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Abstract: The accuracy and rapidity of total iron content (TFE) analysis can accelerate iron ore
production. Although the conventional TFE detection methods are accurate, its detection speed
presents difficulties in meeting production requirements. Therefore, this paper proposes a method
of TFE detection based on reflectance spectroscopy (wavelength range: 340-2500 nm) and remote
sensing. Firstly, spectral experiments were conducted on iron ore using the HR SVC-1024 spectrometer
to obtain spectral data for each sample. Then, the spectra were smoothed and dimensionally reduced
by using wavelet transform and principal component analysis. To improve the detection accuracy of
TFE, a two hidden layer extreme learning machine with variable neuron nodes based on an improved
sparrow search algorithm and batch normalization optimization (MSSA-BNVTELM) is proposed.
According to the experimental results, MSSA-BNVTELM exhibited superior detection accuracy in
comparison to other algorithms. In addition, this research established a remote sensing detection
model using Sentinel-2 data and MSSA-BNVTEM to detect the distribution of TFE in the mining area.
The distribution of TFE in the mine area was plotted based on the detection results. The results show
that the remote sensing of the mine area can be useful for detection of the TFE distribution, providing
assistance for the mining plan.

Keywords: visible—infrared spectroscopy; Sentinel-2; sparrow search algorithm; extreme learning
machine; remote sensing

1. Introduction

In the mining process, iron ore needs to be matched and blended in a specific propor-
tion to meet the quality requirements of the ore product. Iron ores with different total iron
content (TFE) are blended to increase the output of qualified ore, improve the economic
efficiency of the enterprise, and maximize the utilization of iron ore [1,2]. Therefore, it
is crucial to detect the TFE of iron ore during the ore preparation process. Although the
chemical spot-drop method can accurately determine the TFE of iron ore, its low detection
efficiency and high cost make it impractical for large-scale implementation in mining [3,4].

Spectroscopy detection enables fast and non-destructive detection, making it widely
used in ore detection [5]. Compared with chemical spotting and flame atomic absorption [6],
spectroscopy has significant advantages in terms of repeat detection and speed of detection
in ores. Guatame-Garcia et al. [7] used infrared spectroscopy (IR) to rapidly measure the
composition of diatomite ores and to classify the ores according to their carbonate content.
Prado et al. [8] conducted a semi-quantitative analysis of the minerals in the deposit using
spectroscopy to extract effective features of minerals and study changes within the ore body.
Oluwaseye et al. [9] detected copper ore using near-infrared (NIR) sensors. Basile et al. [10]
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determined the composition of nickel laterite minerals based on IR and demonstrated the
feasibility of the method. During spectroscopy experiments, the presence of noise makes it
difficult to establish a linear relationship between the spectrum and the mineral content.
Therefore, it is more advantageous to use nonlinear methods to build calibration models
for quantitative detection than to use linear analysis methods.

Remote sensing has been successfully applied in mine detection [11]. Hai et al. [12]
realized the identification and monitoring of surface elements in open-pit mining areas
based on multi-source remote sensing information. Ali et al. [13] monitored coal mining
operations and assessed soil reclamation based on remote sensing information. Li et al. [14]
accurately monitored rare earth mining in rare earth mining areas based on high-resolution
remote sensing images. Xie et al. [15] used reflectance spectroscopy and Landsat-8 data
to detect the grade of copper mines. Xiao et al. [16] used remote sensing data to achieve
the inversion of heavy metals in mining areas, which provided guidance for reclamation.
Le et al. [17] used remote sensing data to obtain images of coal distribution in mining
areas for coal classification. Although remote sensing information can reflect the spectral
properties of different substances, it is still necessary to establish detection models for
regression or classification purposes. Deep learning (DL) and machine learning (ML) are
widely used as detection models in remote sensing [18-20]. Therefore, this paper performs
dynamic detection of the mine area based on remote sensing data and the detection model.

