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Abstract: Solid-state LiDAR offers multiple advantages over mechanism mechanical LiDAR, in-
cluding higher durability, improved coverage ratio, and lower prices. However, solid-state LiDARs
typically possess a narrow field of view, making them less suitable for odometry and mapping sys-
tems, especially for mobile autonomous systems. To address this issue, we propose a novel rotating
solid-state LiDAR system that incorporates a servo motor to continuously rotate the solid-state Li-
DAR, expanding the horizontal field of view to 360◦. Additionally, we propose a multi-sensor fusion
odometry and mapping algorithm for our developed sensory system that integrates an IMU, wheel
encoder, motor encoder and the LiDAR into an iterated Kalman filter to obtain a robust odometry
estimation. Through comprehensive experiments, we demonstrate the effectiveness of our proposed
approach in both outdoor open environments and narrow indoor environments.

Keywords: LiDAR; odometry and mapping; SLAM; urban environment

1. Introduction

Odometry and mapping, also known as simultaneous localization and mapping
(SLAM) [1], is an important task for autonomous mobile systems to localize themselves and
interact with surroundings in unknown environments. RGB cameras and light detection
and ranging (LiDAR) are two commonly used sensors for SLAM. RGB cameras capture
detailed texture information of the environments, which offers useful constraints for visual
SLAM [2–6]. However, they are easily affected by environmental lighting changes and lack
depth information, which limits their effectiveness in 3D perception. LiDAR, as an active
sensor, is less susceptible to environmental changes and provides accurate 3D information
of the environment. Therefore, LiDAR-based SLAM has gained significant attention in
applications where reliable perception is critical for ensuring safety and achieving high
performance, such as autonomous driving [7,8] and specialized robotics.

Solid-state LiDAR sensors [9,10] have recently made remarkable progress and gained
increasing attention for SLAM applications due to their numerous advantages over tradi-
tional mechanical LiDAR. Firstly, solid-state LiDAR eliminates the need for a mechanical
rotating mechanism, making it more suitable for specialized environments with high/low
temperatures and vibrations. Secondly, solid-state LiDAR is generally less expensive and
more lightweight than mechanical LiDAR, making it more suitable for small mobile robots.
Lastly, the most significant characteristic of solid-state LiDAR is its non-repeating scanning
pattern, which results in significantly higher point-cloud density with increasing scan time
compared to mechanism LiDAR.

However solid-state LiDAR typically has a narrower field of view (FOV) than mech-
anism LiDAR, e.g., Livox HAP with 120◦ × 25◦ FOV and HESAI FT120 with 100◦ × 75◦,
which poses a challenge for scan registration. A narrow FOV represents that the robot
struggles to obtain sufficient information from the environment, making the SLAM system
vulnerable to less featured and elongated environments. Such a disadvantage is more
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severe for the mobile robot, where the sensor installation position is restricted and the
installed height is commonly lower, resulting in less effective scanning information. Equip-
ping multiple LiDARs can solve this problem, but it goes against the original intention of
using more cost-effective solid-state LiDAR on mobile robots.

To address this challenge, we present a novel approach for solid-state LiDAR-based
SLAM in mobile robot applications. The main contributions of our method are twofold:

• We designed and implemented an economical rotating sensory platform that effec-
tively expands the horizontal FOV of LiDAR to 360 degrees as shown in Figure 1.

• We propose a multi-source information fusion odometry system that combines the
rotation encoding measurements of the rotating platform, IMU measurements, wheel
speed odometry, and LiDAR odometry in an iterative extended Kalman filter to obtain
robust and accurate pose estimation.

The proposed solution overcomes the limitations of solid-state LiDAR by providing
a wider FOV while maintaining cost effectiveness. The multi-source information fusion
algorithm ensures accurate and reliable localization, even in challenging environments
where feature degradation may occur. Experimental results on outdoor, indoor and stair
scenarios as shown in Figure 1c demonstrate the effectiveness and practicality of our
proposed solution for mobile robot localization and mapping.

The remainder of this article is structured as follows: In Section 2, past relevant
works are discussed. Section 3 provides the detailed design of the rotating platform and
presents the kinematic model of our experimental mobile robot. Our proposed LiDAR
odometry system is detailed in Section 4. In Section 5, we present the experimental results
and evaluation. Finally, we conclude our work and discuss directions for future research
in Section 6.

(a) (b) (c)

Figure 1. (a) Rotating solid-state LiDAR, (b) experimental robot, (c) mapping result of campus.

2. Related Work

Many existing approaches for LiDAR SLAM have been proposed. In this work, we
mainly focus on the LiDAR-only odometry and mapping (LOM), LiDAR-IMU odometry
and mapping (LIOM), and LiDAR-IMU-wheel odometry and mapping (LIWOM).

LiDAR-only odometry and mapping is based on the iterated closest points
(ICP) [11–15] method, which was proposed by Besl et al. [11] for registering scans. ICP
provides good results for dense 3D point clouds, but it requires exact point matching, which
may not be available in sparse LiDAR measurements. To address this issue, Segal et al. [13]
proposed a solution called Generalized-ICP, which is based on the distance between points
and planes. Building upon this method, Zhang et al. [16] added point-to-edge matching
and developed LOAM, a LiDAR odometry and mapping framework, in 2014. After that,
many works have been proposed for LOAM, such as LeGO-LOAM [17], LOAM-Livox [18]
and methods using semantic information [19,20], deep learning networks [21–23], or the
most recent neural rendering techniques [24]. Current methods also allow loop closure
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detection and position correction by comparing the current frame with the keyframe [16,25]
or combining with deep learning [20,26–28]. Further, there are methods using deep learn-
ing [29–33] to exclude dynamic objects in the environment and improve the accuracy of
the LOAM system. However, due to their reliance only on LiDAR measurements, such
methods may perform poorly in featureless environments. One solution to this issue
is to fuse the measurements of other sensors, such as IMU, GNSS, camera and LiDAR
measurements [34,35].

