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Abstract: The thermodynamics of many lakes around the globe are shifting under a warming climate,
affecting nutrients and oxygen transportation within the lake and altering lake biota. However,
long-term variation in lake heat and water balance is not well known, particularly for regions like the
Tibetan Plateau. This study investigates the long-term (1963–2019) variation in the heat balance of
a large lake in the Tibetan Plateau (Nam Co) by combining the strengths of modeling and remote
sensing. Remotely sensed lake surface water temperatures from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Along Track Scanning Radiometer Reprocessing for Climate: Lake
Surface Water Temperature and Ice Cover (ARC-Lake) are used to calibrate and validate a conceptual
model (air2water) and a thermodynamic model (LAKE) for the studied lake, for which in situ obser-
vation is limited. The results demonstrate that remotely sensed lake surface water temperature can
serve as a valuable surrogate for in situ observations, facilitating effective calibration and validation
of lake models. Compared with the MODIS-based lake surface water temperature (LSWT) for the
period 2000–2019, the correlation coefficient and root mean square error (RMSE) of the LAKE model
are 0.8 and 4.2 ◦C, respectively, while those of the air2water model are 0.9 and 2.66 ◦C, respectively.
Based on modeling, we found that the water temperature of Nam Co increased significantly (p < 0.05)
during the period of 1963–2019, corresponding to a warming climate. The rate of water temperature
increase is highest at the surface layer (0.41 ◦C/10a). This warming trend is more noticeable in
June and November. From 1963 to 2019, net radiation flux increased at a rate of 0.5 W/m2/10a.
The increase in net radiation is primarily responsible for the warming of the lake water, while its
impact on changes in lake evaporation is comparatively minor. The approaches developed in this
study demonstrate the flexibility of incorporating remote sensing observations into modeling. The
results on long-term changes in heat balance could be valuable for a systematic understanding of
lake warming in response to a changing climate in the Tibetan Plateau.

Keywords: lake energy balance; lake thermal process; lake temperature; Tibetan Plateau

1. Introduction

Lakes are vital reservoirs of liquid water on Earth, with lower albedo and roughness
but a higher heat capacity than their surrounding terrestrial environment. Lakes are
also essential sources of moisture for the lower atmosphere [1,2] and sentinels of climate
change [3,4]. It has been reported that many lakes around the globe are warming at rates
higher than their ambient air temperature [5,6]. This warming trend reflects changes in
the thermodynamics of lakes and the corresponding heat balance, resulting in intensifying
lake stratification in summer [7,8] and shorter ice duration for lakes in the cryosphere [9].
These changes have shown impacts on nutrients and oxygen transportation between the
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surface and deep water of lakes, altering the vertical distribution and composition of lake
biota [10].

Shifts in lake thermodynamics and heat balance in response to a changing climate
have attracted increasing research efforts to improve our knowledge of the interactions
between lakes and the climate [11–14] and the physical and ecological consequences of a
warming lake [15,16]. The research includes studies based on ground observation, remote
sensing data, and modeling. Ground-based research is largely limited to a local scale due
to its high costs and data availability [17]. More research is now based on remotely sensed
data (like surface water temperature) to investigate the changes in lake thermodynamics at
a broader scale [18,19]. Remote sensing provides various observations not only to monitor
the dynamics of the hydrothermal characteristics of lakes but also to calibrate or validate
lake models at different temporal and spatial scales.

On top of the observation-based research, lake modeling plays an important role
in quantitively describing the thermodynamics and processes of lake heat balance, as
well as their responses to a changing environment [20]. Various lake models have been
developed to simulate the thermodynamics of lakes around the world. The models could
be of different conceptualization and complexity depending on the research goals and
available resources, including 1-D/2-D/3-D process-based models [21–25] or simplified
physically-based models [26]. The 1-D LAKE model is one of the models that presents a
compromise between the explicit resolution of key physical processes and computational
efficiency [25,27,28]. This model allows for high-temporal resolution input data and high
computational efficiency to effectively reproduce the thermodynamics of lakes. On the
other hand, the air2water model is a simplified, physically based model with minimal
requirements for model input [29].

