm is
denoted with an underline; highest overall MCC is denoted with a star.

Used Features
32 px 16 px 8 px

8-bit 6-bit 8-bit 6-bit 8-bit 6-bit

SVM-L

All 0.49 0.50 0.44 0.45 0.36 0.36
AGG 0.38 0.37 0.37 0.38 0.37 0.38

GLCM 0.52 0.52 0.46 0.47 0.39 0.37
WT 0.22 0.21 0.12 0.13 0.05 0.05

RF

All 0.57 * 0.55 0.42 0.47 0.39 0.38
AGG 0.43 0.43 0.39 0.42 0.39 0.39

GLCM 0.57 * 0.57 * 0.49 0.48 0.37 0.38
WT 0.27 0.26 0.12 0.10 0.05 0.03

CNN
All 0.41 0.42 0.38 0.37 0.33 0.31

Gray 0.43 0.44 0.39 0.40 0.37 0.37
PWT 0.18 0.24 0.06 0.09 0.06 0.03

Table 4. Mean MCC values from ten runs for different classification algorithms in the study site
SOR SE; highest and lowest MCC for varying image patch sizes and number of grayscale values
are denoted in bold and italic, respectively; highest MCC for a given machine-learning algorithm is
denoted with an underline; highest overall MCC is denoted with a star.

Used Features
32 px 16 px 8 px

8-bit 6-bit 8-bit 6-bit 8-bit 6-bit

SVM-L

All 0.82 0.82 0.75 0.75 0.66 0.67
AGG 0.70 0.70 0.69 0.69 0.62 0.62

GLCM 0.62 0.65 0.62 0.65 0.62 0.61
WT 0.55 0.55 0.41 0.41 0.27 0.27
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Table 4. Cont.

Used Features
32 px 16 px 8 px

8-bit 6-bit 8-bit 6-bit 8-bit 6-bit

RF

All 0.85 0.87 * 0.80 0.79 0.62 0.65
AGG 0.73 0.73 0.71 0.70 0.67 0.67

GLCM 0.75 0.76 0.67 0.70 0.65 0.64
WT 0.65 0.61 0.48 0.45 0.29 0.31

CNN
All 0.73 0.73 0.65 0.66 0.60 0.59

Gray 0.85 0.85 0.79 0.79 0.71 0.70
PWT 0.42 0.52 0.26 0.38 0.17 0.24

4.1. Impact of the Quantization Level and Image Patch Size

Based on the MCC values shown in Tables 3 and 4, the tested levels of quantization
appear to have little to no effect on the model’s performance. Across the image patch sizes,
machine-learning algorithms, and study sites, the MCC values are mostly constant for 6-
and 8-bit quantization. Only when the image patches derived from the PWT coefficients
are exclusively used in the CNN, the model performance seems to be positively impacted
by a reduced number of grayscale values of 64.

Conversely, the image patch size exerts a great influence on the numerical performance
across all of the algorithms. In general, the MCC values tend to decrease with a decreasing
image patch size. This observation is especially true when classifying the data based on
the coefficients of the Weyl transform. While for the AGG and GLCM features, the MCC
values are only slightly decreasing with smaller image patch sizes, the MCC values for
the Weyl coefficients of the 32 px image patches are about twice as high as for the 8 px
image patches.

These observations are also reflected when visualizing the principal components (PCs)
derived from all available features (i.e., five AGG features, 16 GLCM textural features, and
256 Weyl coefficients). Figure 6 shows the boxplots of the two PCs with the highest feature
importance for different levels of quantization and image patch sizes. When comparing the
PCs derived from an image patch of 32 px size and 8-bit quantization (Figure 6a,b) with
those of a 6-bit quantization (Figure 6c,d), the distribution of the data points seems close to
identical. On the other hand, the effects of reducing the image patch size from 32 px to 8 px
(Figure 6e,f) are observable. Finer sediment compositions show an increased dispersion
with reduced patch size for the PC with the highest feature importance (Figure 6a,c,e).
Although the dispersion of data points from coarser sediment classes is partially reduced
compared to those of larger image patches of 32 px, the heterogeneity between all sediment
classes has decreased, which hinders the separation of the classes by the machine-learning
algorithms. The same applies when looking at the PC with the second highest feature
importance (Figure 6b,d,f).

Unfortunately, as the CNN relies on the image patches themselves rather than on
derived features, there is no intuitive way of visualizing the data points in a feature space
for further evaluation. Nonetheless, the MCC values decrease in a similar way for the CNN
as for the traditional machine-learning algorithms, which suggests that the neural network
is subject to similar limitations at smaller image patch sizes as the other methods.

