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Abstract: Automatic target recognition (ATR) algorithms are used to classify a given synthetic
aperture radar (SAR) image into one of the known target classes by using the information gleaned
from a set of training images that are available for each class. Recently, deep learning methods have
been shown to achieve state-of-the-art classification accuracy if abundant training data are available,
especially if they are sampled uniformly over the classes and in their poses. In this paper, we consider
the ATR problem when a limited set of training images are available. We propose a data-augmentation
approach to incorporate SAR domain knowledge and improve the generalization power of a data-
intensive learning algorithm, such as a convolutional neural network (CNN). The proposed data-
augmentation method employs a physics-inspired limited-persistence sparse modeling approach,
which capitalizes on the commonly observed characteristics of wide-angle synthetic aperture radar
(SAR) imagery. Specifically, we fit over-parametrized models of scattering to limited training data,
and use the estimated models to synthesize new images at poses and sub-pixel translations that are
not available in the given data in order to augment the limited training data. We exploit the sparsity
of the scattering centers in the spatial domain and the smoothly varying structure of the scattering
coefficients in the azimuthal domain to solve the ill-posed problem of the over-parametrized model
fitting. The experimental results show that, for the training on the data-starved regions, the proposed
method provides significant gains in the resulting ATR algorithm’s generalization performance.

Keywords: machine learning; data augmentation; automatic target recognition; synthetic aperture
radar

1. Introduction

Synthetic aperture radar (SAR) sensors provide day and night high-resolution imaging
capabilities that are robust to weather and other environmental factors. The SAR sensor
consists of a moving radar platform with a collocated receiver and transmitter that tra-
verses a wide aperture in the azimuth domain, acquiring coherent measurements of scene
reflectivity. The returns for multiple pulses across the synthesized aperture are combined
and coherently processed to produce high-resolution SAR imagery. A SAR imaging system
achieves a high spatial resolution in both the radial direction, termed as range, as well as in
the orthogonal direction, termed as cross-range. The range resolution is a function of the
bandwidth of the signal used in illumination. The cross-range resolution is a function of the
antenna aperture’s size and the persistence of scattering centers [1]. A significant fraction
of the energy in the back-scattered signal from the scene is due to a small set of dominant
scattering centers that are resolved by the SAR sensor. The localization of back-scatter
energy provides a distinct description of the targets of interest [2], such as in the case of
man-made objects such as civilian and military vehicles. This sparsity structure has been
utilized in [3,4] to design features like peak locations and edges that succinctly represent the
scene. In the early works, these hand-crafted features were used in solving the target recog-
nition problem in a statistical framework. Notably, the template-based methods exploited
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the geometric structure and variability of these features in the scattering centers in [5,6]
to distinguish between the different target categories. The target signature of each of the
scattering centers varied with the viewing angle of the sensor platform. Statistical methods
can explicitly model and utilize this low-dimensional manifold structure of the scattering
center descriptors [7,8] for improved decisions, as well as for integrating information across
views [9,10].

However, ATR algorithms based on these hand-crafted features are limited to the in-
formation present in these descriptors, and they lack the generalization ability with respect
to variability in clutter, pose, and noise. With the advent of data-driven algorithms such
as artificial neural networks (ANN) [11], an appropriate feature set and a discriminating
function can be jointly estimated using a unified objective function. Recent advances in
techniques to incorporate the deep hierarchical structures used in ANN [12,13] has led
to the widespread use of these methods to solve inference problems in a diverse set of
application areas. Convolutional neural networks (CNN) in particular have been used as
automatic feature extractors for image data. These methods have also been adopted in
solving the ATR problem when using SAR images [14]. There have been several efforts in
this direction, including the state-of-the-art ATR results in the MSTAR data set in [15]. These
results establish that a CNN could be effective in radar image classification when provided
with sufficient training data. However, this approach of designing ATR algorithms for
new sensors that operate in different bands and elevations with limited training data from
targets of interest is not feasible as the scattering behavior changes substantially as the
wavelength of the operation changes. The major challenge is that neural networks usually
require large data sets to have a good generalization performance. In general, labeled radar
image data are not readily available in abundance unlike other image data sets. In this
paper, we address the scarcity of training data and provide a general method that utilizes a
model-based approach to capture and exploit the underlying scattering phenomenon to
enrich a training data set.

Transfer learning is one of the most effective techniques through which to handle the
availability of limited training data. Transfer learning uses the model parameters, which
are estimated using a similar data set such as Image-net [16], as initialization for solving
the problem of interest, and typically CNNs are used with little to no fine-tuning. There
have been numerous experiments supporting the benefits of transfer learning, including
two seminal papers [17,18]. However, radar images are significantly different from regular
optical images. In particular, SAR works in the wavelength of 1 cm to 10 m, while visible
light has a wavelength of the order of 1 nm. As a result, most surfaces in natural scenes are
rough at visible wavelengths, leading to diffused reflections. In contrast, microwaves from
radar transmitters undergo specular reflections. This difference in scattering behavior leads
to substantially different images in SAR and optical imaging. Since specular reflections
dominate the scattering phenomenon, the images are sensitive to instantaneous factors
like the imaging device’s orientation and background clutter. Therefore, readily available
optical-imagery based deep neural network models like Alex-net and VGG16 [19] are
not suitable for transferring knowledge to the SAR domain. In this paper, we pursue
an alternative strategy for the data augmentation of limited data sets through using a
principled approach that exploits the phenomenology of the RF backscatter data.

Next, we review the relevant research work and outline our contributions in
Sections 1.1 and 1.2, respectively.

1.1. Related Work

Over-fitting is a modeling error that is common to data-driven machine learning
methods when the learned classifier function is too closely aligned to the training data
points and therefore fails to generalize to the data points outside the support of the training
set. The over-fitting problem is exacerbated with smaller training sets. Several methods
have been proposed to reduce over-fitting and to improve the generalization performance.
Typically, the ill-posed problem of fitting an over-parametrized function to data is solved
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by using regularizers that impose structure and constraints in the solution space. The norm
of the model parameters serves as a standard regularizing function. This keeps the pa-
rameter values small with a 2-norm (|| · ||2 called L2 loss) space or sparse with a 1-norm
(|| · ||1 called L1 loss) space. Furthermore, the optimization algorithms, such as stochastic
gradient descent and mirror descent, implicitly induce regularization [20,21]. Dropout,
introduced by Srivastava et al. [22], is another popular method specifically for deep neural
networks. The idea is to randomly switch off certain neurons in the network by multiplying
a Bernoulli random variable with a predefined probability distribution. The overall model
learned is an average of these sub-models, providing improved generalization performance.
Batch normalization is another way through which to improve the generalization perfor-
mance, and was proposed by Ioffe and Szegedy [23]. They proposed normalizing all the
neuron values of the designated layers continuously while training them along with an
adaptive mean and variance that would also be learned as part of the back-propagation
training regime. Finally, the work by Neyshabur et al. [24] established the benefit of over-
parameterizing in implicitly regularizing the optimization problem and in improving the
generalization performance.