The Tibetan Plateau (TP), known as the “water tower” of Asia, is a cold region with
thousands of lakes. The thermodynamics and heat balance of the lakes, however, are
rarely known, mainly due to the high cost of ground-based observations. More research
efforts on the thermodynamics of the lakes in the TP are now based on the increasing
availability of space-based observations. For example, Wan et al. (2017) and Liu et al.
(2019) have used AVHRR and MODIS to produce lake surface water temperature datasets
across the TP [18,30]. More recently, Guo et al. (2022) and Wu et al. (2022) have combined
remote sensing with modeling to reconstruct lake surface temperature [31] and lake ice
phenology [32] for more than 130 lakes across the TP. Both ground-based and space-
based observations have shown that thermal conditions, together with other physical
characteristics (like water levels and surface water extents) of lakes in the Tibetan Plateau,
are changing substantially [33–36]. It has been noticed that lakes in the TP are experiencing
a faster warming rate than that of global land surface air temperature over the period of
1979–2012 [37,38], which has caused considerable impacts on water and heat balance within
the region and beyond. However, more research is needed to further the thermodynamics
of lakes and their response to a changing climate through process-based modeling [39]. The
modeling could contribute to quantifying the impacts of climate change on components
of the heat balance of a lake and predicting their potential change under future climate
scenarios [40,41].

The objective of this study is to detect the long-term variation in the thermodynamics
and heat balance of the Nam Co, which is the second-largest lake in the Tibetan Au-
tonomous Region. Two lake models (air2water and LAKE 2.3) are used in this study to
reconstruct the long-term time series of lake temperature and components of heat balance
for the period 1963–2019. Remotely sensed data (MODIS and ARC-Lake) are used to
calibrate and validate the lake models. The approaches developed in this study show
the flexibility of incorporating remote sensing data into modeling while improving the
modeling capability for understanding the connections between lake thermodynamics
and climate.
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2. Materials and Methods
2.1. Study Area

The Nam Co Lake (Figure 1) is located at 90◦16′–91◦03′E, 30◦30′–30◦55′N, with a
mean elevation of 4718 m a.s.l. and an area of 2026 km2. The maximum depth is over
100 m, and the mean depth of Nam Co is about 40 m. It occupies a closed basin, and there
is no surface outflow. Precipitation and glacier melt water are the main water supplies
for Nam Co, accounting for 23–28% and 7–22%, respectively. Observations suggest that
the lake is a dimictic lake characterized by thermal stratification from late June to early
November [42] and generally ice-covered from January or February to April or May [32].
The lake is located in the monsoon-influenced transition zone between semi-humid and
semi-arid areas. The annual mean air temperature of Nam Co is approximately 0 ◦C, and
precipitation is about 450 mm/a [43,44]. In the warm–rainy (May to September) season,
its precipitation constitutes 91% of the total annual precipitation [43,44]. The mean annual
wind speed is 4 m/s, with the maximum monthly mean speed of 6.1 m/s occurring in
January (You et al., 2007). The annual evaporation from the lake surface is still uncertain,
although some studies have reported estimates such as 635 mm [45] or 832 ± 69 mm from
Lazhu [46].
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Figure 1. Location of the study area.

2.2. Data

The air2water model requires only air temperature as an input, while the required
meteorological inputs for the LAKE 2.3 model include air temperature, specific humidity,
air pressure, wind speed, shortwave radiation, longwave radiation, and precipitation. The
meteorological data used for modeling in this study are from the Damxung station (91◦06′E,
30◦29′N) for the period of 1963–2019, obtained from the CMA (China Meteorological
Administration). The Damxung station is the nearest available meteorological station to the
Nam Co. The air temperature above the lake is estimated based on the station observations
with a lapse rate of 0.65 ◦C/100 m [47], while the air pressure is corrected by the Barometric
formula. Based on relative humidity, saturation vapor pressure (calculated by the Bolton
formula), and air temperature, the specific humidity is obtained. The longwave and
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shortwave radiations are calculated from sunshine duration, latitude, air temperature, and
vapor pressure.