Although it does not affect the overall model performance, 6-bit quantization of
the image patches led to a 15-fold increase in the number of GLCM features that can be
calculated in a given period of time compared to 8-bit quantization, as can be seen in
Table 2. As expected, due to their mathematical foundation, the other features’ computation
times are not affected by the number of gray values. The size of the image patches has
a particularly strong impact on the computation time of the Weyl coefficients since the
number of coefficients depends on the number of pixels contained in the image.
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4.2. Impact of the Machine-Learning Algorithm and Input Data

The overall best numerical model performance in both study sites has been achieved
with the RF algorithm, with an MCC of 0.88 in the study site SOR SE and 0.57 in SOR NW.
Compared to the other algorithms, the RFs reliably produce the best prediction models
independent of the input features used for classification. When using the most suitable
image patch size of 32 px, the MCC scores of the SVM-L models are outperformed by
the RF models by about 0.05 on average in each of the study sites. The MCC of the
SVM-L model most likely suffers from its assumption of linear separability of the dataset,
as the scatterplots from Figure 7 suggest some non-linearity, especially for the coarser
sediment components.
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However, both traditional machine algorithms show an improved performance by
combining all feature groups (AGG, GLCM, and WT) compared to using just a single feature
group. Through the use of combined features, the MCC for classification of 32 × 32 px
image patches in the study site SOR SE was—on average—improved by 0.14 and 0.15,
respectively, compared to classifying solely with AGG features (average MCC of 0.71) or
GLCM textural features (average MCC of 0.70). In the study site SOR NW, the combination
of the feature groups also leads to an apparent boost in model performance, although
the overall model performance is not as good as in the other study site. With combined
feature groups, the average MCC value is 0.53 and therefore increased by 0.13 or 0.10
compared to solely using the feature groups AGG or GLCM. Although the WT coefficients
yield satisfactory results in the study site SOR SE with a maximum MCC of 0.65, the
WT coefficients are constantly outperformed by the other feature groups by margins
ranging from 0.06 to 0.36. The same observation can be made for the study site SOR NW.
Nevertheless, the good results of combining the features indicate that the WT coefficients
contribute some additional information about the seafloor that is not covered by the other
feature groups.

The CNN performs very well on the dataset from study site SOR SE with a maximum
MCC of 0.85, which is slightly better than the SVM-L model (0.82) and slightly worse than
the RF model (0.87). However, the best numerical performance of the CNN in the study
site SOR NW with an MCC of 0.44, is the worst of all tested algorithms by a margin of 0.08.
Moreover, unlike the traditional machine-learning algorithms, the numerical performance
of the CNN is not positively affected by the introduction of image patches derived from the
PWT. Across all computations, only using the original grayscale image patches as training
data for the CNN leads to the highest MCC values.

In terms of computation time, the traditional machine-learning algorithms perform
best regarding the training of the model. For RF and SVM, on average, one iteration of
model training took between one and six seconds, depending on the number of input
features but regardless of the quantization level and image patch size. On the other hand,
training a CNN prediction model took between 70 and 180 s with the given hyperparame-
ters. However, it should be noted that computation time for the training of neural networks
could be dramatically improved by using a GPU.

4.3. Model Performances on Different Seafloor Sediment Classes

Figures 8 and 9 show the per-class accuracy reached for each machine-learning algo-
rithm with an image patch size of 32 × 32 px and a radiometric resolution of 64 grayscale
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values for the study sites SOR NW and SOR SE, respectively. Although, in detail, the per-
class performance varies from algorithm to algorithm, there are a few general observations
that can be made: While all algorithms are capable of distinguishing between fundamental
seafloor surface characteristics (e.g., fine, medium fine, and coarse) with high accuracies
of 80% up to more than 95%, they fail to accurately predict mixed sediment components
(i.e., classes fine with coarse side components and coarse with very coarse side components)
as well as differentiating between similar classes (fine/very fine and coarse/very coarse).
The comparatively poor results for the affected classes might be an indication that the
given classes cannot be resolved with standalone SSS data and that some simplification is
required. For example, mixed classes with side components could be discarded and instead
merged into the class of their main or side component.
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SOR NW; SVM-L and RF trained with an image patch size of 32 × 32 px and a radiometric resolution
of 64 using all three feature groups; CNN trained with an image patch size of 32 × 32 px and a
radiometric resolution of 64 using only the original grayscale image patches.
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Figure 9. Mean accuracy for the given seafloor classes from ten classification runs in the study site
SOR SE; SVM-L and RF trained with an image patch size of 32 × 32 px and 64 grayscale values using
all three feature groups; CNN trained with an image patch size of 32 × 32 px and 64 grayscale values
using only the original grayscale image patches.