Transfer learning is another approach for improving the generalization performance
in the cases where there is a limited availability of data. Pan and Yang [25] provided a
comprehensive overview that illustrated the different applications and performance gains
of transfer learning. For radar data, Huang et al. [26] suggested a promising approach
along this direction by using a large corpus of SAR data to train feature extractors in an
unsupervised manner. Huang et al. [27] recently extended this idea to high-resolution
SAR data.

Much of the recent literature has gravitated towards using CNNs as the automatic
feature extractors for the SAR ATR task, as mentioned earlier. One research direction
has been to improve the classifier of CNNs by cascading CNN feature extraction with
other machine learning algorithms, such as a large-margin softmax classifier in [28] and
an ensemble learning-based classifier called the AdaBoost rotation forest in [29]. Other
researchers have focused on improving ATR performance through multiple views of the
same object as in [30], or by using multiple polarization information as in [31,32]. There is a
great deal of potential in improving ATR performance, especially in challenging scenarios
such as clutter. In such scenarios, polarimetric data and bistatic measurements serve as
an important tool in improving the classification performance, especially in cases of low
sample sizes in the training data. Our phase history model works with complex-valued
data, and we previously extended the model to bistatic measurements in [33]. Another
important research direction has been focused on reducing the space and computation
requirements of CNN-based ATR. To achieve this, depthwise separable convolutions were
used in [34]; in addition, Huffman coding and weight quantization were used in [35],
as well as knowledge distillation in [36,37]. Few other approaches focus on learning a
special type of features. Dong et al. [38] generated an augmented monogenic feature
vector followed by a sparse representation-based classification. In [39], the authors used
hand-designed features with supervised discriminative dictionary learning to perform
SAR ATR. Song et al. used a sparse-representation-based classification (SRC) approach
in [40]. In [41], Huang et al. designed a joint low rank and sparse dictionary to denoise
the radar image while keeping the main texture of the targets. Yu et al. [42] proposed a
combination of Gabor features and the features extracted by neural networks for better
classification performance.

When there is a limited availability of SAR data, there exist several ANN-architecture-
based approaches to improve generalization. Chen et al. [14] restricted the effective degrees
of freedom of a network by using a fully convolutional network. Lin et al. [43] proposed a
convolutional highway network to tackle the problem of limited data availability. In [44],
the authors designed a specialized ResNet architecture that learns effectively even when
the training data set is small. In addition to [26], the idea of semi-supervised learning has
recently received much attention for improving SAR ATR performance in cases of limited
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data availability. Yue et al. [45] used a CNN to obtain the class probabilities of unlabeled
data samples, which was followed by incorporating this knowledge into the classification
loss of ATR via a novel linear discriminant analysis method. In [46], Wang et al. used the
information in unlabeled SAR data to inform a deep classifier by using a self-consistent
augmentation rule, a mixup-based mixture, and weighted loss. Recently, Chen et al. [47]
used an unlabeled data-based consistency criterion, domain adaptation, and top-k loss to
alleviate the requirement of labeled data.

Data augmentation is another example of a regularization strategy that reduces the
generalization error while not affecting the training error [48,49], and is the main focus of
this paper. The main idea is to use domain-specific transformations to augment the original
training data set. J. Ding et al. [50] explored the effectiveness of the conventional transforma-
tions used for optical images, viz. translations, noise addition, and linear interpolation (for
pose synthesis). They reported marginal improvements in classification performance on the
MSTAR data set. Yan [51] used the original training images to generate noisy samples at
different signal-to-noise ratios, multiresolution representations, and as partially occluded
images. In [52], the authors proposed a generative adversarial network (GAN) to generate
synthetic samples for the augmentation of SAR data, but they did not report any signifi-
cant improvements in the error rate of the ATR task. Lewis et al. [53] explored multiple
deep generative models for SAR data augmentation and recommend BicycleGAN after
experimentation. In another effort that used a GAN, Gao et al. [54] used two jointly trained
discriminators with a non-conventional architecture. They further used the trained genera-
tor to augment the base data set and reported significant improvements. Cui et al. [55] used
a Wasserstein GAN, and Sun et al. [56] proposed an attribute-driven angular rotation gener-
ative network to produce synthetic samples for augmentation. Shi et al. [57] used a GAN to
super-resolve samples for data augmentation. None of these deep generative methods used
complex-valued imagery; therefore—unlike the proposed work here—they were unable
to create imagery that was consistent with the frequency support of the imaging system.
Cha et al. [58] used images from a SAR data simulator and refined them using a learned
function from real images. Simple rotations of radar images were considered as a data aug-
mentation method in [59]. In [15], Zhong et al. suggested key ideas for incorporating prior
knowledge in training the model. They added samples that were flipped in the cross-range
dimension with a reversed sign of the azimuthal angle. Such flip-augmentation exploits the
symmetric nature of most objects in the MSTAR data set. They also added a loss that was
auxillary to the primary objective of classification. The authors used the pose prediction
(azimuthal angle) as the secondary objective of the network. They empirically showed that
this helps by adding meaningful constraints to the network learning. Thus, the network
was more informed about the auxiliary confounding factor, improving its generalization
capability. Lv and Liu [60] proposed to extract attributed scattering centers (ASCs) through
the sparse representation algorithm. The synthetic samples for data augmentation were
then reconstructed by selecting a subset of these ASCs and by repeating the procedure.

1.2. Contributions

In this work, we introduce a novel data augmentation method for SAR domains,
following a principled approach that exploits the phenomenology of the RF backscatter
data over the azimuth and frequency domains. This paper is an extension of our previous
work [61] with additional results that include a comparison to other existing techniques
and an ablation study of the components of the proposed technique.