The daily land surface temperature data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) for the period of 2000–2019 are retrieved to calibrate the
air2water model and validate the simulation results from both the air2water and LAKE
models. The product MOD11A1 has a spatial resolution of 1 km. The mean lake surface
water temperature (LSWT) is calculated by removing pixels from the lake boundary. The
bias of MODIS-derived LSWT versus in situ observation for lakes in the TP is −1.74 ◦C [48]
and −1.4 ◦C [49]. For model validation, the ARC-Lake dataset (version 3) is also used,
which includes ATSR-2/AATSR-based daily lake surface temperatures for the period
1995–2012 for 1628 target water bodies distributed globally. Herein, the ARC-Lake daytime
and nighttime LSWTs are averaged to present the daily mean LSWT. The ARC-Lake LSWT
product is only for seasons with open water, while the LSWT for the frozen season is
considered to have no data. This product is widely used in LSWT calibration or validation
globally [50], with mean absolute error ranges from −0.34 to −0.09 ◦C (day) and −0.18 to
+0.06 ◦C (night) [51].

3. Method
3.1. LAKE Model and Configuration

LAKE 2.3 is a 1-D model of thermodynamic, hydrodynamic, and biogeochemical
processes in a lake [25]. The model uses the generic form of the Reynolds-averaged
advection–diffusion equation to describe horizontal velocity components, temperature,
turbulent kinetic energy (TKE), TKE dissipation, and concentration of multiple biogeo-
chemical species such as gases (O2, CO2, and CH4) and organic carbon variables. The
lake thermodynamics include a heat diffusion formulation where heat conductance is a
sum of molecular and turbulent coefficients estimated by the k− ε model [25]. The lake
thermodynamic processes include heat and moisture transfer in the water body, snow
cover, soil, and heat balance at the lake surface. For more details about the model, refer to
the references cited [25,52,53].

Most parameters of the LAKE model have clear physical meanings and are free from
calibration. In setting up the LAKE model for Nam Co, lake properties, including longitude,
latitude, area, and depth, are required. In this study, the depth of Nam Co is set to 80 m,
and the lake is vertically represented by 160 layers (0.5 m for each layer). The boundary
condition is assumed to be the Neuman boundary condition for free convection. The model
is highly sensitive to the extinction coefficient of lake water (0.07–0.17/m), which is the
only model parameter considered for calibration in this study. The LAKE model needs a
relatively long warming-up period, which is set at 20 years herein.

3.2. Air2Water Model and Modification

The air2water model proposed by Piccolroaz et al. (2013) is a hybrid model with a
strong physical basis that simplifies the thermodynamic equations to minimize the input
requirement while preserving the robustness of deterministic models [29]. The model is
an effective tool in reconstructing historical LSWT [50,54,55] and in investigating LSWT
responses to climate change for lakes with different morphological characteristics around
the world [56,57]. The original air2water model has simplified the lake heat balance by
introducing eight calibratable parameters, a1−8, with air temperature as the only required
input, which can be expressed as

dTw

dt
=

1
δ

{
a1 + a2Ta − a3Tw + a5cos

[
2π

(
t
ty
− a6

)]}
, (1)

δ =

exp
(
− Tw−Th

a4

)
, f or Tw ≥ Th

exp
(
− Th−Tw

a7

)
+ exp

(
− Tw

a8

)
, f or Tw ≤ Th

. (2)
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where Ta is the air temperature and ty is the number of days in a year. δ = D/Dr is the
normalized well-mixed depth, where D is the depth of the well-mixed surface layer (the
epilimnion thickness), Dr is the maximum thickness, and Th is the deep water temperature,
with the default value being 4 ◦C.