Combining LiDAR data with IMU measurements is one of the popular solutions to
address the LiDAR SLAM degeneration problem in featureless environments [36]. Such
methods can be divided into two groups, loosely coupled LiDAR-inertial odometry and
mapping (LIOM) and tightly coupled LiDAR-inertial odometry. In the loosely coupled
approaches, scan registration and data fusion are separated. For example, the method
by Zhen et al. [37] first registers LiDAR scans and estimates robot poses, then fuses these
estimates with IMU measurements. Another example is using IMU measurements as
the initial estimate for registering LiDAR scans as presented in IMU-aided LOAM [16].
The loosely coupled approach has lower computational requirements but neglects the
relationship between other states, such as the velocity and pose of new LiDAR measure-
ments. In contrast, the tightly coupled LiDAR-inertial odometry directly combines the raw
feature points of LiDAR with IMU measurements. Two main paths can be used for this
approach, filter-based and optimization-based methods. For instance, Geneva et al. [38]
fused IMU measurements and LiDAR plane feature points using graph optimization, while
LIOM [25] also used graph optimization to fuse plane and edge features of IMU and Li-
DAR measurements. Gaussian particle filters [39] have also been used to fuse IMU and
planar 2D-LiDAR. However, as the number of feature points and dimension of the system
increase, the requirements for computational power quickly grow both in terms of graph
optimization and Gaussian particle filter methods. Kalman filter and their variants, such as
extended Kalman filter [40,41], adaptive Kalman filter [42,43], consensus Kalman filter [44]
and iterated Kalman filter, have demonstrated more efficient and effective performance in
real-time situations. Xu et al. [45,46] proposed the latest approaches, FAST-LIO and FAST-
LIO2, that adopt the iterated extended Kalman filter in the LIOM field. Bai et al. [47,48] also
increased the speed of integrating the LIOM system by replacing the ikd-tree with iVox.

In complex real-world environments, enhancing perception-based odometry methods
by integrating the robot’s kinematics model obtained from sensors such as wheel encoders
can improve the robustness of the odometry and mapping results. In the field of visual
SLAM, there are instances where wheel encoder messages have been incorporated into
existing odometry and mapping frameworks. For example, Zhang et al. [5] employed an
iterative optimization method based on sliding windows to fuse visual, IMU, and wheel
encoder measurements. Liu et al. [5] adopted a tightly coupled approach, integrating wheel
encoder and IMU measurements during a pre-integration stage. However, the utilization
of both LiDAR and wheel encoders is relatively limited. Júnior et al. [49] proposed an
approach that combines LiDAR measurements, IMU data, and wheel encoder information
to establish an odometry and mapping framework specifically designed for challenging
environments. Yuan et al. [50] introduced a framework based on bundle adjustment (BA)
to achieve similar functionality. Existing methods mainly focus on fixed LiDAR sensors
and perform poorly when directly applied with rotating LiDAR sensors due to the special
motion characteristics.

To bridge this gap, we propose a tightly coupled method to fuse rotating LiDAR data
with IMU and wheel encoder measurements to obtain an accurate odometry and dense
mapping result. During the motion compensation stage for rotating solid-state LiDAR scans,
we combine IMU measurements with motor encoder readings to generate undistorted point
clouds. We install this solid-state LiDAR on a rotating platform and run our approach on a
track robot designed by our lab. We test our odometry and mapping approach for rotating
solid-state LiDAR in complex environments. To the best of our knowledge, our approach
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is the first work that combines the rotating ability of solid-state LiDARs with exclusive
odometry and mapping frameworks for multiple complex environment SLAM tasks.

3. Rotating Sensory Platform and Experimental Robot
3.1. Experimental Platforms

We first introduce our designed rotating sensory platform for solid-state LiDAR.
As shown in Figure 1a, we use the Livox HAP solid-state LiDAR sensor, which provides
a horizontal FOV of 120° and vertical FOV of 25°. Note that our rotating platform is not
limited to this type of LiDAR, and theoretically it can work with any type of LiDAR. Our
rotating platform uses a servo motor to continuously rotate around the z-axis, expanding the
horizontal FOV of LiDAR to 360°. We use conductive slip rings to achieve data transmission
during the rotation process. In this paper, we set the motor speed to 3000 rotations per
minute (RPM) with a reduction ratio of 100, thus resulting in a speed of 30 RPM for
the solid-state LiDAR. We visualize the point cloud obtained by the LiDAR sensor in a
stationary state for 0.1 s (see Figure 2a), 2 s (see Figure 2b), and on our rotating platform
for 2 s (see Figure 2c). As can be seen in Figure 2a,b, benefiting from the non-repeating
scanning characteristic of the solid-state LiDAR, a longer scanning period results in higher
coverage of the scene. Comparing Figure 2b,c, we can see that using our rotating platform,
the point cloud collected by the LiDAR can cover greater areas of the scene.

(a) (b) (c)

Figure 2. The scanning result of original solid-state LiDAR and our rotating solid-state LiDAR.
(a) One scanning of original solid-state LiDAR. (b) The result of two seconds of scanning in the same
place of original solid-state LiDAR. (c) The result of two seconds of scanning obtained by our rotating
solid-state LiDAR.

