
Citation: Xie, M.; Gu, M.; Zhang, C.;

Hu, Y.; Yang, T.; Huang, P.; Li, H.

Comparative Study of the

Atmospheric Gas Composition

Detection Capabilities of

FY-3D/HIRAS-I and FY-3E/HIRAS-II

Based on Information Capacity.

Remote Sens. 2023, 15, 4096. https://

doi.org/10.3390/rs15164096

Academic Editors: Filomena Romano

and Elisabetta Ricciardelli

Received: 17 July 2023

Revised: 15 August 2023

Accepted: 18 August 2023

Published: 20 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Comparative Study of the Atmospheric Gas Composition
Detection Capabilities of FY-3D/HIRAS-I and FY-3E/HIRAS-II
Based on Information Capacity
Mengzhen Xie 1,2,3 , Mingjian Gu 1,3,4,*, Chunming Zhang 1,2,3 , Yong Hu 1,3, Tianhang Yang 1,3,
Pengyu Huang 5 and Han Li 1,2,3

1 Key Laboratory of Infrared System Detection and Imaging Technologies, Shanghai Institute of Technical
Physics, Chinese Academy of Sciences, Shanghai 200083, China; xiemengzhen@mail.sitp.ac.cn (M.X.);
zhangchunming@mail.sitp.ac.cn (C.Z.); huyong@mail.sitp.ac.cn (Y.H.); yangtianhang@mail.sitp.ac.cn (T.Y.);
lihan2019@mail.sitp.ac.cn (H.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
4 Suzhou Academy, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Suzhou 215000, China
5 School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; huangpy29@mail2.sysu.edu.cn
* Correspondence: gumingjian@mail.sitp.ac.cn

Abstract: Fengyun-3E (FY-3E)/Hyperspectral Infrared Atmospheric Sounder-II (HIRAS-II) is an
extension Fengyun-3D (FY-3D)/HIRAS-I. It is crucial to fully explore and analyze the detection capa-
bilities of these two instruments for atmospheric gas composition. Based on the observed spectral
data from the infrared hyperspectral detection instruments FY-3D/HIRAS-I and FY-3E/HIRAS-II,
simulated radiance data and Jacobian matrices are obtained using the Rapid Radiative Transfer
Model RTTOV (Radiative Transfer for TOVS (TIROS Operational Vertical Sounder)). By perturbing
temperature (T), surface temperature (Tsurf), water vapor (H2O), ozone (O3), carbon dioxide (CO2),
methane (CH4), carbon monoxide (CO), and nitrous oxide (N2O), the brightness temperature differ-
ences before and after the perturbations are calculated to analyze the sensitivity of temperature and
various atmospheric gas components. The Improved Optimal Sensitivity Profile (OSP) algorithm
is used to select the channels for atmospheric gas retrieval. The observation error covariance and
background error covariance matrices are calculated, and then the information capacity is calculated,
specifically the degrees of freedom for signal(DFS) and the entropy reduction (ER). Based on this,
a comparative analysis is conducted on the information capacity of atmospheric water vapor and
ozone components contained in the hyperspectral detection data from HIRAS-I and HIRAS-II instru-
ments, respectively, to explore the retrieval capabilities of the two instruments for atmospheric gas
components. We selected clear-sky data from the African oceanic region and the Chinese Yangtze
River Delta terrestrial region for quantitative analysis of the information capacity of HIRAS-I and
HIRAS-II. The results show that FY-3D/HIRAS-I and FY-3E/HIRAS-II exhibit different sensitivities to
atmospheric gas components. In different experimental regions, temperature and water vapor show
the most dramatic sensitivity changes, followed by ozone, methane, and nitrous oxide, while carbon
monoxide and carbon dioxide exhibit the lowest variability. Regarding channel selection, HIRAS-II
identifies more gas channels compared to HIRAS-I. The experiments concluded that HIRAS-II has a
significantly higher information capacity than HIRAS-I, and the information capacity of atmospheric
gas components varies across different experimental regions. Water vapor and ozone exhibit the
highest information capacity, followed by nitrous oxide and methane, while carbon monoxide and
carbon dioxide demonstrate the lowest capacity. The H2O ER (DFS) contained in FY-3E/HIRAS-II
is 1.51 (0.35) higher than that in FY-3D/HIRAS-I, the O3 ER (DFS) in FY-3E/HIRAS-II is 1.51 (0.36)
higher than that in FY-3D/HIRAS-I, while the N2O ER (DFS) in FY-3E/HIRAS-II is 0.17 (0.19) higher
and the CH4 ER (DFS) is 0.07 (0.04) higher than that in FY-3D/HIRAS-I.

Keywords: HIRAS-I; HIRAS-II; atmospheric gas composition; gas channels; signal degrees of freedom;
entropy reduction; information capacity
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1. Introduction