To overcome the limitation of air2water in the ice season simulation, we assume that
when the lake is completely covered by ice, the heat exchange between air and water is
blocked, and the surface energy balance is expressed as Equation (3) [31]. The lake surface
temperature, TL, is finally expressed as Equation (4):

dTi
dt

= a9 + a10Ta − a11Tw + a12cos
[

2π

(
t
ty
− a13

)]
, (3)

TL =


Tw, f or TL ≥ a15
Ti, f or TL ≤ a14
(1− Kice)Tw + KiceTi, f or a15 > TL > a14

. (4)

where Ti is the ice surface temperature, and a9−13 has similar physical significance to
a1,2,3,5,6. Kice =

√
(a15 − TL)/(a15 − a14) is the proportion of ice on the surface of the lake.

3.3. Model Calibration and Validation

For model calibration, we compare the modeled LSWT against the remotely sensed
LSWT, utilizing daily land surface temperature data from MODIS for the period of 2000–2019.
The objective function for model calibration is the Nash-Sutcliffe efficiency coefficient (NSE),
which is expressed as [58]:

NSE = 1− ∑T
t=1(Qo −Qm)

2

∑T
t=1
(
Qo −Qo

)2 (5)

where Qm is the simulated lake surface water temperature, Qo is the LSWT from MODIS,
and Qo is the mean value of the LSWT from MODIS. For the modified air2water model,
there are 14 parameters that need to be calibrated, which are implemented automatically by
using the particle swarm optimizer (PSO). For the LAKE model, since only the extension
coefficient needs to be calibrated within a narrow range, manual trial-and-error calibration
is then applied.

For model validation, lake surface water temperature datasets from both MODIS and
ARC-Lake are used. With the consideration of outliers in the MODIS LSWT dataset, LSWT
lower than −15 ◦C is excluded for model calibration and validation. Meanwhile, the ARC-
Lake dataset is only used for validating model performance for seasons with LSWT above
0 ◦C. In addition, in situ water temperature observations of Nam Co for the period from
November 2011 to June 2014 were obtained from the National Tibetan Plateau Data Center
to evaluate the performance of the LAKE model at different depths (for model validation).
The in situ observations were made by VEMCO Minilog-II-T at 3, 6, 16, 21, and 26 m depths
in the lake. The criteria used for model evaluation are coefficient of determination (R2) and
root mean squared error (RMSE), which are expressed as:

R2 =
∑n

i=1
(
Qpre −Qm

)2

∑n
i=1
(
Qm −Qm

)2 (6)

RMSE =

√
1
n∑n

i=1(Qm −Qo)
2 (7)

where Qpre is the predicted temperature of linear regression, Qm is the mean value of the
modeled temperature, and Qo is the temperature from in situ or satellite observations.



Remote Sens. 2023, 15, 3982 6 of 15

4. Results
4.1. Model Performance

Figure 2 shows the performances of air2water and LAKE and their comparison against
the satellite-based observations from MODIS (2000–2019) and ARC-Lake (1995–2012),
respectively. The results show the mean monthly LSWT and long-term mean daily LSWT
for each calendar date. The calibration periods of the air2water and LAKE models are
2000–2012 and 2000–2019, respectively. The calibrated extinction coefficient of the LAKE
model is 0.1, which is consistent with the experiment based on the Flake model, CoLM-Lake
model, and WRF-Lake model in Huang et al. (2019) [59].
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The air2water model overall is in good agreement with the satellite-based observations.
For the calibration period (2000–2012), the correlation coefficients between air2water and
MODIS are 0.895 on the daily scale and 0.977 on the monthly scale. The corresponding
RMSE compared to MODIS is 2.66 ◦C on the daily scale and 1.23 ◦C on the monthly scale.
For the validation period (2013–2019), the correlation coefficients between air2water and
MODIS are 0.90 on the daily scale and 0.967 on the monthly scale, with corresponding
RMSEs of 1.87 ◦C on the daily scale and 1.47 ◦C on the monthly scale. The correlation
coefficients between air2water and ARC-Lake are 0.967 on the daily scale and 0.979 on the
monthly scale, with RMSEs of 1.99 ◦C on the daily scale and 1.92 ◦C on the monthly scale. It
is found that air2water underestimates the LSWT observed by ARC-Lake for summer (JJA)
but overestimates the LSWT observed by MODIS for winter (DJF). The simulated LSWTs of
spring and autumn are in good agreement with the remote-sensing water temperature. This
is mainly because the simulated lake water temperature from air2water is not completely
equivalent to the lake surface water temperature observed by satellites. The simulated
temperature from air2water represents the surface water temperature instead of the skin
temperature (~10–20µm deep) from the satellite.