Extreme learning machine (ELM) has been widely used to build detection models
in the fields of spectroscopy and remote sensing [21-23]. Xiao et al. [24] improved ELM
using optimization algorithms to measure cadmium in soil. Li et al. [25] used multilayer
ELM and NIR for rapid detection of tobacco production areas. The ELM can also be used
for tobacco grading [26]. In food classification, ELM has higher detection accuracy and
detection speed than other algorithms [27]. Yin et al. [28] used ELM with remote sensing
data to achieve the detection of saline sites. Yan et al. [29] used ELM to achieve image
classification for remote sensing. Liang et al. [30] achieved automatic detection of algae in
the ocean based on ELM. Therefore, this paper detects the TFE of iron ore and mine areas
based on ELM, visible—infrared spectroscopy, and remote sensing data.

ELM, as a nonlinear method, can detect ores quickly and accurately, but its stability
is influenced by the initial parameters. If the ELM is extended to two hidden layer ELM
with variable neuron nodes (VTELM) [31], then this drawback will be further amplified.
Therefore, the initial parameters of VTELM are optimized by using the sparrow search
algorithm (SSA) [32], expecting further improvement in the stability of VIELM. To enhance
the optimization capability of SSA, a modified SSA (MSSA) is proposed by introducing
the Lévy flight strategy and the random wandering strategy in the update phase of the
algorithm. In addition, batch normalization (BN) [33] is added to the VTELM structure to
avoid activation function saturation and maintain the sensitivity of the activation function.
Based on these two modified methods, in this paper, the VTELM based on MSSA and BN
optimization (MSSA-BNVTELM) algorithm is proposed. Experiments based on the model-
ing of visible—infrared spectral data and remote sensing data show that MSSA-BNVTELM
can rapidly detect the TFE in iron ore and mine areas.

The main contributions of this paper are as follows:

(1) TheSSA is modified using the Lévy flight strategy and the random wandering strategy
to increase the global search capability of the SSA;

(2) The MSSA-BNVTELM is proposed by introducing the BN structure into the network
structure of the VTELM and optimizing the parameters of the VTELM using MSSA;

(3) In this paper, reflectance spectroscopy of ore is utilized with MSSA-BNVTELM to
achieve rapid TFE detection of iron ore, which is helpful for accelerating the produc-
tion of iron ore;

(4) In this paper, the remote sensing data of the mining area and MSSA-BNVTELM are
used to realize the rapid detection of TFE in the mining area, which is helpful for the
development of mine opening plan and soil reclamation.
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2. Materials and Methods
2.1. Study Area

The Anshan area is an important iron ore producing area in China, with its total
iron ore resources accounting for about 1/3 of the total iron ore resources in the country.
Therefore, this paper takes the Angian Mine open-pit mine in Anshan City, Liaoning
Province, China, as the study area. The geographic coordinates of the mine area are
41°6/32""-41°5'11" north latitude and 123°7'54""-123°10'5" east longitude. Figure 1 shows
the study area of this paper.

8£00E 12200"E 140°00"E 120°007E 12490°E.

123°8'17"E. 123°922"E

Figure 1. Study area. (a) Province in which the study area is located, (b) The city in which the study
area is located, (c) The study area of this paper (The red square boxes show the main source areas of
the samples), (d) 200 iron ore samples collected from the mining area.

2.2. Spectral Data

In support of this paper, 200 iron ore samples were collected from different locations
in the study area. The sample collection date was 18 September 2022. The iron ore samples
were processed by crushing, grinding, and sieving to make 200 powdered iron ore samples,
and the samples of the processed iron ore are shown in Figure 1. Then, the samples were
subjected to spectroscopic experiments using an HR SVC-1024 spectrometer. The band
range was 340-2500 nm. After performing five spectral experiments, the TFE of the powder
was determined using potassium dichromate titration. (The executive standard of the
Potassium dichromate titration method is GB/T 6730.65-2009). The five spectra were
averaged as the final sample spectral data. The original spectral curve is shown in Figure 2.

2.3. Remote Sensing Data

The samples were collected using the five-point-sampling method, and the latitude and
longitude information of the samples are recorded in this paper to accurately correspond
the sample information to the remote sensing information. The sample collection area is
shown in Figure 3. Clear and cloudless weather was chosen for collecting samples to avoid
excessive cloudiness and water content in the remote sensing information. Sentinel-2 data
close to the ore collection date were selected as the remote sensing data. The remote sensing
image was taken on 20 September 2022.
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Figure 2. Original spectral curve.
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Figure 3. Sample points for the five-point-sampling method.

