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Abstract: The spatial extent and values of nighttime light (NTL) data are widely used to reflect the
scope and intensity of human activities, such as extracting urban boundaries, spatializing population
density, analyzing economic development levels, etc. DMSP-OLS and NPP-VIIRS are widely used
global NTL datasets, but their severe inconsistencies hinder long-time series studies. At present,
global coverage, long time series, and public NTL products are still rare and have room for improve-
ment in terms of pixel-scale correction, temporal and spatial consistency, etc. We proposed a set of
inter-correction methods for DMSP-OLS and NPP-VIIRS based on two corrected DMSP-OLS and
NPP-VIIRS products, i.e., CCNL-DMSP and VNL-VIIRS, with the goal of temporal and spatial consis-
tency at the pixel-scale. A pixel-scale corrected nighttime light dataset (PCNL, 1992–2021) that met the
needs of pixel-scale studies was developed through outlier removal, resampling, masking, regression,
and calibration processes, optimizing spatial and temporal consistency. To examine the quality of
PCNL, we compared it with two existing global long time series NTL products, i.e., LiNTL and
ChenNTL, in terms of overall accuracy, spatial consistency, temporal consistency, and applicability in
the socio-economic field. PCNL demonstrates great overall accuracy at both the pixel-scale (R2: 0.93)
and the city scale (R2: 0.98). In developing, developed, and war regions, PCNL shows excellent spatial
consistency. At global, national, urban, and pixel-scales, PCNL has excellent temporal consistency
and can portray stable trends in stable developing regions and abrupt changes in areas experiencing
sudden development or disaster. Globally, PCNL has a high correlation coefficient with GDP (r: 0.945)
and population (r: 0.971). For more than half of the countries, the correlation coefficients of PCNL
with GDP and population are higher than the results of ChenNTL and LiNTL. PCNL can analyze
the dynamic changes in socio-economic characteristics over the past 30 years at global, regional,
and pixel-scales.

Keywords: nighttime light; DMSP-OLS; NPP-VIIRS; pixel-scale; spatial-temporal consistency

1. Introduction

Nighttime lights are widely distributed in residential areas, commercial areas, and
roads and are closely related to human activities. Nighttime light (NTL) data is a kind of
remote sensing data used to portray the brightness of the earth’s surface at night, and its
value is positively correlated with brightness. NTL data provides a unique perspective
for observing human activities, with the advantages of objectivity, wide coverage, and
easy access. In urbanization studies, the coverage of nighttime lights is used to extract
urban boundaries [1,2] and analyze urban expansion and shrinking [3], and the brightness
of nighttime lights is used to portray the level of urbanization [4]. Areas with brighter
nighttime lights tend to have a dense population distribution and a higher level of eco-
nomic development. Therefore, NTL data is used to spatialize population density [5–7]
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and analyze the level of economic development [8,9]. In addition, some studies have devel-
oped broader applications of NTL data, such as analyzing electricity consumption [10,11],
estimating PM2.5 [12], monitoring diseases [13], and fighting wars [14].

The Defense Meteorological Satellite Program Operational Linescan System (DMSP-
OLS) NTL data released by the National Oceanic and Atmospheric Administration (NOAA)
is the most extended historical NTL data available (1992–2013), becoming the most com-
monly used NTL data. However, DMSP-OLS suffers from interannual inconsistency,
saturation, and blooming problems [15], affecting the accuracy of studies. Many process-
ing methods for DMSP-OLS were proposed to remove the limitation of digital number
(DN) values up to 63, weaken the blooming effect, and make the interannual data more
comparable [16–19]. DMSP-OLS ceased its observing service in 2013, and a new generation
of NTL data is urgently needed to fill the gap in nighttime observations. The Visible Infrared
Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Partnership
(Suomi NPP) spacecraft provides monthly and annual NTL data. Although NPP-VIIRS
also proves to be uncertain in some aspects [20], it is often regarded as the latest alternative
to DMSP-OLS due to its advantages of long time series, high resolution, and continuous
updates. Together with DMSP-OLS, NPP-VIIRS is widely used for nighttime light data.
The main problem with NPP-VIIRS is outliers, and Elvidge et al. devised a methodology to
remove background noise, solar and lunar contamination, and irrelevant light such as fire
and volcanoes [21]. Negative and abnormally high-values of NPP-VIIRS have also been
noted in several studies [22,23].