The Surface water temperature simulated by the LAKE model shows strong agreement
with that from satellite-based observations. The model performs consistently during
1995–2019, with correlation coefficients (R) against LSWT of MODIS and ARC-Lake of 0.80
and 0.92 on the daily scale and 0.88 and 0.93 on the monthly scale, respectively, for the
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entire time period. The RMSE of LAKE’s LSWT is 4.19 ◦C against MODIS LST and 3.19 ◦C
against ARC-Lake LSWT. It is worth noting that the LAKE model is highly comparable
with ARC-Lake’s observation for the surface water temperature in summer (JJA) but is
higher than the observations from MODIS.

We further compare the simulated lake water temperature from the LAKE model
against in situ observations at the depths of 3 m, 6 m, 16 m, 21 m, 26 m, and 31 m in the
Nam Co Lake for the period from 31 October 2012 to 1 July 2014, with the results shown
in Figure 3. The LAKE model, with our calibrated model settings, could reproduce well
the overall features of the observed temperature profiles for this period. In particular, for
water temperatures at 3 m and 6 m, the simulated temperature from the LAKE model
is in good agreement with that from in situ observations, with NSEs of 0.9 and 0.84 and
RMSEs of 0.75 ◦C and 1.07 ◦C, respectively. For water temperature at a depth of 16 m,
the model performs well for the cooling period (October–January) but underestimates
water temperature for the warming period (February–September). The model tends to
underestimate water temperature at deeper layers (e.g., 21 m, 26 m, and 31 m) of the
lake. The model tends to underestimate the depth of the mixing layer, resulting in an
underestimate of water temperature at deeper layers. Compared to in situ observation,
the model performs well during the ice-free season (June to November) but presents a
relatively thinner mixed layer from September to October and a shallower thermocline in
the ice season (December to February).
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Overall, the error of the simulation results of conceptual models (air2water) and
physical models compared to remote sensing and in situ observation is acceptable for long-
term research. It indicates that it is feasible to use remote sensing data as calibration data
for the model in the absence of long-term in situ lake surface temperature data. Since the
LAKE model is physically based and presents richer thermodynamic characteristics of the
lake, we use the simulation results from LAKE to investigate the seasonal and inter-annual
variation in lake temperature and thermodynamics in the subsequent sections.

4.2. Seasonal Variation in Lake Temperature and Thermodynamics

Figure 4 shows the seasonal dynamics of lake water temperature profiles from the
LAKE model. As a dimictic lake, the water temperature of layers below 40 m (hypolimnion)
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in Nam Co is about 4 ◦C. The lake water is warming up and is completely mixed around
mid-June (Figure 4b). Summer stratification occurs in late June in response to the enhanced
heating from the lake surface. The depth of the mixing layer was about 20 m in late
June. The temperature of the mixing layer increases to 11 ◦C in mid-August, and the
temperature gradient (from 0 to 40 m depth of the lake) gradually reaches the annual
maximum at 0.2 ◦C/m (Figure 4c). From July to October, the lake holds its summer
stratification. However, since early September, the temperature of the surface layer has
decreased gradually because of weaker radiation and turbulent heat loss. From October
to November, the temperature of the upper water layer decreases from 8 ◦C to 4 ◦C, and
the vertical temperature gradient continues to reduce until the water column is completely
mixed again from top to bottom (Figure 4d). From December to late May of the next
year, the water column of the lake maintains an inverse thermal stratification, i.e., winter
stratification (Figure 4e).
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Figure 4. Seasonal variation in lake water temperature. (a) Temperature profiles for each calendar
date averaged over the period of 1963–2019; (b–e) representative temperature profiles for the summer,
autumn, winter, and spring seasons, respectively.