In order to improve the accuracy of numerical weather prediction, atmospheric detec-
tion has become the main driving force for the development of meteorological satellites
in various countries. Meteorological satellites, with their high observation frequency and
wide imaging range, have become an indispensable part of the comprehensive observation
system. By continuously improving the spectral resolution of infrared detection instru-
ments, meteorological satellites obtain narrower atmospheric weighting functions, thereby
improving the vertical resolution of satellite atmospheric detection. They can clearly distin-
guish the radiation impact of water vapor, ozone, and other trace gases [1]. The operation
of hyperspectral detection instruments provides a large amount of observational data on
the Earth’s atmosphere. Observational data from hyperspectral atmospheric detection
instruments have been widely used in global and regional numerical forecast models and
have achieved significant positive effects [2]. The reason why the accuracy of atmospheric
gas composition parameters derived from satellite remote sensing data varies is because
different remote sensors can detect different amounts of atmospheric information, from
an information theory perspective. Academician Zeng Qingcun proposed the concept
of the “Optimal Sensitivity Profile” in the early 1970s and systematically discussed the
remote sensing of the atmosphere using infrared radiation information. He wrote a classic
book titled “Principles of Atmospheric Infrared Remote Sensing” [3]. Rodgers pointed out
that signal degrees of freedom and information entropy are two important parameters
in retrieval theory [4]. By utilizing information entropy and degrees of freedom as eval-
uation criteria, a quantitative description was provided for the information capacity of
atmospheric gas parameters contained in satellite hyperspectral detection data, aiming to
assess the satellite’s capability in atmospheric parameter retrieval. Subsequently, they have
been widely applied in the analysis of satellite observation systems, such as the design,
evaluation, and application of onboard atmospheric detection instruments. Fourrie et al.
evaluated the information capacity before and after channel selection in an Atmospheric
Infrared Sounder (AIRS) using information entropy and degrees of freedom as indicators
and compared the performance differences between the hyperspectral AIRS and multispec-
tral High-resolution Infrared Radiation Sounder (HIRS) instruments [5]. Collard used a
stepwise iterative information entropy method combined with pre-screening conditions for
channel selection in an Infrared Atmospheric Sounding Interferometer (IASI) [6]. Ventress
and Dubhia optimized Collard’s work and proposed a channel selection method that can
quantitatively describe spectral correlation errors [7]. Hou Weizhen et al. conducted a
preliminary study on the remote sensing of aerosol emissions in atmospheric pollution
monitoring using static orbit hyperspectral detection and signal degrees of freedom as
parameters [8]. Crevoisier observed the sensitive channel distribution of IASI for relevant
gases by varying the perturbation gas concentrations [9]. Luo Shuang quantitatively de-
scribed the retrieval capabilities of temperature, humidity, and ozone of the Fengyun-4A
(FY-4A)/Geosynchronous Interferometric Infrared Sounder (GIIRS) by calculating informa-
tion entropy and degrees of freedom [10]. Zheng Fengxun et al. introduced information
content analysis tools to discuss the dependence of high-resolution cameras on observa-
tion angles and their retrieval capabilities and systematically and quantitatively described
retrieval uncertainties [11]. Yang Yuhan et al. applied an information entropy stepwise
iteration method to optimize the temperature detection channels of the GIIRS in the FY-4A
interferometric atmospheric sounding instrument. Based on information entropy, they
selected the channel with the richest temperature information in each iteration until the
increment of information entropy contribution became flat, indicating that the channel
configuration could reflect the temperature information detected by the instrument [12].

The FY-3D and FY-3E satellites are the second generation of polar-orbiting meteorolog-
ical satellites developed by China. HIRAS-I is the first infrared hyperspectral instrument to
be implemented on China’s polar-orbiting meteorological satellites. FY-3E is the world’s
first meteorological satellite to operate in the dawn–dusk orbit, and HIRAS-II is a contin-
uation of HIRAS-I [13]. Both FY-3D/HIRAS-I and FY-3E/HIRAS-II were developed by
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the Shanghai Institute of Technical Physics, Chinese Academy of Sciences. In compari-
son to FY-3D/HIRAS-I, FY-3E/HIRAS-II features the integration of three spectral bands,
increasing the number of spectral channels to 3041, thereby enhancing its Earth observa-
tion capabilities. The spectral and radiometric calibration accuracy, as well as radiation
detection sensitivity, have also been correspondingly improved [14]. Only by fully un-
derstanding the information contained within the spectral range of FY-3D/HIRAS-I and
FY-3E/HIRAS-II can we maximize the potential applications of the data. This paper utilizes
the Rapid Radiative Transfer Model RTTOV to analyze and investigate the sensitivity of
atmospheric gas composition perturbations and channel selection using the observed data
from FY-3D/HIRAS-I and FY-3E/HIRAS-II in different experimental regions. Additionally,
it calculates the degrees of freedom and information entropy for various atmospheric gas
components included in both instruments to gain a more intuitive understanding of the
retrieval capabilities of these two hyperspectral instruments for atmospheric parameters.
The research findings play a crucial role in efficiently and effectively utilizing the vertical
atmospheric profiling data from FY-3D/HIRAS-I and FY-3E/HIRAS-II. Furthermore, they
hold significant implications for the design of future instruments and the application of
satellite data retrieval.

The content of this paper is presented in the following sections. Section 1 is the
introduction, which highlights the importance of the analysis and comparison of the detec-
tion capabilities of FY-3D/HIRAS-I and FY-3E/HIRAS-II based on information capacity.
Section 2 introduces the instrument data and relevant models. Section 3 provides an
overview of the data processing methods and experimental principles. Section 4 presents
the results analysis. Finally, there are discussion and conclusion sections.

2. Data and Models
2.1. FY-3D/HIRAS-I

FY-3D/HIRAS-I is the first infrared hyperspectral detection instrument to be uti-
lized on China’s polar-orbit meteorological satellites, with 2275 spectral channels, pro-
viding infrared radiation spectra in three spectral bands: long-wave infrared (LWIR),
650–1135 cm−1; medium-wave infrared (MWIR) 1210–1750 cm−1; and short-wave infrared
(SWIR), 2155–2550 cm−1 [15]. The instrument’s design adopts the parallel observation of
multiple small plane arrays, which can prolong the formation time of an interferogram at
the same time and form an instantaneous field of view of Earth observation. Three small
arrays simultaneously observe the same field of view of the target on the ground, and four
different target areas are simultaneously observed by the small array detectors in each
wave band. Each detector has an earth observation angle of 1.1◦, the instantaneous field
of view of the corresponding substellar point is about 16 km, and the ground distance
between pixels is 26.17 km [16,17]. Specific performance parameters are shown in Table 1.

Table 1. FY-3D/HIRAS-I spectral characteristics and performance index.

Wavenumber (cm−1) Spectral Resolution (cm−1) Number of Channels

Spectral Characteristics
Long-Wave: 648.75–1134 0.625 781

Medium-Wave: 1208.5–1749.375 0.625 869
Short-Wave: 2153.75–2549.375 0.625 637

Performance index

Scan cycle 10 s
Field of view 1.1◦

Maximum scanning angle ±50.4◦

Radiometric calibration accuracy 0.7 K
Spectral calibration accuracy 7 ppm

The experimental areas were the African maritime region (−25◦ to 25◦N, 50◦ to 95◦E)
and the Yangtze River Delta region in China (20◦ to 50◦N, 100◦ to 130◦E). The time periods
for the experimental data were chosen to be 21 December 2021 to 18 January 2022 for the
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African maritime region and 21 December 2021 to 4 January 2022 for the Yangtze River
Delta region.