To develop long-time-series NTL products, DMSP-OLS and NPP-VIIRS are often
combined with temporal and spatial consistency. The data quality issues of DMSP-OLS
and NPP-VIIRS cannot be ignored, and a wide range of methods have been proposed as
described in the previous paragraph, while the inconsistency of the two products should
also be considered. The spatial resolutions of DMSP-OLS and NPP-VIIRS are 30 arcsec
(~1000 m) and 15 arcsec (~500 m), respectively, and resampling is the main method to
produce consistent products. The difference in dynamic range between DMSP-OLS and
NPP-VIIRS is another major issue, with 6 bit and 14 bit, respectively [24]. Although
machine learning and deep learning have attempted to address differences in dynamic
range [25], regression remains the predominant and most widely used method due to
the uncertainty associated with machine learning and deep learning. The difference in
regression methods seems to be a difference in function choice; however, the drawbacks
of different regression models cannot be ignored. The regression models mainly include
the power function [26,27], exponential function [28], quadratic polynomial function [29],
linear-log function [30], double-log function [3], sigmoid function [31], and geographically
weighted regression [32]. The sigmoid function has the disadvantage of limiting the
upper limit of the regressed NPP-VIIRS, drastically reducing the ability to observe high-
value regions. Geographically weighted regression can locally generate highly correlated
results but can lead to spatial incomparability problems. In addition to the selection of the
model, the method of selecting the sample points is also important and directly affects the
effectiveness of the regression model in different regions, such as high-value regions and
low-value regions. In a small area, such as a country or even a city, the number of pixels is
limited, and it is easier to represent the quantitative relationship between DMSP-OLS and
NPP-VIIRS in a single model. Whereas a large area has more pixel points, which means
that there may be more values that do not fit the regression results well. To further correct
the consistency of DMSP-OLS and NPP-VIIRS, some methods are used as supplements
after the regression, including correcting light values by combining demographic and
economic data [3], correcting inter-year differences by logistic correction [28], etc. The key
to regression post-processing is to maintain spatial and temporal consistency.

To allow long-term change studies at both global and local scales, a good NTL product
should have the following advantages: inclusion of all available years, coverage of global
scales, good spatial texture characteristics, a continuous and stable total sum of lights at the
regional scale, and reasonable and reliable brightness variation trends at the pixel-scale.
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DMSP-like NTL data produced by Li et al. (LiNTL, 1992–2018) and VIIRS-like NTL data
produced by Chen et al. (ChenNTL, 2000–2020) are two major global NTL products, with
the advantages of long time series, global coverage, and high accuracy [25,33]. However,
existing products still have room for improvement. Issues requiring further consideration
and improvement include the need for pixel-scale research, the temporal incomparability
of DMSP-OLS and NPP-VIIRS due to sensor inconsistency, and the recovery of spatial
information to enhance spatial comparability. In addition, DMSP-OLS and NPP-VIIRS
each have unique advantages, such as greater dynamic range and spatial consistency
for NPP-VIIRS and longer time-series observations and a more robust dynamic range
for DMSP-OLS. Combining the advantages of DMSP-OLS and NPP-VIIRS in generating
global NTL products, rather than generating DMSP-like or VIIRS-like products, is a better
approach that remains to be explored.