We use our designed tracked robot for evaluating the proposed odometry and mapping
experiment in complex campus environments. Figure 1b shows the robot equipped with
our rotating sensory platform. The size of the rotating platform is 30 cm× 16 cm× 27 cm,
and when installed on the robot, the height of the LiDAR optical center from the ground
is 40 cm. The robot is equipped with four independently driven fins with strong obstacle-
crossing abilities, allowing us to conduct experiments in more complex terrains, such as
indoor environments with steps, even multi-floor stairs. The robot also equips a wheel
encoder, enabling us to form its kinematic equation as[

vx
ωyaw

]
=

[ 1
2

1
2

L
2 − L

2

][
vL
vR

]
, (1)

where vR and vL are the velocity of the left and right of the main track, and L is the distance
of the two main track centers. The final measurement of the wheel encoder can be written
as vO = [vx 0 0] and ωO = [0 0 ωyaw].
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3.2. Extrinsic Calibration

In this section, we introduce the extrinsic calibration process of our sensor system.
Some notations used in this paper are shown in Table 1. The definition of the sensor coordi-
nate systems of our experimental robot is given in Figure 1. We also define the coordinate
system of the LiDAR, IMU and robot such that the coordinate origin of the LiDAR coincides
with the optical center, with the X-axis pointing towards the scanning direction, and the co-
ordinate system of the IMU coincides with that of the accelerometer. The coordinate origin
of the robot is located at the center of gravity of the robot. For the coordinate system of the
rotating platform, we define the z-axis pointing upward as coinciding with the rotating axis,
and the x-axis and y-axis coincide with that of the robot.The center is defined at the same
height as the LiDAR optical center for convenience. Ideally, the rotating axis of the rotating
platform should coincide with the z-axis of the LiDAR. However, mechanical installation
issues can cause errors in both the distance from the LiDAR center to the rotating axis and
the angle between these two axes as in Figure 3. Therefore, we need to calibrate the rotating
platform with the LiDAR sensor. We denote the extrinsic parameters between the LiDAR
system and the rotating platform system as MTL

MRL =

 cos(∆ϕ) 0 sin(∆ϕ)
sin(∆ϕ)sin(∆δ) cos(∆δ) −cos(∆ϕ)sin(∆δ)
−sin(∆ϕ)cos(∆δ) sin(∆δ) cos(∆ϕ)cos(∆δ)

, (2)

MtL =

∆x
∆y
0

, (3)

MTL =

[MRL
MtL

0 1

]
. (4)

where [∆x, ∆y] are the translation parameters and [∆ϕ, ∆δ] are the rotating parameters
represented in the Euler angles, i.e., the roll and pitch angle. We design an extrinsic
calibration for our platform to obtain the extrinsic parameters MTL as follows.

Table 1. Notations in our paper.

Symbols Meaning

TsA
k The timestamp of the k-th measurements of senor A.

SA
n ,

dSA
n scan and after downsampling in A frame.

x̃A, x̂A, δxA true state variables, nominal state variables and error state variables
calculated by measurement of senor A.

ATB, ARB, AtB T is transform from B to A that R is rotation and t is translation.

(·)W , (·)I , (·)L, (·)O, (·)M
The coordinate system of world, IMU, LiDAR, wheel odometry and

rotating platform.

Figure 3. Assembly error between the LiDAR and motor.
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We firstly collect scans at different rotating angles θn of the platform and can obtain a
related transform as Equation (5)

Rθn =

cos(θn) −sin(θn) 0
sin(θn) cos(θn) 0

0 0 1

. (5)

Each angle is related to a LiDAR pose measurement Tn = T(θn)
MTL in the world

frame, which is defined as coinciding with the original rotating platform frame. For each
pair of angles {θi, θj}, we can establish the relative pose measurement from θi to θj as θi Tθ j:

T(θn) =

[
Rθn 0
0 1

]
, (6)

θi Tθ j = (T(θi)
MTL)

−1 T(θj)
MTL = MTL

−1
T(θi − θj)

MTL, (7)

By obtaining the relative pose observation
θi T

′
θ j using point cloud registration, we can

then establish the optimization function as

min
MTL

N

∑
j=1

N

∑
i=1
‖

θi T
′
θ j − θi Tθ j‖F(i 6=j) (8)

=min
MTL

N

∑
j=1

N

∑
i=1
‖(

θi T
′
θ j − MTL

−1
T(θi − θj)

MTL)‖F(i 6=j). (9)

which can be solved iteratively using the Levenberg–Marquardt algorithm.

To obtain precise observation of relative pose
θi T

′
θ j, we perform the extrinsic calibra-

tion in a structured environment, and obtain the ground truth dense point cloud of the
environment using a Faro FocusS350 scanner. FocusS350 is a high-precision laser scanner
with a measuring range of up to 350 m and a measurement accuracy of 1 mm (Figure 4).

Figure 4. Diagram of calibration showing the relationship of different measurements.

For each rotating angle, we keep the platform stationary and collect all the point
clouds acquired by the LiDAR within 5 s as one scan. Each scan is registered to the ground
truth point cloud of the environment using ICP [11] to solve the precise pose T

′
θi

in the
Faro frame. The relative pose observation is then obtained as θi Tθ j. As the registration is
performed between the sparse scan and the ground truth dense point clouds, we can obtain
the relative transformation between the sparse scans even without overlap to include more
constraints in the optimization function Equation (9) to obtain a better calibration result.
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For the extrinsic parameters between the wheel odometry and the IMU ITO, we use
the calibration method described in [6]. For the extrinsic parameters between the rotating
platform and the IMU ITM, we opt for an indirect method. We fix the rotating platform and
adopt the LiDAR-IMU calibration method described in [51] to calculate the transformation
between the LiDAR frame and IMU frame ITL, and then calculate the extrinsic parameters
as ITM = ITL

LTM.