First, we introduce an approach for pose synthesis that models and exploits the lim-
ited persistence of the sparse set of scatterers over the azimuth domain. We assume that
man-made objects comprise a small set of dominant scattering centers. Specifically, we
first transform the image into the polar frequency domain to obtain the samples in the
phase history domain. We then construct a model motivated by the scattering behavior of
canonical reflectors in this phase history domain. The phase history model further decou-
ples the point-spread function associated with the imaging setup. This model captures the
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phenomenology of the viewing-angle-dependent anisotropic scattering behavior of man
made-objects, as well as provides realistic imagery at poses outside the training data set,
with quality that far surpasses previous approaches such as linear interpolation in image
domains [50].

Second, with modeling in the complex valued phase history domain, our algorithm
can create realistic sub-pixel shift augmentations that capture the well-known scintillation
effects in SAR imagery. These sub-pixel shifts are not possible in traditional image domains
that use standard interpolators (linear, cubic, etc.), as the complex-valued interpolation
kernels need to be appropriately designed by taking into account the azimuth and frequency
windows of the sensor. We hypothesize that these two factors are essential for improving
the network’s knowledge about the SAR imaging systems’ underlying physics.

Third, we focus on a state-of-the-art deep learning classifier for SAR ATR [15] using the
MSTAR data set, as well as provide extensive simulation studies to illustrate the learning
performance of different training data set sizes with un-augmented and augmented ap-
proaches to training. Our results show a significant boost in the generalization performance
over both un-augmented and augmentation approaches with the previously suggested
approaches. In particular, for the MSTAR data set when the training data set is reduced by
a factor of 32, the proposed augmentation algorithm reduces the test error by more than
42% when compared to the baseline approach that includes image domain flips and integer
pixel translations.

It is important to note that our data-augmentation-based strategy is generic and
decoupled from the network architectures proposed in other works like [14,43]. Therefore,
the proposed augmentation strategy may yield even further improvements in conjunction
with the methods mentioned above. Our objective here is to demonstrate the benefits of
the proposed data augmentation strategy. Hence, apart from data augmentation, we only
use Zhong et al.’s [15] multi-task learning paradigm.

The rest of the paper is structured as follows. In Sections 3.1 and 3.2, we describe the
data set and network architecture in detail. In Section 2.1, we provide an overview of our
strategy and then describe the details of our pose-synthesis methodology in Section 2.2.
Following those sections, we present the details of the experiments and corresponding
results in Sections 3 and 4, respectively, which provide the empirical evidence for the
effectiveness of the proposed data augmentation method. We then conclude with some
possible directions for future research in Section 5.

2. Model-Based SAR Data Augmentation

An approach to ATR algorithm design is to train a parametric neural network classifier
g, with parameters w ∈ Rdw , that predicts an estimate of output labels Y ∈ RdY for an
input X ∈ CdX , i.e., Ŷ = g(X; w), where dX, dw, and dY are dimensions of X, w, and Y,
respectively. We consider a supervised learning setting, where a labeled training data
set Dtrain = {(Xu, Yu)}Ntrain

u=1 is used to estimate the classifier parameters w, where Ntrain
is the total number of training samples. The training procedure is the minimization of
an appropriate loss function L : (w,D) → R, which is achieved by using an iterative
algorithm like the stochastic gradient descent. Therefore, the learned w∗ is the solution of
the following minimization problem P :

w∗ = P(D) = arg min
w
L(w,D) (1)

Data augmentation involves applying an appropriate transformation, such as TDin →
Dout, to a data set (only using Dtrain for our purposes), and to then expand it to an aug-
mented data set T(Dtrain). We also use a validation data set, Dval = {(Xu, Yu)}Nval

u=1, for
cross-validation during training. Furthermore, we use a test data set Dtest = {(Xu, Yu)}Ntest

u=1
for evaluating g(X; w) in post-training. The evaluation can be conducted using a suit-
able metric M : (w,D) → R, which may be different from the L above. Our aim is
to find T, such that the estimated parameters waug = P(T(Dtrain)) perform better than
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wtrain = P(Dtrain) in terms of the chosen metric, i.e.,M(waug,Dtest) is more desirable than
M(wtrain,Dtest).

2.1. Exploiting SAR Phenomenology for Data Augmentation

Simple approaches to designing transformations T for data augmentation consider
translation invariance and the symmetry of objects around its main axis in order to introduce
discrete pixel shifts and flips along the cross-range dimension. Our augmentation strategy
goes further and uses model-based transformations to improve the network’s knowledge
principally about two confounding factors, the pose as well as the scintillation effects that
occur due to shifts in the range domain. Our method allows the synthesis of new poses in a
close neighborhood of existing poses, based on a sparse modeling of the existing training
data set that exploits the spatial sparsity and the scattering centers’ limited persistence.

An overview of our approach is as follows: for every image in the training data set,
we fit a sparse model in the phase history domain by exploiting SAR phenomenology. This
model is henceforth referred as the PH model. We utilize the continuity of this PH model
in the azimuth domain to extrapolate the phase history measurements and to synthesize
new images in a close neighborhood of the original image. The PH model also allows
for the introduction of arbitrary-valued sub-pixel shifts in both range and cross-range
dimensions to images at both the original and synthesized poses. These fractional shifts
provide information to the network regarding scintillation effects, which further improves
its generalization capability. In the following section, we describe our modeling and pose
synthesis strategy in full detail.

2.2. Modeling and Pose Synthesis Methodology

This section describes the pose synthesis methodology used for data augmentation
when using the PH model. This work builds on our earlier work, which focused on
modeling of the scattering behavior of targets in monostatic and bistatic setups [33,62–68].
We first constructed a model for each image in the training data set and locally extrapolated
the measured images through using the model. We assumed that a SAR sensor that operated
in the spotlight mode was used to create the images (as in the case of the MSTAR data set).
The images were translated from the spatial domain to the Cartesian frequency domain via
the steps described in [69]. Subsequently, we converted the frequency measurements to the
polar coordinates to obtain the phase history measurements described in [70].