2.2. FY-3E/HIRAS-II

FY-3E/HIRAS-II is an Interferometric Fourier Transform Spectrometer (FTS) with
an orbital height of 836km. The instrument operates in three infrared spectral bands:
long-wave (LW), medium-wave (MW), and short-wave (SW), with a total of 3041 spec-
tral channels. In the mid-to-long-wave infrared range of 3.92 to 15.38 µm, there are over
1370 spectral detection channels, and the highest spectral resolution can reach 0.625. Build-
ing upon the spectral product development of FY-3D/HIRAS-I, HIRAS-II improves the
layout of the detector array within the Field of Regard (FOR) from a 2 × 2 arrangement to a
3 × 3 arrangement. The ground-viewing angular field of each pixel is 1◦ (compared to 1.1◦

in HIRAS-I), resulting in higher spatial resolution. The complete scanning cycle of HIRAS-II
is 8 s, with a maximum scanning angle range of 100.8◦, corresponding to an instantaneous
field of view of approximately 14 km. This represents a significant improvement compared
to FY-3D/HIRAS-I [14]. HIRAS-II has made significant advancements in detection sensi-
tivity, spectral and radiometric quantification accuracy, as well as its operational lifespan,
which contributes to further enhancing the accuracy of observational data. The detailed
instrument parameter characteristics of HIRAS-II are presented in the Table 2 below:

Table 2. FY-3E/HIRAS-II spectral characteristics and performance index.

Wavenumber (cm−1) Spectral Resolution (cm−1) Number of Channels

Spectral Characteristics
Long-Wave: 650–1168.125 0.625 830

Medium-Wave: 1168.75–1920 0.625 1203
Short-Wave: 1920.625–2550 0.625 1008

Performance index

Scan cycle 8 s
Field of view 1.1◦

Maximum scanning angle ±50.4◦

Radiometric calibration accuracy 0.4–1.0 K
Spectral calibration accuracy 5 ppm

The experimental regions were the African oceanic region (25◦–25◦N, 50◦–95◦E) and
the Chinese Yangtze River Delta terrestrial region (20◦–50◦N, 100◦–130◦E). The experimen-
tal data were collected from 21 December 2021 to 18 January 2022 for the African oceanic
region and from 21 December 2021 to 4 January 2022 for the Chinese Yangtze River Delta
terrestrial region.

2.3. Reanalysis Data

In this experiment, partial atmospheric parameter profiles and surface parameters
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric
Composition Reanalysis 4 (EAC4) dataset were used as input information for RTTOV to
retrieve simulated brightness temperature values. The experiment data were taken during
the same time period as the satellite observations. The EAC4 dataset has a temporal resolu-
tion of 3 h and is divided into 25 atmospheric levels (https://ads.atmosphere.copernicus.
eu/cdsapp#!/dataset/cams-global-reanalysis-eac4 (accessed from 21 December 2021 to 18
January 2022)).

Due to the absence of CO2 reanalysis data in EAC4, for this experiment, the CO2 profile
data from the ECMWF EGG4 dataset (This dataset is part of the ECMWF Atmospheric
Composition Reanalysis focusing on long-lived greenhouse gases: carbon dioxide (CO2)
and methane (CH4)) were used as input information for RTTOV to obtain simulated bright-
ness temperature values. This dataset has slower temporal updates, but the interannual
variation in CO2 gas levels remains relatively stable. Therefore, the EGG4 data used in this
experiment represent the average of recent years.

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4
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Due to the difficulty in obtaining N2O reanalysis data, when performing forward
simulations using RTTOV, Whole Atmosphere Community Climate Model (WACCM) data
are used for N2O instead.

2.4. Forecast Data

For this experiment, WACCM global climate model data (https://rda.ucar.edu/
datasets/ds313.6/dataaccess/ (accessed from 21 December 2021 to 18 January 2022)) were
used as background field data to calculate the background error covariance. The spatial
resolution of the WACCM dataset is 0.9◦ × 1.25◦, with a temporal resolution of 6 h. The
dates of the experimental data align with those of the satellite observation.

2.5. RTTOV Radiative Transfer Model

The RTTOV fast radiative transfer model is developed from the fast radiative trans-
fer model of TOVS. RTTOV can rapidly and accurately simulate the observed brightness
temperature of various satellite instruments under given atmospheric state parameter con-
ditions. It can also quickly calculate the Jacobian matrices, which represent the sensitivity
of observed radiance to atmospheric states (such as temperature and absorbing gases).
The experiment utilized RTTOV version 13, and the sensor coefficient files and emissivity
files for FY-3D/HIRAS-I and FY-3E/HIRAS-II were obtained from the official website for
conducting radiative transfer simulations. In this experiment, RTTOV was primarily used
for forward simulations, and the input data are shown in Table 3.

Table 3. Input Parameters for Clear-Sky RTTOV Radiative Transfer Simulation.

Type of Data

Atmospheric Parameters

Layered Pressure hPa EAC4
Temperature K EAC4

Humidity Kg/kg EAC4
Ozone Kg/kg EAC4

Carbon Monoxide Kg/kg EAC4
Methane Kg/kg EAC4

Carbon Dioxide Kg/kg EGG4

Nitrous Oxide Kg/kg WACCM

Surface Parameters

Land Surface HIRAS-I/HIRAS-II
Elevation m HIRAS-I/HIRAS-II

Surface Emissivity Dataset RTTOV

Surface Temperature K EAC4
Sea Surface Temperature K EAC4

2 m Temperature K EAC4
2 m Dew Point Temperature K EAC4

10 m Wind U Component m/s EAC4
10 m Wind V Component m/s EAC4

3. Principle, Method, and Steps

Before conducting the selection of atmospheric gas component channels and the
analysis of retrieval capability, we need to process the FY-3D/HIRAS-I observation data, FY-
3E/HIRAS-II observation data, EAC4 reanalysis data, EGG4 reanalysis data, and WACCM
forecast data. This includes truncating and selecting clear-sky scenes from HIRAS-I/HIRAS-
II L1 observation data, interpolating reanalysis and forecast data, and standardizing the
units of gas concentrations. After the data processing is completed, we input it into
the RTTOV fast radiative transfer model for forward calculation, obtaining simulated
brightness temperatures. Then, we conduct sensitivity analysis on the gases in each
channel to determine the range of strongly sensitive wavelengths. Next, channel selection
is performed to choose channels suitable for each gas. Finally, we calculate the information