Sentinel-2 remote sensing images that have been radiometrically calibrated, geometri-
cally corrected, and atmospherically corrected were downloaded from the ESA website.
The remote sensing image contained the mining area of this study. The nearest-neighbor
method was used to resample all the bands, and band fusion was performed to obtain color
remote sensing images with a resolution of 10 m. Then, the remote sensing image was
cropped to obtain the remote sensing image of the study area. The final remote sensing
image obtained is shown in Figure 4.

The five-point-sampling method was utilized to obtain the TFE content corresponding
to 82 pixel points and to extract the reflectance of 82 pixel points. The reflectance of 82 pixel
points is shown in Figure 5.
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Figure 4. Sentinel-2 remote sensing images of the study area.
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Figure 5. Spectral curves of remote sensing images.

2.4. Wavelet Transform

The wavelet transform (WT) [34] first transforms the original spectrum to obtain
high- and low-frequency wavelet coefficients. Then, the information that is considered
to represent noise in the wavelet coefficients is removed. Finally, the processed wavelet
coefficients are inversely transformed to obtain smoothed and filtered spectral data.

s = (D) <1>

+o00

WTc(a,b) = / x(C)h,(C)dC @)

where a4 is the scale parameter; b is the translation parameter; 1 is the wavelet basis function;
C is the number of bands; and x(C) is the reflectance at the C band.
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2.5. MSSA

SSA, as a swarm intelligence optimization algorithm, has proven its ability to search

for optimization [35-37]. The position of the i-th sparrow is X; = (x}, xiz, ey xf ); the fitness

valueis f; = f(x},x%,..., x?). Let there be n sparrows in the sparrow population, and the

position of each sparrow is d-dimensional.

o2 o fxd, 23, x9)
1 .2 d 1 .2 d

x_|% ¥ - ox F, = flx,x5,...,x5) 3)
xboxl xﬁ f(x}q, x2,..., xﬁ)

In SSA, the discoverers have better fitness values, so they have better search precedence.
Therefore, the position of the discoverers is updated as in Equation (4).

Xt = Xf,d X exp( e ;el'rmax ),Rp < ST 4

where itermax is the maximum search count, j is the solution space, i is the sparrow number,
t is the current search count, and « € (0, 1] is a random value. R; is a uniformly distributed
random value, which represents a warning value, R, € [0,1]. ST is a random value in
[0.5, 1], which represents the sparrow safety value. Q is a value randomly taken in the
standard Gaussian distribution, and L is an all-1 matrix.

Equation (5) is the follower’s update method.

Keorst — X,t' .
Xt — Q- ex (7’])’1 > % (5)
X“rl + ‘X Xlt;rl - At . L, otherwise
AT = AT(AAT) ! ®)

where Xp is the best solution space of the current discoverer search, Xyt is the worst
solution space of the population, and A is a 1*d-dimensional matrix with random values of
lor —1.

The position of the alert sparrow is updated according to Equation (7).

1 _ best

ij

X£e5t+ﬁ fz?‘éfg (7)

bé
Xt +K- (m) fi=fg

where Xp, is the best solution space for the current population. j is the random number of
the control step size, and its value conforms to the standard Gaussian distribution. Kis a
random value that conforms to a uniform distribution and takes values in the range [—1, 1].
fi is the i-th individual solution. f; and f;, are the current optimal solution and the current
worst solution, respectively. ¢ is a constant.

This paper proposes an MSSA by introducing the Lévy flight and a random wandering
strategy. Lévy flight is represented by Equation (8).

Xi(t) = X;(t) +e-rl 8)

where ¢ controls the step size, and 7/ represents the Lévy distribution as a random number.
The random wandering strategy can increase the diversity of solutions. The random
wandering strategy can be represented by Equation (9).