We considered a square patch on the ground of side lengths L = 30 m that were centered
around the target. From the geometric theory of diffraction, we assume that a complex
target can be decomposed into a sparse set of scattering centers. The scattering centers are
then assumed to be K point targets, and are described through using {(xk, yk), hk(θ, φ)}K

k=1,
where (xk, yk) ∈ [− L

2 , L
2 ] × [− L

2 , L
2 ] are the spatial coordinates of the point targets, θ is

the azimuthal angle, φ is the angle of elevation of the radar platform, and hk(θ, φ) is the
corresponding scattering coefficients that depend on the viewing angle. The samples of the
received signal after the standard de-chirping procedure are given by

s( fm; θ, φ) =
K

∑
k=1

hk(θ, φ) exp
(
−j4π

fm cos(φ)
c

(xk cos(θ) + yk sin(θ))
)

, (2)

where fm is the illuminating frequencies such that m ∈ [M], M = 2BL
c ; B is the bandwidth of

the transmitted pulse; c is the speed of light; and the notation [M] denotes the enumeration
of natural numbers up till M. We estimated the function hk(θ, φ) ∀ k ∈ [K] from the
receiver samples.

Parametric models for standard reflectors, such as dihedral and trihedral reflectors,
were studied in [71–73]. These models indicate that the reflectivity is a smooth function over
the viewing angle, which is parameterized by the reflector’s dimensions and orientation.
Therefore, we exploited this smoothness to approximate this infinite-dimensional function
through using interpolation strategies [74] with the available set of samples Θ in the angle
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domain. We denote the sampled returns from the scene by the matrix S = NUFFT(X) ∈
CNθ×M, where NUFFT represents the non-uniform Fourier transform. The elements of S
are defined as follows:

sm,i = nm,i +
K

∑
k=1

hk(θi, φ) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
. (3)

where nm,i represents the measurement noise. In order to solve the estimation problem,
we assume that the function hk has a representation in the basis set denoted by the matrix
Ψ ∈ CNθ×D of a size D. For the MSTAR data set, the elevation angles we worked with
are similar. We assumed that the variation in hk with respect to φ was insignificant. This
assumption lead to the following relation hk(θ; φ) = ∑D

v=1 cv,kψv(θ) + εP. The estimated
phase history matrix was now Ŝ, whose elements were given by

ŝm,i = n̂m,i +
K

∑
k=1

D

∑
v=1

cv,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
, (4)

where n̂m,i consists of the measurement noise and the approximation error. To estimate
the coefficients cv,k from the noisy measurements in (4), we discretized the scene with
a resolution of ∆R in the X, Y (range and cross-range, respectively) plane to obtain the
K = N2

R grid points, where NR = 2BL
c is the number of the range bins. Furthermore, we con-

sidered a smooth Gaussian function to perform the noisy interpolation. We partitioned the
sub-aperture 2∆θ into smaller intervals of equal length with a corresponding set containing
the means of the intervals given by {θ̂v}D

v=1, where D = 12, and these were used as the
centroids for the Gaussian interpolating functions. We assumed the width of the Gaussian
function σG as a constant hyper-parameter, whose selection is described in Section 3.4.
Hence, σG is the constant minimum persistence of the scattering center in the azimuth
domain that we wish to detect. The radial basis functions used were

ψv(θ) = exp

−( θ − θ̂v

2σG

)2
 (5)

The elements of Ŝ were obtained due to the scattering centers located at the discrete
grid points, which are now given by

ŝm,i = n̂m,i +
N2

R

∑
k=1

D

∑
v=1

cv,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
. (6)

Here, the discrete grids for (xk, yk) and (θi, fm) are now both known. Let the vectors
containing all corresponding grid points for xk, yk, θi, and fm be referred to as x, y, θ, and f
respectively. The problem now is to find the coefficients cv,k that minimize the error between
Ŝ and S. Let vector ck = [c1,k · · · cD,k]

T . To recover the structured signal h = [h1 · · · hN2
R
],

which represents the scattering coefficient of a sparse scene that has a sparse representation
in an underlying set of functions, we solve the following linear inverse problem via a
sparse-group regularization on ck∀ k ∈ [N2

R].

min
C

 N2
R

∑
k=1

λ‖ck‖2 +
∥∥S− Ŝ

∥∥
F

⇐⇒ min
C

J(C, σG) (7)

where C refers to the matrix [c1 · · · cN2
R
], σG is a constant hyper-parameter, and ‖·‖2, ‖·‖F

refer to the l2, Frobenius norms, respectively.
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The elements of the recovered model, S∗(θ; f) are now

s∗i,m =
N2

R

∑
k=1

D

∑
v=1

c∗v,kψv(θi) exp
(
−j4π

fm cos(φ)
c

(xk cos(θi) + yk sin(θi))

)
(8)

where c∗v,k are the recovered coefficients. The phase history measurements were converted
back to the image by using overlapping sub-apertures that spanned 2∆θ = 3 degrees in the
azimuth domain, as shown in Figure 1. Here, ∆θ is the angular span of the sub-aperture
from the center azimuth. This azimuth span determines the cross-range resolution of the
SAR image. The slant-plane cross-range resolution is given by

∆CR
slant =

λc

4 sin(∆Θ)
,

∆Θ = sin−1

(
λc

4∆CR
groundcos(φ)

)
.

Each image in the MSTAR data set contains a header that summarizes the imaging
geometry information stored in the Phoenix format. The parameters, such as center-
frequency fc and angle of depression φ, are obtained from the header information stored in
each file. We assume that the cross-range resolution given in the file is on the ground-plane.
The cross-range resolution is given as ∆CR

ground = 0.305. We infer that ∆Θ = 1.51 degrees.
We apply the same Taylor window with zero-padding and then translated it back to the
Cartesian coordinates before applying the Fourier transform to generate the images to
augment the data set.

Figure 1. Pose synthesis using the phase history model. F denotes the Fourier transform operator.
The phase history collected over an azimuth span of 2∆θ = 3◦ was extrapolated by δθ via the model
S∗(θ; f).

3. Experiments

We hypothesize that the underlying scattering mechanism is locally continuous or
persistent in nearby look angles. We exploited this structure to generate realistic SAR
images in the nearby look angles to augment the training data set. We evaluate that this
hypothesis can be supported in the publicly available MSTAR data set, which has been
typically used for evaluating algorithms.
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3.1. MSTAR Data Set

One of the motivations for choosing the well-studied MSTAR data set for our ex-
periments is its popularity, which enables us to compare our method with several other
approaches in the literature. Additionally, imaging geometry parameters are provided in
the MSTAR data set, which makes it straightforward to infer the frequency support of the
images. Alternatively, for the data sets that do not provide the parameters, we can infer
the frequency support of the image by applying Fourier transform to the complex-valued
SAR image. The MSTAR data set consists of 10 classes, i.e., tanks (T62 and T72), armored
vehicles (BRDM2, BMP2, BTR60, and BTR70), a rocket launcher (2S1), an air defense unit
(ZSU234), a military truck (ZIL131), and a bulldozer (D7). We illustrate this observation in
Figure 2.