4. LiDAR-Inertial-Wheel Odometry and Mapping
4.1. System Overview

The overview of our approach is presented in Figure 5. The measurements of the IMU,
motor encoder, wheel encoder and LiDAR are fed into our state estimation module for a
fast state estimation. The estimated pose is then used to register the point cloud with the
built global map. The updated map is finally used for registration in the next step.

Figure 5. System overview of our approach. The system can be separated into two parts: state
estimation and mapping. In state estimation, an iterated Kalman filter is adopted to estimate state
variables. IMU measurements are used for integration to generate state prediction. It then updates
the velocity state by fusing the wheel encoder, transforms raw points from the LiDAR frame to the
IMU frame and compensates for motion distortion. LiDAR scanning after motion compensation is
used to compute the residual to optimize the pose to obtain the final odometry result. In the mapping
module, the new scan is then added to the map that consists of a hash structure and the updated
mapping result.

4.2. State Estimation

We first model the state of our system as x = [p θ v ba bω g], where p is the
pose, v is the velocity, θ is the Euler angle, ba is the bias of the accelerometer, bω is the bias
of the gyroscope, and g is gravity. We use the iterated Kalman filter as the optimization
framework. Instead of directly updating the state in a general Kalman filter, the iterated
Kalman filter updates the errors of the state, i.e., δx = x̃ − x̂, where x̂ is the nominal
state and x̃ is the true state. This allows for a smoother and more stable state estimation.
The iterated Kalman filter optimizes the estimation of δx and incorporates it into the
nominal state variables x̂ to obtain the final state estimation.

4.2.1. IMU Integration

In the IMU integration stage, we use IMU measurements as inputs to predict the state
estimation:

x̂I
n+1 = x̂I

n + ∆t f (x̂I
n, u, 0), (10)

where f (x̂I
n, u, 0) = ˙̂xI

n is the state equation of x̂I
n in continuous time with noise w set to 0,

and ∆t = TsI
n+1 − TsI

n refers to the time interval between consecutive IMU time steps TsI
n+1

and TsI
n.



Remote Sens. 2023, 15, 4040 8 of 21

We follow [41] and calculate δxI
n+1 as

δxI
n+1 = FnδxI

n + Gnw, (11)

Fn =



I3×3 0 I3×3∆t 0 0 0
0 I3×3 + bω− bωc× 0 0 −I3×3∆t 0
0 −Rnba− bac×∆t I3×3 −Rn∆t 0 I3×3∆t
0 0 0 I3×3 0 0
0 0 0 0 I3×3 0
0 0 0 0 0 I3×3


18×18

, (12)

Gn =



0 0 0 0
0 −I3×3 0 0
−Rn 0 0 0

0 0 I3×3 0
0 0 0 I3×3
0 0 0 0


18×12

, (13)

where u> = [ω a]> is the measurements of the gyrometer and accelerometer of IMU,
and w = [a>n ω>n a>w ω>w ]

> refers to the Gaussian noise of the gyrometer and ac-
celerometer, and the bias of the gyrometer and accelerometer, respectively. b·c×∈R3×3
represents transferring the 3D vector to its skew–symmetric matrix. I3×3 is the 3× 3 identity
matrix, and Rn is the transformation from the world frame to the IMU frame. ba and bω

are the bias of the gyrometer and accelerometer.
Using Fn and Gn, we can then propagate the covariance Pn of state xn iteratively as

the following:

P̂I
n+1 = FnP̂I

nF>n + (Gn∆t)Q(Gn∆t)>, (14)

where Q ∈ R12×12 represents the covariance of noise w.

4.2.2. Wheel Encoder Residual Computation and State Update

After the IMU integration, we obtain the state estimation x̂I
n+1 and the covariance

matrix P̂I
n+1 at iteration n + 1. In the low-velocity situation, the cumulative error of the

IMU accelerometer can greatly affect the velocity estimation. To eliminate this error δv in
δx and achieve a more stable velocity estimation, we build the observation model to rectify
velocity estimation v̂n+1 in the propagated state x̂n+1 based on the measurements from the
wheel encoder:

hW(x) = (
I
R>O vO + I tO×ωO)−

I
R>W v̂I

n+1, (15)

where vxO is the measurement of the wheel encoder calculated as in Equation (1), and ORI
and OtI are the extrinsic parameters between the wheel encoder with IMU, and WRI is the
extrinsic parameters between the world frame with IMU. Based on the observation model,
we can then formulate the optimization function as

min
δx
‖δx‖

P̂−1
n+1

+ ‖hO(x) + JhO
δx‖M−1

O
, (16)
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where M−1
O is the noise of the wheel encoder measurements, and JhO

is the Jacobian w.r.t.
velocity v in state variables x. Equation (16) can be solved by the Kalman filter as follows:

KO = P̂I
n+1H>O(HOP̂I

n+1H>O + MO)
−1, (17)

δxO
n+1 = HOδxI

n+1 − hO(x̂I
n+1 + δxI

n+1) (18)

x̂O
n+1 = x̂I

n+1 + KOδxO
n+1, (19)

P̂O
n+1 = (I−KOHO)P̂

I
n+1, (20)

where the Kalman gain KO is solved in Equation (17), δxO
n+1 is Equation (18), and used to

update state x̂O
n+1 in Equation (19) and covariance P̂O

n+1 in Equation (20).