The seasonal variation in lake thermodynamics based on simulations from the LAKE
model is shown in Figure 5, which is the climatological mean from 1963 to 2019. The net
radiation Rn reaches its lowest in December, peaks in June, and is mainly affected by Rsnet.
In Nam Co, sensible heat flux (H) ranges from −20 to 32 W/m2. The sensible heat flux is
negative in May and June, indicating that the lake water temperature is lower than the air
temperature for that period. The latent heat flux (LE) shows two peaks in a year (early April
and mid-October). It is worth noting that the seasonal pattern of LE is different from that
of Rn, indicating that lake evaporation depends more on other climate variables (like wind
speed). The incoming radiation largely contributes to warming up the water in the lake, as
represented by the change in heat storage (S). The results suggest that Nam Co has a high
heat storage capacity, which can remarkably influence the phase of the seasonal variation
in the lake surface turbulent fluxes [60–62]. The lake’s surface temperature responds more
quickly to changes in energy. With the increase in net radiation Rn, Tsur f ace has started to
rise since mid-January and reaches its peak in August. However, due to the buffering effect
of its high heat storage capacity, the temperature of the water column, Twater, had increased
gradually since May, when S became positive, but decreased starting in mid-September,
when S became negative.
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Figure 5. Seasonal variation in lake thermodynamics: (a) H, LE, Rsnet, Rlnet, Rn and S represent
sensible heat flux, potential heat flux, net solar radiation, net longwave radiation, net radiation,
and gain or loss of heat, respectively, with Rn = Rsnet + Rlnet and S = Rn − H − LE; (b) water
temperature of lake surface (Tsur f ace) and water column (Twater).

4.3. Long-Term Changes in Lake Temperature and Heat Balance

For the period of 1963–2009, the water temperature based on the LAKE model in Nam
Co is found to be increasing significantly (p < 0.05) together with a significant (p < 0.05) de-
crease in the depth of the thermocline (Figure 6). The warming rate of the lake surface water
temperature (LSWT) is 0.41 ◦C/10a, which is higher than the air temperature (0.38 ◦C/10a).
The mean temperature of the water column is warming at a rate of 0.04 ◦C/10a. The
thermocline depth, where the maximum value of the temperature gradient occurs [63], is
declining at a rate of 1.56 m/10a, accompanied by a warming trend. This declination trend
is in agreement with previous research in Nam Co [64] and other lakes in the temperate
zone [65,66].
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Figure 6. Long-term change in (a) lake surface temperature, (b) air temperature, (c) water column
mean temperature, and (d) thermocline depth of the non-freezing season (June to November).

Figure 7 shows the long-term change in each heat balance element during the past
57 years. Rsnet increases at a rate of 1.4 W/m2 per decade. Rlnet (upward) increases at a
rate of 0.7 W/m2 per decade. Rn increases significantly (p < 0.05) at a rate of 0.5 W/m2/10a.
Sensible heat flux (H), determined by the temperature difference between the surface water
and the overlying atmosphere, does not change much. Meanwhile, the latent heat flux



Remote Sens. 2023, 15, 3982 10 of 15

(LE) decreases slightly at a rate of 0.2 W/m2/10a but is not significant. The energy balance
residual (S) increases at a rate of 0.7 W/m2 per decade. The increasing loss of heat explains
the corresponding increase in water temperature. It should be noted that S is considered
an approximate measure of the net heat gained by the lake. However, it implicitly in-
cludes other heat flux elements, such as heat transfer to the bottom sediments, net heat
exchange resulting from inflow–outflow balances, and heat gained from precipitation over
the lake [67].
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Figure 7. Inter-annual variation in energy flux from 1963 to 2019 (a) latent heat flux (LE), sensible
heat flux (H), and energy balance residual (S); (b) net shortwave radiation (Rsnet) and net longwave
radiation (Rlnet).