In this research, we developed a set of inter-calibration methods for DMSP-OLS
and NPP-VIIRS and produced the long time series global NTL products that meet the
needs of pixel-scale studies, i.e., the pixel-scale corrected nighttime light dataset (PCNL,
1992–2021), based on the recently developed Consistent and Corrected Nighttime Light
(CCNL-DMSP, 1992–2013) dataset [34] derived from DMSP-OLS. After outlier removal,
resampling, spatial masking, regression, and numerical calibration, the generated products
have excellent temporal and spatial consistency and meet the research needs at the pixel-
scale. The quality of the three products (PCNL, LiNTL, and ChenNTL) is compared and
demonstrated from multiple perspectives. PCNL can be accessed and downloaded freely
at https://doi.org/10.5281/zenodo.7612389 [35].

2. Data

Four types of data are used in this study (Table 1): NTL data for the production of
PCNL, socio-economic data for the examination of PCNL, two other sets of global NTL
products for comparison, and administrative division data for spatial statistics.

Table 1. Summary of datasets used in this study.

Role Datasets Time Range Data Source

Production of
PCNL

CCNL-DMSP 1992–2013 Zhao et al., 2022 [34]

VNL-VIIRS April 2012–2021
Earth Observation Group

(https://eogdata.mines.edu/nighttime_light/annual/v21/)
(accessed on 7 July 2023)

Comparison
with PCNL

ChenNTL 2000–2020 Chen et al., 2021 [25]
LiNTL 1992–2018 Li et al., 2020 [33]

Examination
of PCNL

GDP 1992–2021
World Bank

(https://data.worldbank.org/indicator/NY.GDP.MKTP.CD)
(accessed on 7 July 2023)

POP 1992–2021
World Bank

(https://data.worldbank.org/indicator/SP.POP.TOTL)
(accessed on 7 July 2023)

Statistics
and graphing

national
administrative
division data

Latest
Resource and Environment Science and Data Center

(https://www.resdc.cn/data.aspx?DATAID=205)
(accessed on 7 July 2023)

municipal
administrative
division data

Latest
Database of Global Administrative Areas

(https://gadm.org/download_world.html)
(accessed on 7 July 2023)

Considering the impact of raw data on the quality of PCNL, we chose two sets of
reliable global NTL datasets as the basis. CCNL-DMSP (1992–2013) is a consistent and
corrected NTL dataset produced from DMSP-OLS [34]. CCNL-DMSP mainly solved three
problems of DMSP-OLS, namely, interannual inconsistency, saturation, and blooming.
Referring to Wu et al.’s method [36], CCNL-DMSP used the pseudo-invariant feature to

https://doi.org/10.5281/zenodo.7612389
https://eogdata.mines.edu/nighttime_light/annual/v21/
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/SP.POP.TOTL
https://www.resdc.cn/data.aspx?DATAID=205
https://gadm.org/download_world.html
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correct the interannual inconsistency. A saturation correction method based on a regression
model and radiance-calibrated NTL data (SARMRC) proved effective for solving satura-
tion [37] and was used in the production of CCNL-DMSP. To solve the blooming effect,
CCNL-DMSP adopted the SEAM model proposed by Cao et al. without supporting auxil-
iary data and with excellent results [19]. The value of CCNL-DMSP has no upper limit, and
99% of the values in the lighted area are statistically not more than 85. The spatial resolution
of the CCNL-DMSP is 30 arcsec (~1000 m). The annual VNL-VIIRS dataset [38] available
on the Earth Observation Group website was also used, and the monthly median masked
data of V21 was selected. Using filtering and employing outlier removal, VNL-VIIRS has
removed sunlit, moonlit, and cloudy pixels and discarded biomass-burning pixels. The
dynamic range of VNL-VIIRS is 14 bit, and the spatial resolution is 15 arcsec (~500 m). Both
CCNL-DMSP and VNL-VIIRS have significant temporal and spatial consistency.

As two public global long time series NTL datasets, LiNTL and ChenNTL [25,33]
have been proven to be temporally and spatially reliable. LiNTL values range from 0 to 63,
with a spatial resolution of 30 arcsec (~1000 m). The dynamic range of ChenNTL is 14 bit,
and the spatial resolution is 15 arcsec (~500 m). These two datasets were used to compare
quality and effectiveness with PCNL.