However, of all the algorithms tested, RF was the most likely to correctly assign even
the problematic classes mentioned above, which presumably led to the superior MCC
values shown in Tables 3 and 4.

4.4. Visual Assessment of the Classification Maps

A purely numerical assessment of the classification results is problematic since it only
includes the specific locations of the grab samples rather than the entire area of the study
site. We, therefore, calculated classification maps for the depicted algorithms on a regular
25 × 25 m grid, which approximately led to 22,000 predictions (i.e., pixels) for the study site
SOR NW and 20,000 predictions for the study site SOR SE. The predicted class corresponds
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to the most frequent prediction from the ten runs with random training, test, and validation
datasets. The prediction maps are shown in Figure 10a–f.

Upon examination of the prediction maps in Figure 10a–f, the general appearance of
the classification maps is quite similar for all algorithms. However, the maps still differ
in detail. In study site SOR NW (see Figure 10a,c,e), there is a strong striped pattern,
particularly in the southwestern half that results from the transition zone between in-
dividual SSS profiles. These stripes are especially pronounced in the prediction maps
generated with traditional machine-learning algorithms. The northeastern half of the area
has been comparably well classified by both the SVM-L and the CNN, while for the RF
algorithm, the predictions of the classes fine and fine with coarse side components change
with high frequency and without any visible underlying structure. The transition area
between the finer and coarser sediment components is visually best approached by the
SVM-L and CNN. When looking at the prediction maps and the numerical performance
metrics from Tables 3 and 4, the low accuracy in study site SOR NW most likely arises from
this very transition zone between coarser and finer sediments and the high frequency of
heterogeneity present in the northeastern part of the study site.
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Figure 10. Classification maps on 25 m × 25 m grid with predicted seafloor surface classes for (a)
study site SOR NW predicted with SVM-L algorithm using all feature groups, (b) study site SOR
SE predicted with SVM-L algorithm using all feature groups, (c) study site SOR NW predicted with
RF algorithm using all feature groups, (d) study site SOR SE predicted with RF algorithm using all
feature groups, (e) study site SOR NW predicted with a CNN using original grayscale patches, and
(f) study site SOR SE predicted with a CNN using original grayscale patches; all models displayed
were trained with data derived from image patches with a size of 32 × 32 px and 6-bit quantization.

In the study area SOR SE (see Figure 10b,d,f), the transition between profiles is most
noticeable in the prediction map calculated with the RF algorithm. For classification using
SVM-L, a problematic zone lies in the northeastern part of the study area. There, the
predictions of the classes coarse and coarse with very coarse side components are strongly
mixed, resulting in a noisy classification. Contrary to the impression of the numerical
performance of the algorithms, the overall most satisfactory classification maps are therefore
generated by the CNN. Its prediction maps most closely match the visual appearance of
the processed sonar mosaics. Although numerically beating the other algorithms, the maps
derived from RF show more noise and are prone to misclassifications due to the transitions
between individual profiles, which could indicate a possible overfitting of the training
data. While presumably due to its linear data separation, the MCC scores and per-class
accuracy for the SVM-L are comparably low, the classification maps themselves exhibit a
smaller amount of noise compared to those of the RFs for this very reason. This highlights
the importance of an area-based assessment of the results rather than purely relying on
numerical performance metrics.

5. Discussion

As other papers suggested (e.g., Refs. [2,61]), we showed that a comparably bigger
patch size of 32 px results in higher accuracies compared to smaller patch sizes. The better
performance of larger image patches may be explained by the presence of noise, artifacts
(e.g., stripe noise or signals from the water column), and non-sediment-related components
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(e.g., stones) in the backscatter data. The smaller the image patches, the greater the influence
of those patterns on the performance of the algorithms. Whether even larger image patches
of 64 px or 128 px further improve the results could be part of future studies.

In terms of the number of grayscale values depicted per image patch, several studies
have found that GLCM textural features provide a high predictive value starting from
32 grayscale values (i.e., 5-bit quantization) [9,59,70]. We not only verified that observation
for 64 grayscale values (6-bit quantization) but further extended it to the use of Weyl coeffi-
cients derived from both the WT and the PWT. Although we were not able to reproduce the
findings in Ref. [2], who showed a superior performance of WT-derived coefficients over
GLCM textural features, our results do indicate that these coefficients provide additional
information about the seafloor that can be utilized by machine-learning algorithms and
improve the performance of the models. Unfortunately, this cannot be said about the
PWT-derived coefficients used in CNNs, as they did not lead to any improvements and
even worsened the classification results. Our assumption is that of all the Weyl coefficients,
only a few have sufficient descriptive power regarding the classification task. While we
utilized feature elimination and extraction to remove less informative variables for the
traditional machine-learning algorithms, the CNN has to deal with all coefficients at once
and thus might not be able to extract meaningful information.