https://rda.ucar.edu/datasets/ds313.6/dataaccess/
https://rda.ucar.edu/datasets/ds313.6/dataaccess/
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capacity of each gas and conduct comparative analysis. The overall roadmap is shown in
the following Figure 1:
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3.1. Processing of FY-3D/HIRAS-I and FY-3E/HIRAS-II Observation Data
3.1.1. Radiance-to-Brightness Temperature Conversion and Truncation

The radiance values are converted to brightness temperature values using the Planck
radiance formula. For a temperature of T and a wavelength of λ, the Planck spectral
radiance formula [18] is given by:

Mλ(T) =
2πhc2

λ5(ehc/λkT − 1)
=

c1

λ5(ec2/λT − 1)
, (1)

where Mλ(T) represents the spectral radiance of a blackbody (radiant flux density), h is the
Planck constant, k is the Boltzmann constant, c1 is the first radiation constant, and c2 is the
second radiation constant.

The Planck radiance formula is:

Bλ(T) =
2hc2

λ5(ehc/λkT − 1)
, (2)

If the Planck radiance is expressed in wavenumber ν, the formula becomes:

Bv(T) =
2hc2v5

ehcv/kT − 1
, (3)

From the above two equations, the blackbody brightness temperature T is obtained as:

T =
hcv/k

ln(2hc2v5/Bv(T) + 1)
, (4)

The Level 1 observation data of HIRAS-I/HIRAS-II are not processed by apodization
and require apodization in practical applications to reduce the side lobe effects [19]. In
this study, a Hamming function is used for apodization. The solid black line represents
the spectral brightness temperature data not processed by apodization, while the solid red
line represents the apodization spectral brightness temperature. From Figure 2, it can be
observed that both FY-3D/HIRAS-I and FY-3E/HIRAS-II spectra are smoother and exhibit
fewer spikes after apodization.
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3.1.2. Clear-Sky Selection

Because the RTTOV fast radiative transfer model does not provide high simulation
accuracy under cloudy conditions, the sample data selected for this experiment were all
clear-sky scenes. The criteria for determining clear-sky samples were as follows: We se-
lected the observation data from five representative infrared channels (810 cm−1, 830 cm−1,
850 cm−1, 870 cm−1, 890 cm−1) in the long-wave region. The spectral brightness tempera-
ture of these channels should be greater than 290 K, and the deviation between the observed
spectral brightness temperature and the simulated spectral brightness temperature for the
corresponding window channel should be less than 5 K.

3.2. Processing of EAC4 and EGG4 Reanalysis Data

The EAC4 and EGG4 reanalysis data have different temporal and spatial resolutions
compared to HIRAS-I and HIRAS-II. Therefore, we need to interpolate the reanalysis
data to match the temporal and spatial grids of the satellite observations. For temporal
interpolation, we used the satellite observation data as the reference and perform linear in-
terpolation using the two closest reanalysis data points in time. As for spatial interpolation,
we employ a cubic spline interpolation algorithm, taking into account the geographical
location information of the satellite observation data to interpolate the reanalysis data.

3.3. Processing of WACCM Forecast Data

The WACCM forecast data also have different temporal and spatial resolutions com-
pared to HIRAS-I and HIRAS-II, so interpolation is required for the forecast data as well.
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The interpolation methods for both time and space are consistent with those used for
reanalysis data.

3.4. Conversion between Units of kg/kg and mol/mol

The EAC4 and EGG4 reanalysis data have gas concentration units in kg/kg, while the
WACCM forecast data have gas concentration units in mol/mol. Therefore, unit conversion
is necessary. Kg/kg represents the mass ratio of gas to air, while mol/mol represents the
molar ratio of gas to air. Taking O3 as an example, the expressions for kg/kg and mol/mol
are as follows:

kg(O3)

kg(AIR)
=

mol(O3)

mol(AIR)
× kg(O3)

mol(O3)
÷ kg(AIR)

mol(AIR)
, (5)

where AIR refers to air, g/mol represents molar mass, and the molar mass of O-16 is
48 g/mol. The molar mass of air is 28.9634 g/mol. Therefore, we can obtain the unit
conversion formula as follows:

kg(O3)

kg(AIR)
=

mol(O3)

mol(AIR)
× (0.048kg/mol)÷ (0.0289634kg/mol), (6)

The final formula is:
kg/kg = (mol/mol)× 1.657, (7)

Other gases follow the same principle.

3.5. Simulation of Spectral Sensitivity for FY-3D/HIRAS-I and FY-3E/HIRAS-II Observations

For this experiment, the input data for the RTTOV radiative transfer model were
obtained by combining FY-3D/HIRAS-I L1 observational data, FY-3E/HIRAS-II L1 ob-
servational data, EAC4 reanalysis data (including T, H2O, O3, CO, and CH4 data), EGG4
reanalysis data (CO2 data), and N2O data from the WACCM forecast profile data. The
sensor coefficient files provided by the official RTTOV website for FY-3D/HIRAS-I and FY-
3E/HIRAS-II were used. The brightness temperature values for each channel of HIRAS-I
and HIRAS-II were calculated. Then, perturbations were applied to the retrieval accuracy
of various gas parameters, including T (1K), H2O (20%), O3 (10%), CO (10%), CO2 (1%),
CH4 (10%), N2O (2%), and Tsurf (1K). The brightness temperature perturbation value was
calculated using the following equation [20] to represent the response of each channel to
the perturbation of atmospheric parameters:

Sj(v1) = BT(X0 + δXj)− BT(X0), (8)

In the equation, Sj(v1) represents the simulated brightness temperature change for
each channel before and after the perturbation of the aforementioned atmospheric parame-
ters, measured in Kelvin (K). BT is the simulated brightness temperature obtained using the
RTTOV radiative transfer model. X0 is the atmospheric parameters before the perturbation,
and δXj is the perturbation magnitude of the atmospheric gas composition parameter j.