Figure 2. A 128× 128 image chip from the MSTAR data set of a BTR-70 Tank and the correspond-
ing spectral representation that was obtained by applying 2D Fourier transform to extract the
K-space support.

We considered a image chip of BTR70 at the size of a 128× 128 pixel-sized image,
as well as the corresponding spectral content. The support exists on a central region of
100× 100 frequency points. The corners of the square support can now be expressed in
terms of the normalized spatial frequency domain, which is used to compute the K-space
points. The phase history measurements at those K-space points were computed via the
non-uniform Fourier transform [75,76] operator without a loss in generality. Therefore, we
can estimate our model on this normalized domain by sampling in a wedge-shaped region.
The radar platform used in constructing the MSTAR data set acquires the measurements
through using Np = 100 pulses over an aperture of 3 degrees. The phase history mea-
surements obtained in the receiver were converted to images via the sub-aperture-based
method described in [77]. The motion-compensation steps were followed by the application
of a Taylor window to control the side-lobes. The measurements were zero-padded to
obtain an over-sampled image via the Fourier transform. The complete MSTAR data set
used in [15] was highly imbalanced. We replaced the data set used in [15] with a balanced
subset, which is referred to as the standard operating conditions that were considered
in [14,26]. We henceforth denote this subset as the SOC MSTAR data set.

Similar to the existing literature, we used the images at a depression angle of φ = 17◦

for training, while images at φ = 15◦ formed the test set. Similar to [15], we cropped
the images to 64× 64 with the objects in the center. Note that we cropped the images
right before feeding it to the ANN. We performed the modeling and augmentation steps
on the original images. Since our paper’s objective is to investigate the effects of data
augmentation, we worked with much smaller training data sets by artificially reducing the
size of our data set to φ = 17◦. We exponentially sub-sampled by extracting only theR ratio
of the samples from each class, where R ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20}. We ensured that
the extracted images were uniformly distributed over the [0, 2π] azimuthal angle domain
for each sub-sampling ratio. This sub-sampling strategy is essential for ensuring that the
learning algorithm obtains a complete view of the vehicle’s scattering behavior. We further
selected 15% of the uniformly distributed samples from this uniformly sub-sampled data as
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the validation set, we then utilized the remaining 85% as the new training set. The training
data Dtrain include a flip augmentation along the cross-range domain [15], as well as real-
time translations along both the range and cross-range domains. These translations (in
no. of pixels) are randomly sampled from the set {−6, − 4, − 2, 0, 2, 4, 6} at every
epoch; as such, Dtrain will be henceforth referred to as just the baseline data. We also
included the flip augmentation in the final validation set Dval , and no augmentations were
included in the final test-set Dtest. We formed our T(Dtrain) by performing the proposed
pose augmentation on each radar image in the training data set, as described in Section 2.2.
Additionally, our net transformation T also includes sub-pixel level translations, as well as
real-time pixel-level translations [50] in the range and cross-range domains. We used the
sub-pixel shifts of the 1

2 pixel, which corresponded to an approximately 0.15 m displacement
in the Y-direction (range) as well as in the X-direction (cross-range) of the scene, where each
pixel corresponds to 0.3 m in the range and cross-range domains.

3.2. Network Architecture

Our data augmentation algorithm was decoupled from the network architecture by
realizing the ATR algorithm. For our experiments, we choose the simple CNN network
architecture that was inspired by [15] and which is shown in Figure 3. We made such an
architectural choice because, similar to Zhong and Ettinger [15], we wished to show that
the classification performance of even simple CNN architectures can be improved through
successful regularization through using domain-specific data augmentation for (in our case)
SAR ATR. We modified the network and used batch-normalization layers after the ReLU
activation in the convolutional layers. We deferred the use of dropout in the convolutional
layers since batch normalization regularizes the optimization procedure [78]. After the
last convolutional layer, we flattened out all the feature values and used a fully connected
(FC) layer, which was followed by a dropout layer that was used to obtain the final set of
features. These features were used to estimate class Y1 of the input SAR images via training
that was achieved by using the categorical cross-entropy loss function L1. We further
modified the cosine loss, which is used for pose awareness in [15], to a pair of simpler
losses by using the Y2 = sin(θ) and Y3 = 1A(θ) features, where θ is the azimuthal angle
and 1A is the indicator function over set A = [−π

2 , π
2 ]. The mean-squared-error loss L2 was

used for training the network to estimate Y2 and the binary cross-entropy loss L3 (which is
used for training the network to estimate Y3). These two features uniquely determined the
azimuthal angle, and they remove the need for a cosine distance loss. In our experiments,
while training the model, we found that this modification to the loss function resulted in
improving the convergence of the optimization procedure. The loss function of L to find
the network parameters is now

L(w,D) = ĒD [L1(w, X, Y1) + L2(w, X, Y2) + L3(w, X, Y3)] (9)

L1(w, X, Y1) = −
10

∑
p=1

Y1,p log
(
Ŷ1,p(w, |X|)

)
L2(w, X, Y2) = (Y2 − Ŷ2(w, |X|))2

L3(w, X, Y3) = −Y3 log
(
Ŷ3(w, |X|)

)
− (1−Y3) log

(
1− Ŷ3(w, |X|)

)
where |.| denotes the absolute value, X ∈ C64×64, Y1 ∈ {0, 1}10×1, Y2 ∈ [−1, 1], and Y3 ∈
{0, 1} refer to the complex radar images, the one-hot vector of the 10 classes, sin(θ), and
1A(θ), respectively. ĒD refers to the empirical mean over data set D, and Y1,p is the pth

component of the vector Y1. All the quantities withˆ(hat) are the corresponding estimates
given by the ANN.
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Figure 3. The neural network architecture. The abbreviations used are as follows. Conv is the
convolutional layer followed by the kernel height × width. MP is the max pooling followed by the
pooling size as the height × width. RL, BN, Flat, Drop, and FC are the ReLU, batch normalization,
flattening, dropout and fully-connected layers, respectively. The sizes of the feature maps are
mentioned at the top as height × width × channels.