For our tested data, the machine-learning algorithms used produced comparable
results, with slight advantages for CNNs over traditional machine-learning methods.
Despite the RF achieving the highest MCC scores of all algorithms tested, in broad transition
zones where the sediments show a lateral trend of grain size shift in the particle composition
(as can be seen in study site SOR NW), the RF was visually outperformed by both SVM-L
and CNN. The same applies to areas where there is stripe noise and differences in contrast
between individual SSS profiles. This indicates a possible overfitting of the prediction maps
generated by the RF algorithm.

However, all of the tested algorithms have limitations in correctly classifying areas at
the edges of the SSS profiles and smooth sediment transitions. The first of which introduces
contrast changes in areas of identical sediment components, while the second of which
is challenging because the algorithm is confronted with patterns that are not present in
the training data (i.e., superimposed sediment components). Next to being a challenging
region, transition zones pose a threat to the assumption of homogeneity around the grab
location that was introduced in Section 4. Even for the human eye, changes in sediment
composition are difficult to spot in areas of gradually shifting sediments. To counteract
the limitations mentioned, it might be necessary to either reduce the number of classes or
increase the number of grab samples. A third option could be to reduce the area of assumed
homogeneity whenever the grab sample lies within a transition zone or a comparably
challenging area. This, however, comes at the cost of losing training data and should be
carefully considered. Additionally, filtering the mosaic prior to the classification process
(e.g., using the filter introduced in Ref. [71]) might improve the results.

Whenever the computation time of the training process is of importance, traditional
machine-learning algorithms are preferable, as, on average, training a well-performing
model is about 20 to 40 times faster with SVMs or RFs compared to CNNs. Whether, for the
given task, the computation times of neural networks can be reduced to a similar level as
those of the other tested algorithms by using a GPU can be the subject of further research.
However, a large portion of the overall computation time arises from calculating the input
data used for training the model and calculating the prediction maps (see Table 2). Despite
the significantly higher computation time for the training process, depending on the size of
the training dataset and the resolution of the prediction map, the CNN might still be the
overall faster algorithm.

6. Conclusions and Outlook

Among the tested algorithms, there was no classification approach that had an ap-
parent advantage over the others. Nonetheless, we were able to demonstrate that deep
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learning techniques are capable of generating prediction models that can compete with
established machine-learning algorithms both numerically and visually. In terms of input
data, we suggest using image patches with 6-bit quantization and a size of 32 px. We further
encourage researchers to incorporate Weyl coefficients into their toolbox of established
features for describing backscatter data, as they have shown to be a valuable addition for
sediment classification with traditional machine-learning algorithms. When using deep
learning techniques (i.e., CNNs), no further input data besides the backscatter intensities
themselves is needed to achieve good classification results.

As our observations show, there is a high variation in classification performance,
even though the evaluated data was acquired with the same system under comparable
environmental conditions. This leads to two main take-home messages: (1) The sediment
classes that are used for classification should be carefully evaluated based on the dataset as
well as the given task, and (2) the performance of the classification might decrease in areas
of high sediment heterogeneity and fuzzy transition zones where multiple sediment classes
interfere with each other (e.g., study site SAR NW). In the latter case, we recommend to
avoid using the RF algorithm as it seems to have the most trouble identifying suitable
borders between different sediment components in transition zones.

Finally, besides classification accuracy, one should consider computation time and
required disk storage. These depend on the chosen algorithm and input data, as well as
the resolution of the grid on which the predictions are to be calculated. Heterogeneous
areas with small-scale changes may require high resolutions, which drastically increase
the time and storage needed for calculation (e.g., doubling the resolution of the grid leads
to a fourfold increase in required storage). These constraints should be considered when
choosing a suitable resolution for the grid of the prediction maps.

The data that were used for the findings of this paper will be published in the PAN-
GAEA data library by the end of the year. Additionally, the presented algorithms will be
made publicly available in the near future. This will include a graphical user interface,
which will ease the interaction with the software and thereby allow a wide range of users
of hydroacoustic data to conduct their own calculations. As the software also enables the
import and export of trained models, results can be easily sent between facilities and indi-
viduals, which consecutively improves the development of additional recommendations.

Future studies could include the adaptation of further deep learning techniques such
as semantic segmentation (e.g., FCN or U-NET; see Ref. [50] for related literature) and
(neural network) ensembles (e.g., Refs. [72,73]) for the classification of seafloor sediments.
Besides, deep learning techniques are still improving—recent advances in computer vision
(e.g., Vision Transformers [74]) are yet to be utilized for hydroacoustic data.
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