Xi(t) = X(t) + 6 (X;(t) — X(t)) ©)



Remote Sens. 2023, 15, 4100

7 of 18

where X;(t) and Xi(t) are the j-th and k-th solution spaces, respectively; é represents the
scaling factor. The probability P is set to 0.5. When the random number is greater than 0.5,
it executes Lévy flight; meanwhile, when the random number is less than 0.5, it executes
random wandering.

2.6. VTELM

VTELM is an ML algorithm that extends ELM into two hidden layers. To maintain
the diversity of network nodes and enhance the flexibility of the algorithm, VTELM allows
each layer to have a different number of nodes. Figure 6 shows the structure of VTELM.

Figure 6. Structure diagram of VTELM.

For N samples {Xi, Ti}f\ilr X = [Xﬂ, Xin,* Xl'n]T eER" T, = [Til, Tn, -, Tim] € R™,
n is the number of input features, and m is the number of output features. L; and L, repre-
sent the number of nodes in the first and second hidden layers, respectively, and the node
parameters are randomly valued. The weights W and W; have a value range of [-1, 1],
and the thresholds B; and B, have a value range of [0, 1]. Given the activation function g,
the output matrix Hp of the first hidden layer is calculated according to Equation (10).

H; = g(W1X + By) (10)
Hj is used as input to calculate the network output H; of the next layer.
Hy = g(W2Hi + By) (11)

The B can be solved by Equation (12).

A
B=HST (12)

where H, is the Moore-Penrose generalized inverse matrix of Hy. The final output of the
VTELM algorithm is expressed by Equation (13).

f(x) = g(Wag(W1 X + By) + B2)B (13)

2.7. MSSA-BNVTELM

The VTELM algorithm needs to use twice the activation function to express the
nonlinearity of the algorithm. The activation function can improve the nonlinearity and
generalization of the algorithm. However, the activation functions used by the VTELM
algorithm all have a saturation region. If g enters the saturation region, the output becomes
insensitive to small differences in the inputs. At this time, even though the input features
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vary a lot, the output features vary only a small amount. This results in the differences
between the input features being heavily scaled down. Therefore, when g enters the
saturation region, the output features cannot reflect the changes of the input features.

Observing Figure 7, these three activation functions exist in their respective saturation
regions. When the independent variable is greater than 4, it is obvious that the sigmoid and
dsig functions enter the saturation region, at which point the output becomes insensitive to
minor variations in the input. When the independent variable is greater than 2, the tanh
function enters the saturation region. To solve the activation function saturation problem,
the BN structure is introduced in this paper before calculating the activation function.
Figure 8 shows the structure of BNVTELM.

1

T —_— r—
—sigmoid function
0.81 —dsig function
tanh function
0.6 A
0.4 1
0.2 |
0 / 4
-0.2 1
-04
-0.6F 1
—_ 08 [ 4

-1 — T 1 I I I I !
-10 -8 -6 -4 -2 O 2 4 6 8 10

Figure 7. Curve of activation function.

Figure 8. Curve of activation function.

After adding BN, the net output h; of the first layer network is calculated according to
Equation (14).
hy = W1 X+ B (14)

After transforming the net output #; into a standard normal distribution, Hj is calcu-
lated according to Equation (15).
hy — E[hy]

= Var[h]

(15)
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where Var[h,] denotes the variance of h1, and E[h;] denotes the mean value of /1. The net
output of the second layer network is calculated according to Equation (16).

hy = WoHy 4+ By (16)
H; is calculated according to Equation (17).

hy — E[hy]

H =l Varlhy]

(17)
The B is still calculated according to Equation (12). The final output of BNVTELM is

expressed by Equation (18), where Z in Equation (18) represents the calculation process of
transforming the net output into a standard normal distribution.

f(X) = 8(Z(Wag(Z(W1 X + B1)) + B2)) (18)

In updating the BNVTELM parameters using MSSA, the total number of parameters
is used as the dimension of the solution. The root mean square error (RMSE) is used as
the fitness value. The MSSA-BNVTELM training process is recorded in Algorithm 1. The
RMSE is calculated as follows:

RMSE =

™=z

(Y = Y7)/N (19)
i=1

where Y denotes the actual value, and Y* denotes the calculated value.