3.3. Experimental Setup

The experiments were conducted using the network that is described in Section 3.2.
This was used on the data sets described in Section 3.1. This model was trained on a
local machine with a Titan Xp GPU. The Tensorflow (1.10) [79] library was used for its
implementation through its Python API. We used the ReLU activation function everywhere
except for in the final output layers of Ŷ1, Ŷ2, and Ŷ3, where we instead used the Softmax,
Linear, and Sigmoid activations, respectively.

An overview of the processing steps conducted to synthesize the radar images is as
follows: Starting from the complex radar data, as described in Figure 4, we first transformed
the image to a K-space by inverting the transformations applied to the MSTAR data in
order to obtain the phase history representation. Through using the header information
from the MSTAR data set, we determined the discrete grids for (xk, yk) and (θi, fm). Next,
we estimated the model coefficients by solving the optimization problem described in
Equation (7). As a result, we obtained the S∗(θ; f) model that is given by Equation (8). This
model was further used to synthesize new columns of phase history data (or to extend
the θ vector). Consequently, a synthesized image was produced, which was achieved
by the procedure described in Section 2.2 and followed by a transformation of the phase
history data to complex-valued image data. The complete MATLAB code that was used
to perform our proposed augmentations on the MSTAR data set is available at https:
//github.com/SENSE-Lab-OSU/mstar_data_aug (accessed on 11 July 2023).

Figure 4. Overview of the Image Synthesizing Procedure. All boxes with grid lines represent the
matrices of complex values across an (xk, yk) ∀ k ∈ [N2

R] grid, where Cross-range and Range are
labeled, as well as along an (θi, fm) ∀ i ∈ [Nθ ], m ∈ [M] grid, where θ and f are also labeled. The
blue arrows represent the pre-model fitting stage, and the green arrows represent the post-model
fitting stage.

We used the magnitude of the complex-valued radar data as the input X, which is
in agreement with the existing literature for training the network. We normalized all the
input images to the unit norm to reduce some of the undesired effects that occur due to

https://github.com/SENSE-Lab-OSU/mstar_data_aug
https://github.com/SENSE-Lab-OSU/mstar_data_aug
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the Gaussian kernel during extrapolation. We also removed all of the synthetic images at
poses that were already in the corresponding training set. Then, the optimization problem
in Equation (1) was solved by using the off-the-shelf method, as well as by the Adam
variant of the mini-batch stochastic gradient descent optimizer with a mini-batch size of
64. The training was carried out for many epochs (>400) while using the early-stopping
criterion, and the model was saved for the best moving average validation performance
metric. Although we care about accuracy (i.e., that the percentage of samples are classified
correctly) as a performance metric, the Dval here becomes small, especially for small R
values, thereby saturating the validation accuracy at 100% and thus yielding this metric as
less useful. Instead, we then monitored the minimum classification loss L1 as the validation
performance metric. We reported the percentage error (or misclassification), which was
100 − accuracy, as the test performance results.

3.4. Determining Hyper Parameters

The PH model for each image and the neural network model introduced a set of hyper
parameters. We will now explain our choices for a subset of them and will mention some
others. The neural network’s hyper parameters were kept at the Tensorflow (1.10) library’s
default values unless specified.

The PH model has two main hyper parameters, the σG and δθ. We determined, using a
simple line-search, the optimum σG for every image by minimizing the following equation
over all possible values of it.

σ∗G = arg min
σG

[
min

C
J(C, σG)

]
For determining the appropriate δθ, we chose the heuristic approach for the grid

search. We generated samples of up to 6◦ because the approximation error increases
beyond that. We chose an appropriate δθ by running a grid search over a factor η, such
that δθ = min{6◦, ησ∗G}. This was chosen because the amount of possible extrapolation per
image depends on the corresponding kernel width σ∗G. We ran the training on the smallest
subset of the data set at a sub-sampling ratio of 2−5 for the purpose of searching over a grid
of three values, i.e., η = {1, 2, 3}. We chose η = 3 as it gives the best validation performance.
Although we experimented with η > 3, we found the results were comparable to when
η = 3.

For the neural network model, we set the dropout rate for the last fully connected
layer at 0.2.

4. Results

A scarcity of training data affects the performance of the resulting ATR classifier in two
distinct ways: First, a small training data set interferes with the ability of learning how to
extract informative features from the data. Second, given a set of features, limited training
data results in suboptimal decision boundaries, thereby leading to a poor generalization
performance. We hypothesize that data augmentation techniques primarily improve
the former effect, i.e., it improves the test performance through an enhanced training
of the CNN’s convolutional layers that serve as the feature extractors. Our empirical
results, which are presented below, support this observation. With an adequate feature set,
the classifier can be trained even with small training data sets, and it will still generalize
well. To disentangle the two effects, the convolutional layers of the network were trained
with the augmented training data set, and the classifier layers (after and including the first
FC layer) were trained using the corresponding non-augmented training data set.

For all the approaches, we generated the results for the 6 values ofR that correspond
to the different sub-sampling ratios of the original training data set. All the models have the
same architecture as described in Section 3.2, and they use the same Dtest. The difference
among them is the Dtrain and Dval that are used, as described in Section 3.1. For consistency
in the results, we repeated the process described in Section 3.1 to obtain four different
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Dtrain and Dval for each R (except for R = 2−1 and R = 20, which is where only two
and one such unique data sets were possible, respectively). Moreover, we reported the
mean and standard deviation of the classification performance. The overall augmentation
performance is summarized in Tables 1 and 2, and they are visualized in Figure 5. The bold
numbers in these tables highlight the best performance in respective rows.

Table 1. The test errors that correspond to the analysis plot (Figure 5a).

Sub-Sampling Ratio (R) Baseline Data (B) Adding Our Sub-Pixel
Shifts (B + S)

Adding Our Poses and
Sub-Pixel Shifts

(B + S + P)
Full-Data Features (F)

20 0.50 {B0} 0.58 {S0} 0.37 {SP0} 0.50 {F0}
2−1 1.44 ± 0.33 {B1} 1.03 ± 0.08 {S1} 0.54 ± 0.00 {SP1} 0.72 ± 0.06 {F1}
2−2 4.21 ± 0.83 {B2} 2.33 ± 0.33 {S2} 1.00 ± 0.34 {SP2} 0.99 ± 0.17 {F2}
2−3 10.99 ± 0.73 {B3} 5.68 ± 0.67 {S3} 3.32 ± 1.31 {SP3} 1.22 ± 0.26 {F3}
2−4 18.78 ± 2.40 {B4} 14.02 ± 0.28 {S4} 7.33 ± 0.54 {SP4} 2.07 ± 0.21 {F4}
2−5 32.38 ± 2.93 {B5} 29.98 ± 2.62 {S5} 18.66 ± 3.22 {SP5} 4.55 ± 0.57 {F5}

Table 2. Test Errors corresponding to the comparative plot (Figure 5b).