Figure 8 further shows the long-term trend in water temperature at different layers
(Figure 8a) and the trend in each heat balance element (Figure 8b) for each month, detected
using the Mann–Kendall (MK) approach [68,69]. The water temperature at the surface
layer increases at the highest rate in December (0.92 ◦C/10a), followed by that in June
(0.62 ◦C/10a). The seasonal differences in the long-term trend in surface water temperature
are largely consistent with those in air temperature. The warming trend of water weakens
with depth. For water below 20 m, the increasing trend is not statistically significant
(p < 0.05) except for November (0.1 ◦C/10a).
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Figure 8. Inter-annual Mann–Kendall trend of monthly (a) lake temperatures at different depths and
(b) energy flux during 1963–2019: net radiation (Rn), net shortwave radiation (Rsnet), net longwave
radiation (Rlnet), sensible heat flux (H), latent heat flux (LE), and energy balance residual (S).

During the past 57 years, Rsnet in June has been found to increase at the highest rate
(7.6 W/m2/10a), making a major contribution to the higher heat gain S (8 W/m2/10a) and
hence warmer lake water in that season. With the increase in surface water temperature,
sensible heat flux (H) increases most significantly (p < 0.05) in June (1.5 W/m2/10a). The
seasonal pattern of trend in latent heat flux (LE) is similar to that of sensible heat flux.
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However, a higher change rate in LE is found in December (1.7 W/m2/10a), followed by
June (1.0 W/m2/10a). The results suggest that the increasing lake evaporation could be
attributed not only to the increase in net radiation (Rn) but also to increases in other climate
factors (e.g., wind speed and vapor pressure deficit under a warming climate).

5. Discussion
5.1. Roles of Remote Sensing Data in Models

Numerical models play an important role in investigating the dynamics of lake water
and heat balances. In particular, the physically based thermodynamic models can be used to
reproduce the long-term variation and change in each heat balance element and to quantify
their responses to climate change and other environmental changes (e.g., land use and land
cover change). However, the models require reliable observations for model calibration
and validation prior to their utilization. Traditionally, observations for model calibration
or validation are mainly in situ measurements [57]. However, in situ observations are not
easily available or sufficient for model calibration or validation in regions like the Tibetan
Plateau, where in situ measurements can incur high costs.

Satellite-based observations have shown great potential for providing continuous
records of lake thermodynamics over large spatial extents and have developed rapidly in
recent decades with increasingly higher temporal and spatial resolutions [70,71]. Remote
sensing offers distinct advantages in simultaneously measuring the thermodynamic status
of a lake at a broader scale, surpassing the limitations of traditional in situ point-scale
observations. Therefore, satellite-based observations are increasingly used to provide vari-
ous inputs, parameters, or outputs information to drive, calibrate, or validate numerical
models [72]. For example, in our previous study, we used the MODIS LST dataset to
calibrate/validate the air2water model for 160 lakes across the Tibetan Plateau. We recon-
structed the long-term daily water temperature of the lakes [31]. Without satellite data, it is
nearly impossible to evaluate the simulation accuracy for every lake. Layden et al. (2016)
used LSWT data derived from Along Track Scanning Radiometers (ATSRs) to calibrate the
Flake model [26] and provide the LSWT for 244 large lakes [72].

However, calibrating or validating a thermodynamic model, such as the LAKE model,
primarily using remotely sensed lake surface water temperature (LSWT), does not guaran-
tee accurate simulation of every aspect of lake thermodynamics. Therefore, besides lake
surface temperature, other remote sensing information (such as lake ice cover, remotely
sensed evaporation, etc.) would be valuable for more robust model calibration and valida-
tion, which could be further explored in the future. It is also noticed that the numbers of
model parameters are assigned constant values, which is a compromise due to observation
insufficiency and model complexity. For instance, for the LAKE model used in this study,
the light extinction coefficient is the only parameter calibrated, while the other parameters
are accepted as default. This could lead to considerable uncertainty in the simulation of
other lakes if their properties are substantially different. Some parameters of lake models
can be obtained from satellite observation, such as albedo, emissivity, lake area, water level,
etc. Incorporating more satellite-based observations could therefore be expected to further
improve model performance. However, the quality of the remotely sensed data should
be carefully checked, and the consistency among the remotely sensed data should also be
assessed prior to their use for modeling.