The updated x̂O
n+1 and P̂O

n+1 will be then used for motion compensation and the next
optimization of the state.

4.2.3. Motion Compensation

In order to address the distortions and deviations caused by the movement of the
robot and the rotation of the motor in the LiDAR scanning results, a kinematic analysis
is performed. This analysis aims to compensate for the motion effects and determine the
position of all points at the end of the scanning in the IMU frame system. The kinematic
analysis assumes a constant velocity and utilizes the transformation information obtained
from the extrinsic calibration process.

The first step in motion compensation involves establishing a motion model for each
point within a single scanning by transforming the points from the LiDAR frame to the
world frame as

W p = WRI(
IRL

L p + I tL) +
W tI . (21)

The kinematic relationship between the velocities W ṗ and L ṗ can be derived as

W ṗ =
WṘI(

IRL
L p + I tL) +

WRI(
IṘL

L p + IRL
L ṗ + I ṫL) +

W ṫI , (22)

where IRL = IRM Rθi
MRL and I tL = IRM Rθi

MtL + I tM are the transformations from
LiDAR frame to IMU frame. Assuming that the environment is perfectly stationary,
i.e., W ṗ = 0, we can further derive Equation (22) to solve the velocity of the point in
LiDAR frame as

L ṗ = −I
R>L

W
R>I

WṘI
IRL

L p− I
R>L

W
R>I

WṘI
I tL −

I
R>L

W
R>I

W ṫI −
I
R>L

I ṫL −
I
R>L

I
Ṙ>L

L p, (23)

= −M
R>L R>θi

I
R>MbωIc× IRM Rθi

MRL
L p− M

R>L R>θi

I
R>MbωIc×(IRM Rθi

MtL +
I tM)

− M
R>L R>θi

I
R>M

W
R>I

W ṫI −
M

RT
L R>θi

I
R>M

IRM RθibωMc×MtL − bωMc×L p, (24)

where ωI is the measurements of the IMU gyrometer, and ωM is the reading of the motor
encoder, and W ṫI is the velocity of the robot in the real world, which can be obtained by
state optimization. Using the timestamp of each point

L
pk

i in a single scan, we can then
compensate for the motion distortion for each point by projecting it to the end of the scan as

L
pk−end

i =
L

pk
i +

L ṗ(1− εi)∆t, (25)

where εi = (tL
i − TsL

k )/(TsL
k − TsL

k−1) is the scanning time duration of the k-th scan,

∆t = TsL
k − TsL

k−1, and tL
i is the timestamp of point

L
pk

i .
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4.2.4. Point Cloud Residual Computation and State Update

After the motion compensation, we obtain the undistorted point cloud denoted as
SL

n and use it to construct the residual. Assuming that the current iteration of the iterated
Kalman filter is n + 1, and the corresponding state estimation is x̂O

n+1 and the covariance

matrix is P̂O
n+1. When the new scan SL

n is input, a downsample process will be executed

that generates
dSL

n . Then, we transform the point cloud
dSL

n into the world frame as

dSW
n = WTI

ITL
dSL

n . (26)

After downsampling and transforming, the nearest points of
dSW

n in the hash map are
retrieved. Each set of the nearest points is used to fit a plane and calculate the distance
between the plane with the corresponding point in the downsampled point cloud, as shown
in Figure 6.

Figure 6. LiDAR measurements model. Red point is the point in scan, blue points are the points in
the map near the red point, and the vector from the plane to the red point is the normal and residual.

Specifically, for each point pj(xj, yj, zj)∈
dSW

n , we find its nearest points set A in the
built map:

A = [q1 q2 . . . qi]i×3. (27)

We then calculate the normal vector n to fit the plane formed by A as

n =
(A>A)−1A>b
‖(A>A)−1A>b‖2

, (28)

where b = −[I3×1 I3×1 . . . I3×1]i×3. The residual of the LiDAR measurements can
then be calculated as

hL(x) =
m

∑
j=1

n · (pj − qm), pj =
W

RL
L pj +

W tL, qm = mean(A). (29)

We construct an optimization equation for δx as

min
δx
‖δx‖

(P̂O
n+1)

−1 + ‖hL(x) + JhL
δx‖M−1

L
, (30)
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where M−1
L is the noise of LiDAR measurements, and JhL

is the Jacobian w.r.t. position p
and posture θ. Similarly, we use the iterated Kalman filter to solve Equation (30) as follows:

KL = (H>L M−1
L HL + (P̂O

n+1)
−1)−1H>L M−1

L , (31)

δxL
n+1 = HLδxO

n+1 − hL(x̂O
n+1 + δxO

n+1) (32)

xL
n+1 = x̂O

n+1 + KLδxL
n+1, (33)

PL
n+1 = (I−KLHL)P̂

O
n+1, (34)

where the Kalman gain KL is solved in Equation (31), and δxL
n+1 is Equation (32) and used

to update state xL
n+1 in Equation (33) and covariance PL

n+1 in Equation (34).
The overall procedure of state estimation can be summarized in Algorithm 1.

Algorithm 1 State estimation algorithm.