Algorithm 1 The algorithm flow of MSSA-BNVTELM

W1, W», By, and B, are initialized randomly as sparrow positions.

Set MSSA parameters, population size, number of iterations, expectation error e, etc.

The B is solved according to Equation (12).

Calculate the fitness value of each sparrow according to Equation (19).

Update the discoverer location according to Equation (4).

The follower position is updated according to Equation (5).

Update the vigilante position according to Equation (7).

Performs random wandering or Lévy flight with probability 0.5.

Recalculate B for the updated individuals

Calculate RMSE according to Equation (19). If RMSE < e, the update is stopped; otherwise,
return to step 5. The algorithm also stops updating if the number of iterations reaches the
set requirement.

© 0N ONU R WN e

—_
o

2.8. Uncertainty Analysis

In order to ensure the availability of the TFE detection model, the uncertainty of
the model must be analyzed [38]. In this paper, the uncertainty of the TFE detection
model is analyzed using a bootstrapping technique [39]. In each iteration of bootstrapping
uncertainty analysis, 75% of the samples are randomly selected as training set samples,
and 25% of the samples are randomly selected as test set samples to train 50 different
MSSA-BNVTELM models. Then, we calculate the detection indexes based on test set
outputs versus actual outputs.

3. Results and Discussion
3.1. WT and Feature Extraction

In WT, the dblets wavelets are chosen as wavelet basis functions for the analysis.
To determine the number of decomposition layers of the dblets wavelet basis, db2, db3,
db4, db5, and dbé6 are used to process the visible—infrared spectral data. To evaluate the
noise-filtering effect, this paper uses the linear regression method to model and analyze
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the spectra after WT and uses RMSE as an evaluation index. When the RMSE is smaller, it
proves that the linear regression fit is better, and the de-noising effect is better. In this paper,
the spectral signals are processed using db2, db3, db4, db5, and db6 with decomposition
levels from 2 to 8.

Observing Figure 9, the curves show a decreasing and then increasing trend. When
the decomposition level is greater than 3, the distinction of the curve is small. The RMSE
of the db4 wavelet reaches its minimum when the decomposition level is 4. Therefore,
in this paper, the db4 wavelet with a decomposition level of 4 is chosen to denoise the
spectrum. Figure 10 shows the spectra after denoising. Comparing to Figure 2, we can see
that the curve in Figure 10 is smoother, which indicates that WT removes some noise from
the spectrum.

30 ! : .
—db2

2 3 4 5 6 7 8
Level of wavelet decomposition

Figure 9. The effect of different db wavelet denoising.
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Figure 10. Spectra after wavelet transform.

The spectral experiments are conducted in the band range of 340-2500 nm, and the
visible—infrared spectral data are 973 dimensions. The three-dimensional data at 340 and
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2500 are removed because of the high noise contamination of the spectral data at these two
bands. However, the 970-dimensional data have the problems of information redundancy
and multicollinearity. If the 970-dimensional data are used as input, the accuracy of the
algorithm will be reduced. Moreover, to match the high-dimensional input features, ELM
needs to set a large number of hidden layer nodes, which will cause a redundant network
structure and reduce the generalizability of ELM. Therefore, this paper uses PCA to reduce
the dimensionality of 970-dimensional data. In this paper, the cumulative contribution rate
is set to 99.9%, and six-dimensional features are extracted. The extracted features are shown
in Figure 11. These six-dimensional features will be used as input features for subsequent
iron ore detection model building.

100

80

B [2]
o o

Cumulative contribution rate (%)
N
o

1 2 3 4 5
Principal component number

Figure 11. PCA extracted spectral features.

3.2. Comparison of MSSA and SSA

In order to test whether the random wandering strategy with Lévy flight can improve
the global search ability of SSA, this paper compares SSA-ELM with MSSA-ELM and
records the results in Figure 12. All parameters are set identically in the comparison
experiments. The W and B of ELM are the positions of sparrows, and RMSE is the fitness
value. The number of iterations (f) and the number of populations (pop) are 30 and 40,
respectively, and predators account for 20% of the pop.

3.1 .