The socio-economic data used were collected from the World Bank, including gross
domestic product (GDP) and population (POP). Data from different regions of the same
country were aggregated and combined; for example, China’s data includes mainland
China, Hong Kong, Macau, and Taiwan.

The national and municipal administrative division data were collected from the
Resource and Environment Science and Data Center (RESDC) and the Database of Global
Administrative Areas (GADM).

3. Methods
3.1. Production Process of PCNL

As shown in Figure 1, we designed a five-step process to produce PCNL, includ-
ing outlier removal, resampling, masking, regression, and calibration. Outlier removal
is used to correct outliers in VNL-VIIRS. Resampling and masking methods are used
to solve the spatial inconsistency of CCNL-DMSP and VNL-VIIRS. Regression and cal-
ibration are to solve the temporal inconsistency of CCNL-DMSP and VNL-VIIRS. We
processed CCNL-DMSP (1992–2013) and VNL-VIIRS (2012–2021), and finally, PCNL is com-
posed of two components, i.e., the processed CCNL-DMSP (1992–2013) and the processed
VNL-VIIRS (2014–2021).

• STEP 1: Outlier removal

We designed three steps to remove outliers. First, remove unreasonably high-values.
According to ChenNTL [25], we selected the maximum value of four cities (New York City,
London, Shanghai, and Beijing) as the high-value threshold (HVT). Each pixel with a value
above HVT will be marked as a high-value anomaly, and its value will be replaced by the
mean of normal values within its eight neighbors. Second, remove negative values. For the
few negative values, change them to 0. Third, remove unstable low-values. Considering
the difference in detection capability between NPP-VIIRS and DMSP-OLS sensors, the
inconsistent low-values of VNL-VIIRS need to be removed. Ma et al. [39] calculated the
median value of all lighted pixels in China’s cities (1 nWcm−2sr−1), which was used by
Chen et al. [25] as the low-value threshold (LVT). We argued that the threshold for China
could not be used globally, so we redesigned the method for selecting LVT. Considering
the spatial extent with positive values of CCNL-DMSP and VNL-VIIRS in 2013 should be
the same, we extracted pixels where CCNL-DMSP was 0 for two consecutive years in 2012
and 2013, then counted the corresponding VNL-VIIRS values in 2013 and selected the 95th
percentile, i.e., 0.7853 nWcm−2sr−1, as LVT. Each pixel that is consistently below LVT and
has at least one value of 0 during 2012–2021 will be marked as a low-value anomaly, and its
value will be replaced by 0 during 2012–2021.
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• STEP 2: Resampling

Due to the inconsistent spatial resolution of CCNL-DMSP and VNL-VIIRS, VNL-
VIIRS was resampled from 15 arcsec to 30 arcsec, consistent with CCNL-DMSP. Bilinear
interpolation is suitable for continuous data and was chosen for resampling in our study.
Although some resampling methods may work better, we performed resampling in ArcGIS
to align the CCNL-DMSP and VNL-VIIRS grids, which was necessary for the execution of
subsequent steps. After resampling, we clipped CCNL-DMSP and VNL-VIIRS to each other
so that CCNL-DMSP and VNL-VIIRS have the same spatial extent with 43,201 columns
and 16,802 rows.

• STEP 3: Masking

As shown in Figure 2, the blooming problems of CCNL-DMSP cannot be removed
entirely, and the sensor differences between DMSP-OLS and NPP-VIIRS cannot be ignored,
resulting in a larger spatial extent of CCNL-DMSP than VNL-VIIRS. It is groundless and
unreasonable to add new values for the unlit area of VNL-VIIRS, but unifying the spatial
extent of CCNL-DMSP and VNL-VIIRS lighted areas is necessary to resolve the spatial
inconsistency, so we masked CCNL-DMSP. The NPP-VIIRS has a strong sensor capability
to capture faint lights, so we believe that the spatial extent of the VNL-VIIRS with lighted
and unlit areas is almost realistic. However, the spatial extent of the CCNL-DMSP lighted
area is less plausible because CCNL-DMSP has been widely demonstrated to have the
blooming effect, coarser spatial resolution, and other problems that make the spatial
extent of CCNL-DMSP lighted area unreasonably large. Therefore, to further remove the
unreasonable spatial extent of the CCNL-DMSP, we extracted pixels of resampled VNL-
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VIIRS for two consecutive years (2012 and 2013) as unlit areas and generated a mask to
filter CCNL-DMSP (1992–2013).
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• STEP 4: Regression