Input: Last optimal estimation xn and covariance matrix Pn, LiDAR scan SL
n , the

sequence of IMU measurements un = [ωn an], wheel encoder measurements
uW n = [vxn ωyawn] and the measurements of motor encoder uMn = [ωMn] in scan
SL

n .
1: while i < n do
2: integrate IMU measurements to obtain predict x̂I

n+1 as Equation (10) and P̂I
n+1

as Equation (14).
3: calculate the residual by Equation (16).
4: solving Equation (16) measurements to calculate δxO

n+1 as Equation (18).

5: update x̂O
n+1 by x̂O

n+1 = x̂I
n+1 + δxO

n+1 and P̂O
n+1 by Equation (31)

6: i = i + 1
7: end while
8: distort the scan SL

n by state estimation of IMU integration and measurement of motor
encoder according to Equations (23) and (25).

9: calculate normal vector and residual for every point in by Equation (29).
10: while Equation (30) < threshold do
11: solve Equation (30)
12: update xL

n+1 and PL
n+1 by Equations (33) and (34)

13: end while
Output: xL

n+1 and PL
n+1

4.3. Mapping

In the mapping module, we adopt the iVox structure proposed in [47] to achieve the
storage and management of the global map based on the hash algorithm [52].

When a new scan is fed into the mapping module, the first step is to compute a hash
index for each point. Subsequently, we check whether a voxel in iVox shares the same hash
index as each point. If a voxel with the same hash index is found, the corresponding point
is inserted into that voxel. Conversely, if such a voxel does not exist, a new voxel is created
based on the hash index, and the point is then inserted into it. Each voxel has a maximum
capacity, and once this capacity is reached, no additional points can be inserted.

Regarding the search and matching process, we primarily utilize the k-nearest neigh-
bors search (k-NN) method to identify voxels that fulfill the specified criteria. Compared to
traditional k-d tree structures, the iVox structure offers significantly faster insertion and
retrieval speeds for voxels, typically ranging from one to two orders of magnitude faster.
This improvement is achieved by leveraging hash algorithms.
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5. Experiments

We conduct experiments to evaluate the effectiveness of our RSS-LIWOM and the
rotating platform under two challenging scenes, an indoor–outdoor mixed campus and
an indoor stairway as shown in Figure 7. The campus environment presents several
challenges, such as scene changes and the presence of a long, narrow, symmetric corridor
with limited structural features. This corridor specifically poses a significant challenge for
LiDAR odometry, which relies heavily on structural information for accurate mapping.
On the other hand, the odometry and mapping in the stairway environment introduce
additional complexities due to large motion vibrations and sharp turns.

(a)

(b)

Figure 7. Real scene and ground truth map of our experimental environments. (a) Real scene photos
of our experimental environments. (b) The ground truth map of our experimental environments.
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We choose three current state-of-the-art approaches as our baselines: FAST-LIO2 [46],
LIO-SAM [25], and EKF-LOAM [49]. For a fair comparison, we use the solid-state LiDAR
Livox HAP for all methods. However, EKF-LOAM was designed for mechanical LiDAR and
fails to work with solid-state LiDAR. We therefore additionally employ a more expensive
mechanical LiDAR Velodyne-VLP16 for EKF-LOAM, denoted as EKF-LOAM†. We also
provide the results of two variants of our approach to show the effectiveness of our designs,
where RSS-LIWOM∗ represents our RSS-LIWOM without the rotating platform, and RSS-
LIWOM× represents RSS-LIWOM without wheel odometry. We evaluate both the odometry
and mapping results of all methods, and all the experiments are performed in real time.

5.1. Evaluation on Odometry Estimation

It is hard to obtain the ground truth pose in indoor and outdoor mixed environments.
Therefore, we evaluate the odometry performance using accumulated position errors.
Specifically, for the stairway, we first measure the ground truth height between floors
using the Faro FocusS350 scanner, and then calculate the difference between the estimated
climbing height of each odometry method with the ground truth height. For the campus
environment, we control the robot to circumnavigate around the area and return to the star
position, and then compute the difference between the final pose and the origin.

We present the odometry results in the campus scene in Table 2. As can be seen, our
approach demonstrates superior performance in the campus scene, achieving the lowest
accumulated error of 2.08 m and an error per meter of 0.01 m. Notably, our approach also
achieves the smallest z-axis drift of 0.01 m. This advantage is particularly significant during
the mapping stage, as precise estimation of the z direction helps prevent layering artifacts.
In comparison, EKF-LOAM struggles to function effectively with a solid-state LiDAR,
while FAST-LIO2 and LIO-SAM exhibit significant odometry drift. Although EKF-LOAM†

performs well with a more expensive mechanical LiDAR, our RSS-LIWOM still outperforms
it. Comparing our RSS-LIWOM with its variants, RSS-LIWOM∗ and RSS-LIWOM×, it
can be observed that the fusion with wheel odometry and our devised rotating sensory
platform contributes to improved performance. For long-distance scenes, the fusion of the
wheel encoder has a more significant impact on the performance improvement.

Table 2. Odometry evaluation on campus.

Approach x Drift (m) y Drift (m) z Drift (m) Accumulated
Errors (m)

Error per Meter
(m)

Running Time
(ms)

FAST-LIO2 2.23 0.45 3.77 4.40 0.02 7
LIO-SAM 22.16 19.21 6.69 30.06 0.12 31
EKF-LOAM - - - - - -
EKF-LOAM† 1.72 0.01 1.60 2.36 0.01 11
RSS-LIWOM∗ 2.64 1.11 1.53 3.25 0.02 24
RSS-LIWOM× 2.74 4.75 0.79 5.54 0.03 22
RSS-LIWOM (Ours) 2.07 0.04 0.01 2.08 0.01 25

RSS-LIWOM∗ is RSS-LIWOM without rotating solid-state LiDAR and RSS-LIWOM× is RSS-LIWOM without
wheel encoder. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the best
results and underlined numbers indicate the second best.