3.6. Calculation of Observation Error Covariance

In satellite remote sensing observations, the main sources of observation error are the
errors introduced by the instrument and the errors associated with the radiative transfer
model. It is generally assumed that the different channels are uncorrelated; thus, the
observation error covariance matrix is a diagonal matrix [10]. The calculation formula for
the diagonal elements [19] is as follows:

ε =

√
∑ (Ym − F(x))2

n− 1
, (9)

where Ym represents the observed brightness temperature from FY-3D/HIRAS-I and FY-
3E/HIRAS-II, m is the number of selected channels, F(x) represents the simulated brightness
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temperature calculated by the RTTOV radiative transfer model, and n represents the number
of samples.

3.7. Calculation of Background Error Covariance

The background error covariance matrix describes the errors and correlations between
the predicted values and the true values of various atmospheric state vectors [21]. The
background error covariance matrix is denoted as B and is represented as follows:

B =

b11 · · · b1j
...

. . .
...

bi1 · · · bij

,

where bij represents the error covariance between the background fields of the i-th and j-th
layers [22]. The formula is:

bij = cov(Xi, X j) =
1
n

n

∑
k=1

[(Xi
k − E(Xi))× (Xi

k − E(X j))], (10)

where X represents the error between the background field and the true field. Xi
k represents

the data for the k-th sample in the i-th layer. E(Xi) represents the mean forecast error for
the i-th layer. n represents the number of samples.

3.8. Channel Selection Method

After performing the simulation of spectral sensitivity for FY-3D/HIRAS-I and FY-
3E/HIRAS-II and determining the spectral positions of each gas-sensitive channel, channel
selection is conducted as a basis for calculating signal degrees of freedom and Shannon
information. For channel selection, we based our approach on the Optimal Sensitivity
Profile method (OSP) proposed by Crevoisier for selecting CO2 channels in AIRS [23] and
made some improvements to it. The original algorithm used one-tenth of the signal-to-noise
ratio of the first channel at each pressure level as the threshold to remove channels with
Jacobian peaks at the same height but with a signal-to-noise ratio below the threshold.
However, in our experiments, we found that the signal-to-noise ratio difference between
adjacent channels was not significant, so there was no need to use one-tenth as the threshold.
Instead, we directly used the signal-to-noise ratio of the first channel at each pressure level
as the threshold to remove channels with Jacobian peaks at the same height but with a
signal-to-noise ratio below this threshold. This approach allows us to remove more similar
channels, avoiding redundant information and excessive repetition of channels.

The specific criteria for channel selection are as follows: (1) The target signal within
the same channel must be greater than the background interference signal (signals caused
by other variables). The target signal should be as high as possible, while the detector
noise and calibration errors should be minimized. This criterion can be related to the
relationship between the brightness temperature difference before and after the target gas
perturbation and the instrumental parameters (noise, sensitivity, calibration, etc.); (2) The
selected channels should cover the entire atmospheric layer as much as possible. This
criterion can be related to the uniform and narrow distribution of the Jacobian peaks of
the target gas calculated by the radiative transfer model throughout the atmospheric layer.
The signal-to-noise ratio is defined as the ratio of the target signal to the background
interference signal. The signal is defined as the brightness temperature variation caused by
the target gas, while the noise is defined as the brightness temperature variation caused by
other variables within the same channel.

To avoid high signal-to-noise ratio channels caused by weak responses of target signals
and lower responses of interference signals, it is necessary to define a threshold to directly
remove such channels. This threshold is defined as the instrument’s Noise Equivalent Delta
Temperature (NEDT), which represents the minimum detectable temperature difference.
The perturbation value of the target signal must be greater than the instrument’s sensitivity,
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which is then used to calculate the signal-to-noise ratio. The NEDT values are obtained
from the downloaded FY-3D/HIRAS-I L1 and FY-3E/HIRAS-II L1 data files provided by
the National Satellite Meteorological Center.

The specific steps for channel selection are as follows: (1) calculate the signal-to-noise
ratio (SNR) and remove channels where the target gas has an SNR lower than the NEDT
threshold; (2) save the Jacobian profiles of the target gas obtained from the RTTOV fast
radiative transfer model then select the channel with the maximum Jacobian value at each
pressure level as the first channel for that level; (3) apply the improved OSP (Optimal
Sensitivity Profile) algorithm to select the channels.

3.9. Information Capacity Calculation

Based on the aforementioned calculations of the simulated brightness temperature,
observation error covariance matrix, background error covariance matrix, and Jacobian
matrix, the information capacity is computed. ER and DFS are both quantitative indicators
for assessing retrieval capability and remote sensing system performance. ER is related to
the spectral characteristics and performance of the instrument. It can quantify the reduction
in uncertainty of the observed values caused by retrieval. However, a high-precision
scalar and a set of low-precision vector data may have the same ER. Therefore, DFS are
also needed for evaluation [24]. DFS represent the independent signals contained in the
measurement vector or measurement space. The higher the DFS, the more comprehensive
the independent information included in the observation. When the DFS for a particular
parameter exceed 0.5, it can be considered that the parameter can be obtained through
retrieval based on the observations [21]. The higher the DFS and ER, the more information
is contained in the observations, indicating a stronger ability of the satellite instrument to
invert parameters. Their specific descriptions are as follows:

Menke defined the average kernel function [25] as:

A = (KTS−1
ε K + S−1

ap )
−1

KTS−1
ε K, (11)

where K represents the Jacobian matrix, Sε is the observation error covariance matrix, Sap is
the background error covariance matrix, and T and −1 denote the transpose and inverse of
the matrices, respectively.

DFS = Trace(I − ŜS−1
ap ), (12)

where Sap is the background error covariance matrix, and Ŝ is the post-observation error
covariance matrix.