DMSP-OLS and NPP-VIIRS have different radiometric resolutions, resulting in dif-
ferent numerical ranges and data distribution characteristics. It is common in studies to
transform the values of NPP-VIIRS to be similar to DMSP-OLS rather than vice versa
because NPP-VIIRS has more sensitive observations of light, and it is not easy to transform
DMSP-OLS to the same high accuracy as NPP-VIIRS. After correction, the numerical range
of CCNL-DMSP was expanded but still differed from VNL-VIIRS. Figure 3 shows that the
low-value interval of CCNL-DMSP matches well with the low-value interval of VNL-VIIRS,
but the high-value interval of CCNL-DMSP is difficult to match with the high-value interval
of VNL-VIIRS.

Some global NTL products use sigmoid functions to establish regression relationships
between CCNL-DMSP and VNL-VIIRS [31]. Since the value range of CCNL-DMSP in our
study is not limited to 0–63, functions with upper numerical limits, such as sigmoid, cannot
be used. To build the regression model for CCNL-DMSP and VNL-VIIRS, we selected
the only complete overlapping year of both (2013) and plotted scatter plots in different
regions (Figure 4). CCNL-DMSP and VNL-VIIRS showed a consistent linear-logarithmic
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relationship, so a linear-logarithmic function was chosen as the regression model, calculated
as Equation (1):

Y = A× ln(X + 1) + B (1)

where X is the VNL-VIIRS DN value, Y is the DMSP-like DN value, and A and B are
parameters in the function. In the function, coefficient 1 was introduced to prevent the
transformed pixel values from being negative. Slope A was used to further establish the
correlation between VNL-VIIRS and CCNL-DMSP value ranges, and intercept B was used
to determine the minimum pixel value of the transformed VNL-VIIRS. VNL-VIIRS has no
saturation effect, so taking the logarithm of VNL-VIIRS can not only compress the large
range of VNL-VIIRS values, lower the high-values, and raise the low-values, but also retain
the spatial distribution information of lights in urban centers. Each time, 1% pixels in the
global lighted area were selected for calculating the regression coefficients and repeated
100 times, and the median was calculated to obtain A = 16.166 and B = 2.315.
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• STEP 5: Calibration at the pixel-scale

The switching time of nighttime lights is closely related to various factors such as urban
management, residents’ living habits, and economic development patterns. Due to the
different transit times of DMSP-OLS and NPP-VIIRS, the observed nighttime light values
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can vary in the same area with constant light on or off times. Ideally, NTL products could
be corrected using ground-measured light brightness. However, the difference in nighttime
light values between the two datasets caused by observation time is still challenging
to quantify and eliminate since the actual light brightness from ground observations is
missing, and a variety of complex factors influence the time of switching lights on and off
in different areas.

Many regression methods have been proposed, and globally consistent regression
models cannot completely eliminate the numerical differences between CCNL-DMSP and
VNL-VIIRS, while local regression methods may lead to spatial incomparability of light
brightness. If no post-regression treatment is carried out, there may be abrupt changes in
nighttime light values in the bridging years of CCNL-DMSP and VNL-VIIRS (2012–2014).
When plotting time series curves, there are unavoidable low-high connections and high-low
connections between CCNL-DMSP and VNL-VIIRS. Therefore, we propose a pixel-scale
calibration method to correct the pixel value of CCNL-DMSP and reduce the numerical
difference between CCNL-DMSP and VNL-VIIRS.