—SSA-ELM
3.05" —MSSA-ELM

w

295" ]

Fitness value

2.85}

28"

1 I

2.75 ‘ ‘ '
0 5 10 15 20 25 30

Iterations

Figure 12. Variation of the fitness values with the number of iterations.
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In Figure 12, it can be clearly seen that both SSA-ELM and MSSA-ELM have decreasing
RMSE as t increases. This shows that both SSA and MSSA can optimize ELM parameters
and improve the prediction accuracy of ELM. When ¢ is 2, the RMSE of MSSA-ELM begins
to decrease until it reaches its minimum value at t of 7. However, when t is 12, the RMSE
of SSA-ELM begins to decrease until it reaches its minimum value at ¢ of 17. Therefore,
MSSA-ELM has faster convergence than SSA-ELM. The best RMSE for MSSA-ELM is
2.764 compared with 2.849 for SSA-ELM; therefore, MSSA has better search capability than
SSA. Therefore, the random wandering strategy and Lévy flight can increase the global
search capability and speed up the convergence of SSA.

3.3. Hidden Layer Node Testing

Compared with ELM, VTELM increases the depth of the network. Therefore, VTELM
needs to set the number of the two hidden layer nodes because the parameters between
the two hidden layers are randomly generated. If the number of nodes does not match the
scale of the model, it will cause a decrease in VTELM accuracy. Therefore, in this paper,
the number of hidden layer nodes in VTELM is tested to determine the optimal number
of nodes, using RMSE as the evaluation index. In order to expand the search range, the
first layer nodes (L;) are set to 5 to 40, and the second layer nodes (L,) are set to 5 to 50 in
this paper. After simulation experiments, the variation law of VTELM accuracy with the
change of the number of nodes is obtained.

Observing Figure 13, the error generated by the algorithm is mainly controlled by L,.
The RMSE increases significantly when L, is greater than 30. When L, is approximately
30, RMSE decreases significantly compared to other L, values. When L; remains constant,
RMSE decreases as L; increases. Therefore, we set L; and L, to be 20 and 30, respectively.

I ”

9
8
7
| 6

2° | :

| )
| 5
4 ¢ s 4
;\ / lé J It ) i /

|4 ‘/'d i/ we . | 3
2 T 2 | | |
50 40 7-”»\”””’\ : OOG
30 | L e‘ 1
Se Y a\\
- B nOdGZO 10 ?/40 Q‘\\g\\ 0

Figure 13. Change of RMSE when the number of nodes changes.

3.4. Model Comparison

In this paper, MSSA-BNVTELM, back propagation neural network (BP), radial basis
function (RBF), and other algorithms are used to build a TFE detection model. All models
use the same data, and the RMSE, mean absolute error (MAE), ratio of performance to
interquartile (RPIQ), and Pearson coefficient (R?) are used as evaluation metrics to evaluate
the accuracy of the models. Equations (20)—(22) are the computing methods for MAE,
RPIQ, and R?, respectively. To avoid the uncertainty of a single test, five experiments are
conducted in this paper, and the average results of the five experiments are recorded in
Table 1.
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where Y, Y, and N have the same meaning as Y, Y", and N in Equation (19). Q3 and Q; are,
respectively, values located at 75% size and 25% size.

Table 1. Algorithm Comparison.