ER and Ŝ formulas [11] are:

Ŝ = (KTS−1
ε K + S−1

ap )
−1

, (13)

ER =
1
2

ln |S−1
ap | −

1
2

ln |Ŝ|, (14)

4. Experimental Results Analysis
4.1. Analysis of Sensitivity Results for FY-3D/HIRAS-I and FY-3E/HIRAS-II

Using RTTOV as the fast radiative transfer model and based on the method de-
scribed in Section 3.5 (Equation (8)), we obtained the relevant results as shown in the
following figures:

As can be seen from Figures 3 and 4, the channel sensitivities of the atmospheric
profiles for FY-3D/HIRAS-I and FY-3E/HIRAS-II are basically consistent. Temperature
and water vapor variations exhibit the strongest sensitivities, which differ in different
experimental regions. On the other hand, the sensitivities of other gases remain relatively
stable, with minor differences in sensitivity observed across different experimental regions.
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For temperature, in the long-wave infrared region, the sensitivity is stronger in the
650–750 cm−1 band with brightness temperature variations of 0.5–1 K. However, the sensi-
tivity decreases in the 750–1250 cm−1 band, with brightness temperature variations within
0.5 K. In the mid–short-wave region, except for weak sensitivity in the 2070–2130 cm−1

and 2375–2500 cm−1 bands, the remaining bands exhibit the strongest sensitivity, with
brightness temperature variations around 1 K. This indicates that temperature disturbances
have the greatest impact on this particular region.

For water vapor, in the long-wave infrared region, the sensitivity is weaker in the
650–750 cm−1 band with brightness temperature variations within 0.5 K. The sensitivity
gradually increases in the 750–1250 cm−1 band with brightness temperature variations of
0.5–1.2 K. In the mid–short-wave infrared region, the strongest sensitivity for water vapor
is in the 1230–2000 cm−1 band, with brightness temperature variations around 2 K, which is
higher than in other regions. This indicates that water vapor disturbances have the greatest
impact on this band. However, the sensitivity is poorest in the 2250–2500 cm−1 band, with
brightness temperature variations close to 0.
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For ozone, FY-3E/HIRAS-II has an additional region with strong variations compared
to FY-3D/HIRAS-I. In the short-wave infrared region, the sensitivity is significant in the
2120–2125 cm−1 band with brightness temperature variations within 0.5 K. The other
two regions with strong variations are in the long-wave infrared region, specifically the
725–750 cm−1 and 1000–1125 cm−1 bands. The sensitivity is smaller in the 725–750 cm−1

band, with brightness temperature variations around 0.3 K. The sensitivity is highest in the
1000–1125 cm−1 band, with brightness temperature variations around 1.5 K. This indicates
that ozone disturbances have the greatest impact on this part of the spectrum.

For methane, the maximum sensitivity is in the 1250–1375 cm−1 band with brightness
temperature variations within 1.5 K. For nitrous oxide, the sensitivity is significant in the
1250–1300 cm−1 band with brightness temperature variations within 0.2 K. The maximum
sensitivity is in the 2125–2250 cm−1 band with brightness temperature variations within
0.4 K. For carbon monoxide, the maximum sensitivity is in the 2120–2140 cm−1 band with
brightness temperature variations within 0.3 K. For carbon dioxide, the strongest sensitivity
is in the 730–750 cm−1, 2245–2255 cm−1, and 2380–2400 cm−1 bands with brightness
temperature variations within 0.3 K.
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4.2. Jacobian Matrix

The weight function reflects the sensitivity of satellite-observed radiance to the vertical
profiles of target components. The Jacobian matrix used in the experiment is computed
using the K-matrix module provided by the RTTOV fast radiative transfer model. The
Jacobian primarily represents the sensitivity of atmospheric gas components at different
pressure levels and within different spectral bands. The normalized Jacobian weight
functions are shown below.

Figures 5 and 6 display the Jacobian matrices of normalized mode calculated for gases
O3, CH4, CO, CO2, and N2O in the 650–2550 cm−1 wavelength range. The horizontal axis
represents wave numbers, the vertical axis represents pressure, and the color gradient
indicates the sensitivity level. It can be observed that the sensitivity of different gases varies
across different pressure levels and spectral bands. From the figures, it can be seen that
the peak values of the weight functions for these gases are mainly concentrated in the
middle-to-upper atmosphere (700–10 hPa), indicating that the optimal information layers
observed by these two satellites are primarily located in the upper atmosphere. Gaseous
O3 exhibits peak weight function values at around 200–10 hPa, gaseous CH4 shows peak
values at around 700–200 hPa, gaseous CO exhibits peak values at around 700–200 hPa,
gaseous CO2 has its weight function maximum concentrated at around 200–20 hPa, and
gaseous N2O shows its peak weight function values concentrated at around 300–20 hPa.
Different satellite observations at different wavelengths exhibit varying sensitivities to the
vertical distribution of atmospheric gas components. A reasonable selection of channel
combinations can incorporate more information about the distribution of target components
in the atmosphere, thus improving the accuracy of retrieval. However, too many channels
can reduce computational efficiency and may result in information redundancy. The
Jacobian results from Figures 4 and 5 show that the ideal retrieval bands for O3, CH4, CO,
CO2, and N2O are the same as those in Figures 2 and 3.
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4.3. Channels Selected by the Improved OSP Method

Based on the channel selection method described in Section 3.8, the channels for
each gas were selected separately for FY-3D/HIRAS-I and FY-3E/HIRAS-II. The selected
channels for each gas are as follows (Figures 7–13):
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The final channel selection results are as follows: FY-3D/HIRAS-I has a total of
91 ozone channels selected, while FY-3E/HIRAS-II has a total of 110 ozone channels se-
lected. For methane, FY-3D/HIRAS-I has 49 selected channels, and FY-3E/HIRAS-II
has 50 selected channels. The total number of carbon monoxide channels is 7 for FY-
3D/HIRAS-I and 41 for FY-3E/HIRAS-II. In the case of long-wave carbon dioxide channels,
FY-3D/HIRAS-I has 3 selected channels, while FY-3E/HIRAS-II has 56 selected channels.
For short-wave carbon dioxide channels, FY-3D/HIRAS-I has 32 selected channels, while
FY-3E/HIRAS-II has 69 selected channels. The total number of long-wave nitrous oxide
channels is 31 for FY-3D/HIRAS-I and 64 for FY-3E/HIRAS-II. As for short-wave nitrous
oxide channels, FY-3D/HIRAS-I has 104 selected channels, while FY-3E/HIRAS-II has
127 selected channels. It can be observed that FY-3E/HIRAS-II has a higher number of
selected channels compared to FY-3D/HIRAS-I.