The results obtained in the stairway scene are presented in Table 3. In this experiment,
the robot climbs multiple floors via stairs. As observed from the results, our RSS-LIWOM
outperforms all baseline methods. It is worth noting that FAST-LIO2, LIO-SAM, and EKF-
LOAM all fail to produce meaningful results. Although EKF-LOAM† using a more expen-
sive mechanical LiDAR still works, its performance is inferior to that of all our variants.
Comparing our variants, we consistently observe that each component of our approach
contributes to improved performance. Specifically, the introduction of the rotating platform
leads to a significant performance enhancement, reducing the error from 0.43 m to 0.06 m.
This finding suggests that a wider FOV and additional information are crucial for narrow
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scenes. By integrating all modules, our approach achieves the best odometry performance
and achieves real-time performance faster than the frame rate of 10 Hz of the rotating
solid-state LiDAR. The runtime cost of our RSS-LIWOM is 25 ms for the campus and 9 ms
for the stairway.

Table 3. Odometry evaluation on stairway.

Approach z Drift (m) Error per Meter Height (m) Running Time (ms)

FAST-LIO2 - - -
LIO-SAM - - -
EKF-LOAM - - -
EKF-LOAM† 5.14 0.67 7
RSS-LIWOM∗ 3.29 0.43 8
RSS-LIWOM× 1.64 0.21 8
RSS-LIWOM (Ours) 0.44 0.06 9

RSS-LIWOM∗ is RSS-LIWOM without rotating solid-state LiDAR and RSS-LIWOM× is RSS-LIWOM without
wheel encoder. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the best
results and underlined numbers indicate the second best.

5.2. Evaluation on Mapping Quality

In this section, we evaluate the mapping quality of our RSS-LIWOM compared to
the baselines with respect to the ground truth map obtained by the Faro FocusS350 scan-
ner. The real scene and corresponding ground truth map are shown in Figure 7. The
experimental scenes include a narrow corridor, open space and stairway such that the
complexity and comprehensiveness of the scene are quite challenging in the ground-based
unmanned platform SLAM problem. To further demonstrate our experimental scene, we
provide links (https://github.com/nubot-nudt/RSS_LOAM_Datasets, accessed on 6 July
2023) to download the experimental datasets and the ground truth measurement-based
FocusS350 scanner. We employ two metrics to quantitatively evaluate the accuracy of
the reconstructed maps of each methods. The first metric measures the accuracy of the
reconstructed map using the Chamfer distance, which computes the average distance
between each point in the reconstructed map to its nearest counterpart in the ground truth
map. The second metric is the mapping coverage rate, which represents the percentage
of map points that are accurately reconstructed. We define accurately reconstructed map
points as those whose distance to the nearest point in the ground truth map is below a
threshold of 0.2 m. To ensure a fair comparison, the mapping results of all the methods are
voxelized using a consistent voxel size of 0.1 m. Additionally, we provide the number of
points in the mapping result for each method.

The quantitative mapping results for both scenes are presented in Table 4. As can be
seen, our RSS-LIWOM, utilizing a rotating solid-state LiDAR, benefits from a larger FOV
and accurate odometry estimation, resulting in the highest mapping accuracy and coverage
rate in both the campus and stairway scenes. Specifically, in the campus scene, our approach
achieves the lowest Chamfer distance of 0.67 m and the highest coverage rate of 70.2%.
In the stairway scene, our approach consistently achieves the lowest Chamfer distance of
0.37 m and a coverage rate of 70%. In contrast, FAST-LIO2 is limited by its narrow FOV solid-
state LiDAR, which leads to inaccurate odometry estimation. Consequently, FAST-LIO2
exhibits suboptimal mapping accuracy in the campus scene and fails to produce meaningful
results in the stairway scene. The performance of EKF-LOAM varies significantly between
the two scenes. It achieves comparable mapping accuracy to our approach in the campus
scene but does not perform well in the stairway scene. EKF-LOAM also suffers from the
issue of feature degeneration in narrow scenes, which contributes to its poor performance.
Overall, the larger FOV and accurate odometry estimation provided by our rotating solid-
state LiDAR enable our approach to outperform FAST-LIO2 and EKF-LOAM in terms of
mapping accuracy and coverage rate in both scenes.

https://github.com/nubot-nudt/RSS_LOAM_Datasets
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Table 4. Comparison of mapping quality.

Scene Method Chamfer Distance Cover Rate (%) Number of Points

Campus

FAST-LIO2 1.44 16.2 4.3× 105

EKF-LOAM† 0.69 62.7 2.7× 105

RSS-LIWOM (Ours) 0.67 70.2 4.8× 105

Stairway

FAST-LIO2 - - -
EKF-LOAM† 1.50 36.2 3.1× 104

RSS-LIWOM (Ours) 0.37 70.0 4.4× 104

The threshold for cover rate is 0.2 m. Faro FocusS350 scanner points number is 5.5× 104 in the stairway scene and
is 4.3× 105 in the campus scene. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers
indicate the best results.