Algorithm RMSE R? MAE RPIQ

BP 4.325 0.745 3.180 1.245

RBF 3.731 0.786 2.716 1.264

ELM 3.392 0.802 2.627 1.306
VTELM 3.175 0.828 2.312 1.392
MSSA-BNVTELM 2.164 0.943 1.702 1.521

Firstly, RBF obtains higher detection accuracy than BP from the experimental results.
BP requires a gradient descent method to update the parameters, and it is easy to fall into
the problem of local minima that cannot be avoided fundamentally; therefore, the stability
of BP is low. However, RBF solves the problem of local minima from the computational
method, so the detection accuracy of RBF gains improvement. However, RBF requires a
large number of hyperparameters to be set, which leads to poor detection generalization of
RBE. Comparing RBF and BP, ELM not only solves the local minimum problem but also
requires only one parameter setting to complete the training of the algorithm, which reduces
the dependence of ELM on parameter setting. Therefore, according to the information in
Table 1, ELM has higher detection accuracy than BP and RBE. This shows that ELM can
detect the TFE more accurately than BP and RBF. The accuracy of VTELM is improved
compared to ELM by increasing the number of hidden layers and changing the solving
relationship of parameters between two hidden layers. Compared with VTELM, the
detection accuracy of MSSA-BNVTELM is further improved, which indicates that the
improvement of VTELM using MSSA and BN can increase the detection accuracy of
VTELM. In addition, MSSA-BNVTELM has the highest detection accuracy among these
five algorithms. Therefore, the MSSA-BNVTELM proposed in this paper can detect the TFE
more accurately compared with other algorithms.

In order to show more intuitively whether the output results of MSSA-BNVTELM
can approximate the test set outputs, this paper plots the comparison between the exper-
imental results and the actual values. The comparison results are shown in Figure 14.
Observing Figure 14, it can be seen that the outputs of MSSA-BNVTELM can all be well
approximated to the actual values, which indicates that TFE in ore can be effectively
and accurately detected in this paper by utilizing MSSA-BNVTELM combined with
visible—infrared spectroscopy:.

3.5. Remote Sensing Detection

In order to detect the TFE content of the whole mining area, the reflectances corre-
sponding to 82 pixel points are used as samples, and MSSA-BNVTELM, VTELM, ELM,
BP, and RBF are used as modeling methods to model and analyze the mining area. The
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reflectances corresponding to 62 pixel points were used to train the algorithms, and the
reflectances corresponding to 20 pixel points were used to test the algorithms. In order to
select the appropriate remote sensing data, in this paper, Landsat-8 data and Sentinel-2
data were used for modeling. Table 2 shows the test results using Sentinel-2 data. Table 3
shows the test results using Landsat-8 data.
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Figure 14. Comparison between the best predicted results and actual output.

Table 2. Remote sensing test comparison (Sentinel-2 data).

Algorithm RMSE R? MAE RPIQ

BP 3.052 0.744 2.622 0.989

RBF 3.229 0.685 2.775 0.905

ELM 2.685 0.889 2.374 1.101

VTELM 2.128 0.905 1.782 1.305

MSSA-BNVTELM 1.358 0.962 1.116 1.337
Table 3. Remote sensing test comparison (Landsat-8 data).

Algorithm RMSE R? MAE RPIQ

BP 3.018 0.794 2.453 1.052

RBF 3.742 0.581 3.274 1.143

ELM 2.976 0.851 2431 1.221

VTELM 2.201 0.881 1.834 1.155

MSSA-BNVTELM 1.647 0.923 1.245 1.317

The characteristic of ELM using the least-squares method to train network parameters
ensures its high generalization and can adapt to more data learning. Therefore, the detection
accuracy of ELM is higher than that of BP and RBF. The increase in network depth ensures
that the detection accuracy of VTELM is higher than that of ELM. In order to further
improve the detection accuracy of VTELM algorithm, this paper uses BN and MSSA to
improve and optimize the network structure and parameters of VTELM. MSSA-BNVTELM
has the highest detection accuracy compared to other mine detection models both using
Landsat-8 data and Sentinel-2 data. This indicates that the improved approach of BN with
MSSA not only makes MSSA-BNVTEM perform well in spectral data but also achieve
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success in remote sensing detection. MSSA and BN can improve the generalization and
detection accuracy of VTELM. Observing the BP, the detection accuracy in using Landsat-8
data is higher than the detection accuracy in using Sentinel-2. The reduction of input data
features causes the number of parameters that need to be updated by gradient descent in
the BP algorithm to decrease and also reduces the possibility of locally optimal solutions.
When modeling with Sentinel-2 data, the increase in input features requires more hidden
layer nodes to be matched, so the amount of parameters becomes larger, and the possibility
of falling into local optimal solutions increases.