It is worth noting that information obtained from satellites captures solely the instan-
taneous status of the lake (e.g., surface temperature, ice cover, etc.) when the sensors pass
over it. Therefore, satellite-based observations may not match well with the time intervals
of lake models. For instance, the time interval of the lake models used in this study is daily,
but the remotely sensed surface water temperature was acquired at 10:30 local time. The
temporal mismatch can pose challenges for model calibration and validation. To address
this, the remotely sensed data used for modeling may require preprocessing, which in-
cludes cleaning (such as removing outliers), interpolation, or smoothing techniques. These
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procedures could be as important as model calibration procedures and worth more notice
in the future.

5.2. The Warming Trend of Nam Co

In this study, the error of the simulation results of conceptual models (air2water)
and physical models compared to remote sensing and in situ observation is acceptable
for long-term research. Thus, in regions lacking in situ lake temperature data, such as
the Tibetan Plateau, it is feasible for remote sensing data to serve as a surrogate in lake
thermodynamic simulations. Overall, the LAKE model performs well in Nam Co compared
with observations from remote sensing or in situ measurements. It is also comparable with
the conceptual lake model (i.e., air2water) in modeling lake water temperature.

According to the simulation results of the LAKE model, the lake temperature of Nam
Co showed a significant warming trend from 1963 to 2019. It is generally believed that
changes in water temperature are caused by global warming [5,55] and climate oscilla-
tions [3,66]. This study also shows the agreement between changes in lake temperature
and air temperature (Figure 6a,b). The lake temperature is warming at a rate of 0.04 ◦C/10a
based on the LAKE model. Besides air temperature, input energy is also an important
driver for lake warming, including the increase in net solar radiation (Rsnet) at 1.4 W/m2

per decade (Figure 7). Thus, the increasing gain (0.7 W/m2/10a) of heat explains the
corresponding increase in water temperature. The decline in the thermocline depth at a
rate of 1.56 m/10a (1963–2019) is in agreement with the previous research in Nam Co at
1.69 m/10a (1979–2012) [64]. The warming of lakes increased their thermal stability and
resistance to mixing, which influences the efficiency of the downward vertical transport of
warm metalimnetic water into the hypolimnion, which especially happens in hot summers.

6. Conclusions

This study investigates the long-term variation in the heat balance of Nam Co by com-
bining the strengths of modeling and remote sensing. Remotely sensed lake surface water
temperatures from MODIS and ARC-Lake are used to calibrate or validate a conceptual
model (air2water) and a thermodynamic model (LAKE) for the studied lake, where in situ
observations are limited. The research has demonstrated that remotely sensed lake surface
water temperature can serve as a valuable surrogate for in situ observations, facilitating
effective calibration and validation of lake models. Compared to MODIS-based LSWT for
the period of 2000–2019, the correlation coefficient and RMSE of the LAKE model are 0.8
and 4.2 ◦C, respectively, while those of the air2water model are 0.9 and 2.66 ◦C, respectively.

Based on the simulations using the LAKE model, it is found that the water temper-
ature of Nam Co has experienced a significant increase during the period of 1963–2019,
corresponding to a warming climate. The rate of the water temperature increase is the
highest at the surface layer (0.41 ◦C/10a) but becomes negligible at the bottom of the lake.
The increasing rate of water temperature averaged over the profile is 0.04 ◦C/10a. This
warming trend is more noticeable in June and November. Concurrently, the thermocline
depth in Nam Co is found to be declining at a rate of 1.56 m/10a. Most of the net radiation
entering Nam Co is stored in the water from April to August and is then released starting in
mid-September. From 1963 to 2019, net radiation flux increased at a rate of 0.5 W/m2/10a
and showed the highest increase rate in June (around 6 W/m2/10a). The increase in net
radiation is primarily responsible for the warming of the lake water, while its impact on
changes in lake evaporation is comparatively minor.

Integrating remote sensing into process-based modeling can enhance our understand-
ing of the thermodynamic processes occurring in lakes at larger spatial and temporal
scales after uncertainty is assessed. This integration can enable us to assess the ecological
implications resulting from changes in lake heat balance.
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