4.4. Calculation Results of Information Content and Comparative Analysis of the Two Instruments

Based on the calculated Jacobian matrices, observation error covariance matrices, and
background error covariance matrices, the DFS and ER were calculated using
Equations (11)–(14). The DFS and ER for each atmospheric gas component of FY-3D/HIRAS-I
and FY-3E/HIRAS-II are as follows:
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From Tables 4–7, it can be observed that water vapor has the highest DFS and ER,
followed by O3. N2O and CH4 come next, while CO and CO2 have the lowest values. This
observation is consistent with the sensitivity results discussed in Section 4.1, where higher
sensitivity corresponds to greater information content. Overall, higher sensitivity leads to
larger information capacity.

Table 4. DFS and ER of Atmospheric Gas Components for FY-3D/HIRAS-I (African Sea Region).

Atmospheric Gas Components DFS ER

H2O 5.24 16.82
O3 1.32 4.19

N2O 0.06 0.04
CH4 0.01 0.01
CO2 0.002 0.003
CO 0.001 0.001
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Table 5. DFS and ER of Atmospheric Gas Components for FY-3E/HIRAS-II (African Sea Region).

Atmospheric Gas Components DFS ER

H2O 5.59 18.33
O3 1.59 5.07

N2O 0.04 0.03
CH4 0.01 0.01
CO2 0.01 0.01
CO 0.001 0.001

Table 6. DFS and ER of Atmospheric Gas Components for FY-3D/HIRAS-I (Chinese Yangtze River
Delta terrestrial region).

Atmospheric Gas Components DFS ER

H2O 4.6 15.75
O3 1.45 4.86

N2O 0.12 0.1
CH4 0.07 0.06
CO 0.003 0.002
CO2 0.001 0.001

Table 7. DFS and ER of Atmospheric Gas Components for FY-3E/HIRAS-II (Chinese Yangtze River
Delta terrestrial region).

Atmospheric Gas Components DFS ER

H2O 4.76 15.9
O3 1.81 6.37

N2O 0.31 0.27
CH4 0.14 0.1
CO2 0.01 0.01
CO 0.002 0.001

In theory, information content is an indicator of the performance of remote sensing
systems. Greater information content indicates a stronger ability of the satellite obser-
vation system to retrieve target information. When comparing the information content
of FY-3E/HIRAS-II with FY-3D/HIRAS-I, it can be concluded that HIRAS-II has better
remote sensing performance and improved retrieval capabilities compared to HIRAS-I. The
difference is most prominent for H2O and O3, where HIRAS-II exhibits significantly greater
information content than HIRAS-I. The improvement is also notable for N2O and CH4,
where HIRAS-II outperforms HIRAS-I. Analyzing the spectral coverage of the two hyper-
spectral instruments, HIRAS-II covers an additional long-wave range of 1135–1210 cm−1

and a mid–short-wave range of 1750–2155 cm−1 compared to HIRAS-I. HIRAS-II also
includes the O3 detection band of 2070–2130 cm−1, which is missing in HIRAS-I. Therefore,
HIRAS-II provides more comprehensive O3 detection information and has a stronger ability
to detect O3 compared to HIRAS-I.

For FY-3D/HIRAS-I, the H2O ER (DFS) in the African maritime region is 1.07 (0.64)
higher than that in the Yangtze River Delta region of China. On the other hand, the O3
ER (DFS) in the Yangtze River Delta region of China is 0.67 (0.13) higher than that in the
African maritime region. Similarly, the ER (DFS) for N2O, CH4, and other gases is also
higher in the Yangtze River Delta region of China compared to the African region.

For FY-3E/HIRAS-II, the H2O ER (DFS) in the African maritime region is 2.43 (0.83)
higher than that in the Yangtze River Delta region of China. In contrast, the O3 ER (DFS) in
the Yangtze River Delta region of China is 1.3 (0.22) higher than that in the African maritime
region. The ER (DFS) for N2O in the Yangtze River Delta region is 0.27 (0.24) higher than
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that in the African maritime region. Similarly, the ER (DFS) for CH4 and other gases is also
higher in the Yangtze River Delta region of China compared to the African region.

For the African marine region, the H2O ER (DFS) contained in FY-3E/HIRAS-II is 1.51
(0.35) higher than that in FY-3D/HIRAS-I. Similarly, the O3 ER (DFS) in FY-3E/HIRAS-II is
0.88 (0.27) higher than that in FY-3D/HIRAS-I.

In the case of the Yangtze River Delta region of China, the H2O ER (DFS) contained in
FY-3E/HIRAS-II is 0.15 (0.16) higher than that in FY-3D/HIRAS-I. Moreover, the O3 ER
(DFS) in FY-3E/HIRAS-II is 1.51 (0.36) higher than that in FY-3D/HIRAS-I, while the N2O
ER (DFS) in FY-3E/HIRAS-II is 0.17 (0.19) higher and the CH4 ER (DFS) is 0.07 (0.04) higher
than that in FY-3D/HIRAS-I.

It is observed that the DFS and ER of each atmospheric component vary depending on
the region, which is likely related to the concentration of atmospheric gases in each region.
Generally, the information capacity of various atmospheric components in the Yangtze
River Delta region of China is higher compared to the African marine region.