However, it should be noted that modeling with Sentinel-2 data may be more appropri-
ate for detecting TFE at the mine site than using Landsat-8 data. All models except BP had
significantly higher accuracy when modeled with Sentinel-2 data than with Landsat-8 data.
And from the final experimental data, it can be seen that MSSA-BNVTELM has the highest
detection accuracy when modeled with Sentinel-2 data, with an R? of 0.962 and an RMSE
of 1.358. Compared to the 7-band data of Landsat-8, Sentinel-2 data has 11-band data, so
Sentinel-2 can provide more spectral information and is more suitable for detecting TEF.

In order to visualize the TFE content of the whole mine, this paper extracts the
reflectance of all the pixel points in Figure 4. The reflectance was taken as input, and the
trained MSSA-BNVTELM was used as a detection model to predict the TFE in the mine
area, and the prediction was plotted. The TFE distribution of the mine area is shown in
Figure 15. According to Figure 15, the distribution of TFE in the mine area can be clearly
seen, which can be helpful for the development of the mine’s mining plan.

TFE (%)

Figure 15. Comparison between the best predicted results and actual output.

3.6. Uncertainty Analysis of Detection Models

The uncertainty of the TFE detection model must be quantified to ensure the stability
of the detection model. This quantification of uncertainty can be assessed by comparing the
metrics obtained from cross-validation with the metrics obtained using bootstrapping tech-
nique. The uncertainty of the TFE detection model is calculated based on 50 bootstrapping
iterations, and the results are shown in Table 4 Compared to the cross-validation models
(Tables 1-3), the fitting metrics of the bootstrap method (Table 4) show less variation in the
metrics of the MSSA-BNVTELM model, which indicates that the MSSA-BNVTELM builds
a model with lower variability and uncertainty. For example, when the input data are from
Sentinel-2, the MAE of the cross-validated model is 1.116, while the bootstrap uncertainty
result produces an MAE of 1.008, which is a smaller deviation.
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Table 4. TFE detection model (MSSA-BNVTELM) metrics with 50 bootstrap iterations.

Input Data RMSE R? MAE RPIQ
Visible-infrared 2.089 0.941 1.588 1.623
Sentinel-2 1.180 0.958 1.008 1.452
Landsat-8 1.752 0.938 1.227 1.511

4. Conclusions

Rapid detection of TFE can accelerate iron ore production. Restricted by the efficiency
of chemical testing methods, it is difficult to achieve a quantitative analysis of each ore
in mine production. As a result, ore blending has the problem of low efficiency and
inaccuracy. This paper proposes visible—infrared spectroscopy combined with a machine
learning detection method to improve the detection efficiency of TFE. First, we measured
the visible—infrared spectrum of iron ore using an HR SVC-1024 spectrometer. In order to
reduce the error caused by a single measurement, the spectral experiment was executed
five times, and then, the average value was taken as the visible—infrared spectrum of
the sample. Then, the spectra were smoothed and filtered based on the WT. The PCA
was used to extract spectral features because of the large dimensionality of the original
spectra. Finally, the ELM was optimized using SSA to improve its stability and accuracy.
In this paper, two strategies were used to modify SSA to further improve its optimization
capability. The experiments proved that MSSA has a stronger global search capability than
SSA. Therefore, this paper uses MSSA to optimize the VITELM parameters. In addition, in
order to maintain the sensitivity of the activation function, this paper adds BN structure
to the VTELM algorithm and proposes an MSSA-BNVTELM algorithm. The experiments
proved that MSSA-BNVTELM can detect the TFE of iron ore accurately and quickly. This
paper presents a novel method for the rapid detection of TFE, which is important for
accelerating iron ore production and improving production efficiency.

In addition, this paper utilizes Sentinel-2 and Landsat-8 data to establish TFE detection
models in the mining area. According to the comparison of the experimental results, it
was found that Sentinel-2 data are more suitable for detecting TFE content. The R? of the
model established by Sentinel-2 is 0.96, and the R? of the model established by Landsat-8 is
0.96. Finally, the reflectance of all pixel points of the Sentinel-2 remote sensing image was
extracted and inputted into the trained model to obtain the TFE distribution map of the
mine site. The TFE distribution map clearly shows the distribution of TFE at the mine site,
which can help in the production planning of the mine.
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