Sub-Sampling Ratio (R) Baseline Data (B)
Augmenting with

Naively Rotated Poses
(B + R)

Augmenting with
Linearly Interpolated

Poses (B + L)

Augmenting with Our
Poses and Sub-Pixel

Shifts (B + S + P)

20 0.50 {B0} 0.62 {R0} 0.50 {L0} 0.37 {SP0}
2−1 1.44 ± 0.33 {B1} 1.22 ± 0.19 {R1} 1.22 ± 0.14 {L1} 0.54 ± 0.00 {SP1}
2−2 4.21 ± 0.83 {B2} 4.38 ± 0.72 {R2} 2.56 ± 0.21 {L2} 1.00 ± 0.34 {SP2}
2−3 10.99 ± 0.73 {B3} 10.01 ± 1.72 {R3} 7.26 ± 2.56 {L3} 3.32 ± 1.31 {SP3}
2−4 18.78 ± 2.40 {B4} 19.83 ± 2.21 {R4} 12.99 ± 1.10 {L4} 7.33 ± 0.54 {SP4}
2−5 32.38 ± 2.93 {B5} 32.05 ± 7.58 {R5} 30.79 ± 3.04 {L5} 18.66 ± 3.22 {SP5}

4.1. Ablation Study of the Proposed Approach

We performed an ablation study of the two proposed augmentations, i.e., the sub-
pixel and pose augmentations, by incrementally adding them to the baseline data. We
abbreviated the data sets as follows: the baseline data as B (which includes the image
domain flips and integer pixel translations); the baseline data with proposed sub-pixel
augmentations as B + S; and the baseline data with the proposed sub-pixel and pose
augmentations as B + S + P. Moreover, to provide a lower bound on the test error at all the
sub-sampling ratios of the data-augmentation approaches, we used a genie-aided approach
(non-realizable in practice) by utilizing the full SOC data set to learn the CNN features,
but we still used only the sub-sampled training data-set for training the fully connected
classifier layers. This formed the test-error curve, which is referred to as F (for full data) in
Figure 5a.

The full-data plot in Figure 5a (values are in Table 1) shows the importance of extracting
good quality features, i.e., if we had access to all the poses, we would learn very good
features. Having good features makes classification quite easy, and this is evident from the
low test errors that are found even in cases of very low data availability when learning
the classifier. The sub-sampling had little effect on the generalization performance for
the genie-aided case. The baseline data plot showed a considerable degree of test error,
especially in cases of low training-data availability. This test error was reduced in the B + S
data plot, as well as further reduced in the B + S + P data plot, which shows the effectiveness
of both our strategies in improving the quality of features extracted by the CNN. Note
that the majority of the improvement comes from the pose augmentations. ForR = 2−5,
the proposed augmentations reduced the test error by more than 42% when compared to the
baseline approach (which includes the image domain flips and integer pixel translations).
ForR > 2−2, the model that used both proposed augmentations provided an even better
performance than the genie-aided features. This makes sense because our augmentation
strategy is able to successfully fill in the pose information gaps in the complete SOC data.
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However, there exists a considerable gap between the full data and the B + S + P data plots
in the smaller data regimes ofR < 2−2. So, there still exists room for further improvements
in aiding the network-learning informative features for the data-starved regimes.

The confusion matrices for a sample data set atR = 2−4 are shown in Tables 3 and 4.
These tables clearly show that the performance has considerably improved via the proposed
augmentation of the training data in cases of low data availability. Not only that, but the
performance also improved over all the classes except two. As there were four distinct
sub-sampled data sets at R = 2−4, we picked the one that was a good representative of
the average performance. The bold numbers in these tables highlight the best performing
method for respective classes.

4.2. Comparison with Existing SAR-ATR Models

In comparing our test error with the full SOC MSTAR data set, it can be seen from
Table 5 that our approach is on par with the existing approaches when using all of the
data. We are interested in training the CNN models when data availability is extremely
low, say ≤60 samples per class. To compare the results obtained from our approach to
recent works in extremely low-data regimes, we utilized some results from [26,42]. We
also conducted B + S + P experiments for 18% of data per class. These are also tabulated
in Table 5. It is in this extreme sub-sampling regime where our approach outperforms all
the other existing approaches. The proposed algorithm reduces the test error by more than
46% when compared to the next best approach of the CNN-TL-bypass [26]. We obtained
the lowest test error even when using the smallest portion of the data. We reiterate that
most of the tabulated approaches were decoupled from our data-augmentation approach.
So, in principle, it may be possible to combine our data-augmentation strategy with the
existing approaches in order to obtain even better results. The bold numbers in Table 5
highlight the best performing method in respective columns.

Table 3. Confusion matrix for the classifiers corresponding toR = 2−4 with no augmentation.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Error (%)

2S1 196 0 1 0 3 1 40 5 18 10 28.467
BMP2 21 117 2 18 10 0 1 23 3 0 40.0

BRDM2 9 1 256 1 0 1 0 0 6 0 6.569
BTR60 2 2 4 161 10 3 2 4 4 3 17.436
BTR70 21 13 1 23 130 1 0 6 0 1 33.673

D7 0 0 0 0 0 264 1 0 7 2 3.65
T62 5 0 0 2 0 1 234 4 22 5 14.286
T72 5 2 0 3 0 1 16 164 5 0 16.327

ZIL131 1 0 0 0 0 34 4 0 234 1 14.599
ZSU234 0 0 0 0 0 17 11 0 29 217 20.803

Overall 18.639

Table 4. Confusion matrix for the classifier corresponding toR = 2−4 with augmentation.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Error (%)

2S1 251 0 0 1 0 1 9 8 4 0 8.394
BMP2 4 169 0 4 0 0 4 12 1 1 13.333

BRDM2 16 8 243 0 0 0 0 0 6 1 11.314
BTR60 2 1 4 172 6 1 3 1 1 4 11.795
BTR70 7 2 1 0 184 0 0 2 0 0 6.122

D7 0 0 0 0 0 263 0 0 0 11 4.015
T62 6 0 0 4 0 1 257 4 1 0 5.861
T72 1 0 0 0 0 0 10 183 0 2 6.633

ZIL131 6 0 0 0 0 8 6 1 244 9 10.949
ZSU234 0 0 0 0 0 0 2 0 0 272 0.73

Overall 7.711



Remote Sens. 2023, 15, 4109 15 of 21

Table 5. Results from the various SAR-ATR efforts that used the SOC MSTAR data set.