To better demonstrate the advantages of our RSS-LIWOM in mapping, we provide
more qualitative visualization results of different methods compared with the ground truth
maps. We first visualize the mapping result in the campus scene in Figure 8. The red
dots represent the mapping results of our RSS-LIWOM and baseline methods, while the
white dots represent the ground truth map points. As can be seen, our reconstructed maps
align better than other methods with the ground truth maps, which reveals that, benefiting
from high-quality point cloud and accurate odometry estimation, RSS-LIWOM performs
better and captures more environmental details than the baseline methods. FAST-LIO2
performs sub-optimally with significant deviation from the ground truth map due to feature
degradation. Although EKF-LOAM has similar overall mapping performance as RSS-
LIWOM, it cannot capture as many details as RSS-LIWOM. We zoom in on two typical
areas in the campus scene, a narrow corridor and the starting/ending points; our RSS-
LIWOM overlaps better with the ground truth map than the baselines and achieves a higher
coverage rate.

(a) Mapping results of FAST-LIO2

Figure 8. Cont.
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(b) Mapping results of EKF-LOAM†

(c) Mapping results of our RSS-LIWOM

Figure 8. The mapping results of (a) FAST-LIO2, (b) EKF-LOAM†, and (c) our RSS-LIWOM. The white
point cloud is the ground truth map points measured by Faro FocusS350 scanner and the red point
cloud is the estimated result.

We also visualize the mapping results in the stairway scene. As shown in Figure 9c,
our RSS-LIWOM performs well in the climbing stairway scene, achieving a high degree of
overlap with the ground truth map and clear distinction between different floors. In con-
trast, the mapping accuracy of EKF-LOAM significantly decreases when climbing stairs
(as shown in Figure 9b). This is mainly due to the inaccurate vertical odometry estimation
of EKF-LOAM.

We furthermore provide a qualitative comparison of different methods in terms of
heat maps, shown in Figure 10. In the figure, different colors represent the magnitude of
the Chamfer distance for each point, with cyan indicating smaller distances and orange
indicating larger ones. The visualization results provide a more intuitive demonstration of
the advantages of our algorithm in terms of the Chamfer distance in the corridor and hall
of the campus, compared with FAST-LIO2 and EKF-LOAM.
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(a) Ground truth map (b) Mapping results of EKF-LOAM† (c) Mapping results of our RSS-LIWOM

Figure 9. (a) The ground truth map and the mapping result of (b) EKF-LOAM† and (c) our RSS-
LIWOM. Different approach in stair scene. White point cloud is ground truth map measured by Faro
FocusS350 scanner, and the red point cloud is the estimated result.

(a) Mapping result of FAST-LIO2 in corridor

(b) Mapping result of EKF-LOAM† in corridor

(c) Mapping result of RSS-LIWOM in corridor

(d) Mapping result of FAST-LIO2 in hall (e) Mapping result of EKF-LOAM† in hall (f) Mapping result of RSS-LIWOM in hall

Figure 10. The visual results of Chamfer distance and cover rate in typical part of campus scene.
(a) FAST-LIO2 in corridor, (b) EKF-LOAM in corridor, (c) RSS-LIWOM in corridor, (d) FAST-LIO2 in
hall, (e) EKF-LOAM in hall and (f) RSS-LIWOM in hall.
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5.3. Smoothness of Velocity Estimation

To further demonstrate the improvement of our method through the fusion wheel
encoder measurements, we compare RSS-LIWOM with RSS-LIWOM× in terms of the
smoothness of the velocity estimation.

We evaluate the velocity estimation based on the hypothesis that the robot’s move-
ments should be continual and smooth, rather than high-frequency oscillations. As shown
in Figure 11, our RSS-LIWOM achieves smoother velocity estimation by incorporating
wheel encoder measurements, outperforming methods that do not utilize such information.
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Figure 11. The velocity estimation of RSS-LIWOM (blue line) and RSS-LIWOM× (red line). (a) The
velocity estimation in campus. (b) The velocity estimation in stairway.

6. Discussion

In this work, we designed a rotating solid-state LiDAR sensory platform and develop
a LIWOM framework named RSS-LIWOM that fuses LiDAR, IMU, and wheel encoder
data for odometry and mapping on ground unmanned platforms, such as track robots.
The rotating solid-state LiDAR has a larger scanning range and stronger ability to capture
detailed information in the environment, compared to original solid-state LiDAR and
mechanism LiDAR. The LIWOM framework uses wheel encoder measurements as an
observation for velocity, which is not present in existing LIOM frameworks. By combining
the rotating solid-state LiDAR and LIWOM framework, our RSS-LIWOM achieves a robust
and accurate LIWOM system.

We conducted extensive experiments to thoroughly evaluate our approach using our
own-designed track robot, which navigated through both indoor-outdoor mixed campus
and stairway environments. In the campus environment, the robot followed a predeter-
mined trajectory and returned to the starting point. We compared our approach with
the baseline in terms of the odometry estimation and mapping results, and our approach
outperformed the baselines by exhibiting the lowest odometry drift. In the stair scene
experiment, we manipulated the robot to climb stairs across multiple floors. Our approach
demonstrated minimal odometry drift in estimating the vertical orientation. Additionally,
we generated a highly precise 3D map using the Faro FocusS350 scanner as the ground
truth for evaluating the mapping quality. When comparing the Chamfer distance with the
ground truth, our RSS-LIWOM achieved the best results. These experiments validate the
localization and mapping capabilities of our approach on ground unmanned platforms
within building scenes.

In future work, we aim to improve our approach by enhancing map management
with a confidence factor for greater robustness and adaptability. We also plan to integrate
trajectory planning and object recognition, enabling robots to navigate complex environ-
ments more efficiently. These advancements will make our approach more valuable for
applications such as search and rescue, exploration, and transportation.
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