5. Discussion

Before the spectral information from satellite hyperspectral observations is used for
remote sensing retrieval, it is crucial and necessary to perform sensitivity analysis, channel
selection, and quantitative analysis of the information capacity of atmospheric detection
data. In this experiment, we conducted sensitivity analysis, channel selection, and informa-
tion capacity calculation for various atmospheric gas components based on the observed
data from FY-3D/HIRAS-I and FY-3E/HIRAS-II satellites and the simulated results from
the RTTOV fast radiative transfer model. During the analysis of the results, we found that:

When conducting sensitivity analysis of atmospheric gas components, we found that
CO and CO2 have the weakest sensitivity, while temperature, water vapor, ozone, methane,
and nitrous oxide exhibit the strongest sensitivity. We discovered that FY-3E/HIRAS-II and
FY-3D/HIRAS-I have different sensitivities to perturbations in various atmospheric gas
components, and the sensitivities also vary across different experimental regions. Future
comparative analysis will be conducted by selecting different experimental regions, such
as during summer, and analyzing them at different experimental times.

In the experimental section of channel selection, we found that FY-3E/HIRAS-II has
a higher number of channels selected for each component compared to FY-3D/HIRAS-I.
Specifically, CO2 and N2O channels can be selected for both long-wave and short-wave
channels. It has been observed that the short-wave channels of both HIRAS-II and HIRAS-I
are not very stable, and related works in the literature [14] have confirmed significant
deviations in the short-wave range. However, despite the instability, the number of short-
wave channels is still greater than the number of long-wave channels. In future studies, it
will be necessary to increase the number of long-wave channels.

In the calculation results of DFS and ER, we found that CO and CO2 have very low
DFS and ER. In subsequent experiments, we will select the time and region with high
concentrations of CO and CO2. We will improve or use alternative methods for channel
selection to continue calculating and analyzing the information capacity of CO and CO2.

6. Conclusions

FY-3D/HIRAS-I is the first infrared hyperspectral instrument to be implemented on
China’s polar-orbiting meteorological satellites, while FY-3E/HIRAS-II is the first infrared
hyperspectral instrument used on China’s (and the world’s) first sun-synchronous orbit
civil operational meteorological satellite. It is important and meaningful to use these two
instruments for atmospheric gas component retrieval. Therefore, we conducted sensitiv-
ity analysis, channel selection, and information capacity calculation after perturbing the
gas components to quantitatively explore the retrieval capabilities of the instruments for
atmospheric gas components. Preliminary research results indicate:

(1) FY-3D/HIRAS-I and FY-3E/HIRAS-II exhibit different sensitivities to atmospheric
gas components. Temperature and water vapor show the most significant variations,
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followed by O3, CH4, and N2O, while CO and CO2 exhibit the lowest sensitivities.
Variations in temperature and water vapor are evident in different experimental re-
gions, while the sensitivity differences for other gases are relatively small. Ozone’s
sensitive spectral bands are concentrated in the 1000–1125 cm−1 and 2120–2125 cm−1

bands, with FY-3E/HIRAS-II having an additional region of strong variation in the
short-wave infrared band (2120–2125 cm−1) compared to FY-3D/HIRAS-I. The sensi-
tive spectral bands for CH4 are concentrated in the 1250–1375 cm−1 band; for N2O, in
the 1250–1300 cm−1 and 2125–2250 cm−1 bands; for CO, in the 2120–2140 cm−1 band;
and for CO2, in the 740–750 cm−1 and 2245–2255 cm−1 bands;

(2) FY-3E/HIRAS-II has a higher number of gas channels selected compared to FY-
3D/HIRAS-I, especially for N2O, CO, and CO2. Based on FY-3E/HIRAS-II data, there
are 33 additional long-wave channels and 23 additional short-wave channels for N2O
compared to FY-3D/HIRAS-I. Additionally, there are 34 more channels for CO and 53
more long-wave channels and 37 more short-wave channels for CO2;

(3) FY-3E/HIRAS-II exhibits significantly greater information content than FY-3D/HIRAS-
I, particularly for H2O and O3. Upon analyzing the spectral coverage of the two
hyperspectral instruments, it is evident that HIRAS-II surpasses HIRAS-I by cover-
ing an additional long-wave range of 1135–1210 cm−1 and a mid–short-wave range
of 1750–2155 cm−1. In addition, HIRAS-II incorporates the O3 detection band of
2070–2130 cm−1, a feature absent in HIRAS-I. HIRAS-II also demonstrates notable
improvement compared to HIRAS-I for N2O and CH4. The information capacity
of atmospheric gas components varies across different experimental regions. For
the African marine region, the H2O ER (DFS) contained in FY-3E/HIRAS-II is 1.51
(0.35) higher than that in FY-3D/HIRAS-I and the O3 ER (DFS) in FY-3E/HIRAS-II
is 0.88 (0.27) higher than that in FY-3D/HIRAS-I. In the case of the Yangtze River
Delta region of China, the H2O ER (DFS) contained in FY-3E/HIRAS-II is 0.15 (0.16)
higher than that in FY-3D/HIRAS-I. Moreover, the O3 ER (DFS) in FY-3E/HIRAS-II
is 1.51 (0.36) higher than that in FY-3D/HIRAS-I, while the N2O ER (DFS) in FY-
3E/HIRAS-II is 0.17 (0.19) higher and the CH4 ER (DFS) is 0.07 (0.04) higher than that
in FY-3D/HIRAS-I.

In this experiment, we conducted a comparative analysis of the sensitivity, channel
selection, and information capacity calculation for atmospheric gas components using
the two instruments in different regions. We explored the infrared spectral coverage of
atmospheric gas components by FY-3D/HIRAS-I and FY-3E/HIRAS-II, as well as the spe-
cific information contained for each gas component. Based on analysis of experimental
results, it has been determined that FY-3E/HIRAS-II has more ozone bands compared to
FY-3D/HIRAS-I, and it has also improved the detection accuracy of water vapor. Addi-
tionally, its capability of methane and other gases’ inversion has also been enhanced. Our
future research will focus on how to extract and effectively utilize this information, thereby
providing a reference for improving the remote sensing retrieval capabilities of atmospheric
gas components for both instruments. We will continue to explore the atmospheric inver-
sion capabilities of the FY-3D and FY-3E satellite instruments and compare the advantages
and disadvantages of different inversion methods, providing references and guidance for
future research.
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