Method Error (%) Using 100% Data Error (%) Using≤20% Data

SVM (2016) [40] 13.27 47.75 (at 20%)
SRC (2016) [40] 10.24 36.35 (at 20%)

A-ConvNet (2016) [14] 0.87 35.90 (at 20%)
Ensemble DCHUN (2017) [43] 0.91 25.94 (at 20%)

CNN-TL-bypass (2017) [26] 0.91 2.85 (at 18%)
ResNet (2018) [44] 0.33 5.70 (at 20%)
DFFN (2019) [42] 0.17 7.71 (at 20%)

Our Method 0.37 1.53 (at 18%)

Except for the works of [50,59], we did not find reproducible data-augmentation
strategies that explicitly synthesize samples at new poses. As pointed out earlier, our
approach can be used in conjunction with most of the other strategies outlined in Section 1.1.
As such, we conducted a detailed comparison of our pose synthesis approach and sub-pixel
level translations with the pose synthesis methods in [50,59]. We added real-time pixel level
translations for all experiments. For the sake of completion, the simple rotations that are
produced in [59] used the rotation matrix and were followed by appropriate cropping, and
the linearly interpolated poses that were synthesized in [50] used the following equation

Iθc = CRθc

( |θb − θc|Rθa(Iθa) + |θa − θc|Rθb(Iθb)

|θa − θc|+ |θb − θc|

)
(10)

where Rθ(I) denotes the rotation of the radar image I by θ degrees clockwise, CRθ(I)
denotes the same but counter-clockwise, Iθ denotes the radar image at the pose θ, θc is the
desired new pose, and θa and θb are the poses closest to θc in the training data.

For a qualitative evaluation, we illustrated the images that were synthesized from
the T62 tank at θc = 57◦, and the corresponding ground-truth image (which is part of the
Full SOC data) was used for comparison purposes only. We observed in Figure 6b the
synthesized image at θc = 57◦ when using θa = 56◦ and θb = 85◦, and this was achieved by
using a sub-sampled data set withR = 2−4. We note that the dominant scattering centers
in the synthesized image were different compared to the ground-truth image. Next, we
used the proposed model that was estimated for the azimuth angle of 56◦. It is evident from
Figure 6c that the synthesized image from our method captures all the dominant scattering
centers present in the ground truth. Finally, we used the rotation operator to synthesize
at θc = 57◦ when using θ = 56◦. We observed that, even when the rotation is small, the
ground-truth image has a different scattering behavior that is not captured by rotation.
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Figure 5. Quantitative evaluation of the proposed approach. (a) Ablation study. (b) Comparison with
other augmentations.
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(c)

Figure 6. Comparison of the radar images synthesized for class T62 at the viewing angle of θc = 57◦

when using different augmentation strategies. (a) Radar image at a viewing angle of θc = 57◦,
which was generated by rotating the closest available in the sub-sampled data set at θa = 56◦

(from [59]). (b) Linear interpolation strategy proposed in [50]. Here, α and β can be inferred from Equa-
tion (10), and the closest poses to θc = 57◦ in the sub-sampled data set were θa = 56◦ and θb = 85◦.
(c) This radar image at the azimuth angle of θa = 56◦ was first approximated using the proposed
set of basis functions in the frequency domain. Measurements from the unobserved viewing angles
were synthesized via the model in the frequency domain, which was used to create the image at the
viewing angle of θc = 57◦.

For the quantitative evaluation, we compared the ATR performance at all sub-sampling
ratios similar to those conducted in the previous Section 4.1. We abbreviated the data sets
as follows: the baseline data as B, the baseline data with simple rotations added (from [59])
as B + R, the baseline data with linearly interpolated poses (from [50]) as B + L, and the
baseline data with proposed sub-pixel and pose augmentations as B + S + P.

The comparison of these is tabulated in Table 2, and it can also be seen in Figure 5b. It
is evident that our approach is significantly better than both simple rotations and linearly
interpolated poses for this CNN-based ATR task. ForR = 2−5, the proposed augmentations
reduced the test error by more than 39% when compared to the next best augmentation
approach of [50].

5. Conclusions and Future Directions

In this paper, we proposed incorporating the domain knowledge of SAR phenomenol-
ogy into a CNN by way of data augmentation. We presented a model-based approach to
data augmentation for the purpose of training the neural network architecture to solve
the ATR problem with limited labeled data. Through extensive simulation studies, we
showed the effectiveness of the augmentation strategies by training a neural network with
the augmented data set that was synthesized from the phase history models extracted
from each available training image. Our results show that the proposed data augmentation
strategy produced a significant improvement in the model’s generalization performance
when compared to the baseline performance over a wide range of sub-sampling ratios.
As presented, the phase history approximation method is only valid in a local neighborhood
of a given azimuth angle. Future work could focus on fitting a single global model to every
class that is jointly derived from all the training images. Such a global model could produce
a diverse set of SAR images over larger pose variations. Since, typically, target image chips
are not perfectly registered and are aligned across different azimuth angles, the global
model fit should incorporate unknown phase and spatial shifts for each image. As part
of future research, we propose developing a network architecture to support a unified
model that can account for these phase errors, and which can synthesize a larger data set to
improve the classifier’s performance further. We also aim to evaluate such augmentations
on more challenging data sets such as the Military Ground Targets Database (MGTD) [80],
the Synthetic and Measured Paired Labeled Experiment (SAMPLE) [81], and the Ship data
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set OpenSARShip (which was obtained from Sentinel-I imagery [82]). Additionally, since
our data-augmentation method creates complex-valued synthetic data, it can potentially be
used to regularize complex-valued neural networks [83,84], and it can be used to improve
their performance for SAR ATR. Moreover, since the currently used Taylor windowing is
sub-optimal, the problem in optimizing the window function that enhances ATR perfor-
mance can be incorporated in the form of a multi-objective optimization—a topic that will
be investigated in our future work.
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