The CCNL-DMSP data has been corrected for interannual inconsistency so that it can
meet the requirement of temporal consistency. However, CCNL-DMSP has a coarse spatial
resolution and substantial overlap footprints [40], which may introduce the problem of
spatial incomparability. Considering that the values of VNL-VIIRS are physically mean-
ingful, we believe that VNL-VIIRS is globally spatially comparable. Since the regression
processing uses a globally consistent formula, regressed VNL-VIIRS pixel values are also
globally comparable. Therefore, we combine the advantages of temporal consistency of
CCNL-DMSP and the advantages of spatial comparability of VNL-VIIRS to do pixel-scale
numerical calibration of CCNL-DMSP based on VNL-VIIRS.

First, the difference between the regressed VNL-VIIRS and the masked CCNL-DMSP
was calculated at the pixel-scale in 2013 based on the VNL-VIIRS to obtain the difference
raster layer, which was calculated as Equation (2):

DNdiff = DNVNL-VIIRS −DNCCNL-DMSP (2)

where DNVNL-VIIRS and DNCCNL-DMSP denote the DN values of regressed VNL-VIIRS
and masked CCNL-DMSP, respectively, and DNdiff means the DN value of the difference
raster layer. We also tried to generate the difference raster layer for 2012, which has
a high correlation coefficient of 0.84, with the difference raster layer for 2013, implying
that calibration based on regressed VNL-VIIRS for 2012 and 2013 would lead to similar
results. Considering that the only complete common year for VNL-VIIRS and CCNL-
DMSP is 2013, we finally chose the 2013 difference raster layer. Then, we corrected the
masked CCNL-DMSP for 1992–2013, and the calibrated CCNL-DMSP was calculated as
Equation (3):

DNPCNL =

{
DNCCNL-DMSP + DNdiff, DNCCNL-DMSP 6= 0 and (DNCCNL-DMSP + DNdiff) > 0

0, DNCCNL- DMSP = 0 or (DNCCNL-DMSP + DNdiff) ≤ 0
(3)

where DNPCNL is the DN value of calibrated products, PCNL for the period 1992–2013. For
the unlit area of CCNL-DMSP, we would not artificially change the value. For the area with
a negative DN value after calibration, we modified its DN value to 0. The corrected pixels
both maintain the temporal continuity of the values and satisfy the spatial consistency.

3.2. Evaluation Methods of Global NTL Products

The data quality of PCNL, LiNTL, and ChenNTL was evaluated and compared in
several aspects, including overall accuracy, spatial consistency, temporal consistency, and
applicability in the socio-economic field.

We first calculated the overall accuracy of the three NTL products at the pixel-scale
and the city scale, represented by the coefficient of determination (R2) and the root mean
square error (RMSE), and analyzed the effect of each step of our production process on the
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accuracy. Since ChenNTL and LiNTL have published R2 and RMSE in other papers [25,32],
we did not repeat their calculations. The calculation methods of R2 and RMSE for the three
NTL products are not identical, and the comparison of overall accuracy can only represent
the product quality to a certain extent.

Then, we compared spatial and temporal consistency. Mapping the spatial texture
of nighttime lights over the past 30 years (1992–2021) can reflect the spatial extent, light
intensity, and temporal trends of the lighted areas. In areas free from natural and human-
caused disasters, a steadily expanding range of lighted areas and steadily increasing light
values are considered signs of high-quality products. DN curves can be plotted to show
further details of spatial consistency comparing urban centers and suburbs. Temporally,
plotting time series curves is an intuitive way to test interannual consistency. Regionally,
the total sum of nighttime light (TSOL) was calculated as Equation (4):

TSOL =
n

∑
i

DNi (4)

where DNi is the DN value of each pixel in the region, and n is the total number of pixels
in the region. TSOL was calculated at global, national, and urban scales and used to reflect
the trends of nighttime light at different scales. At the pixel-scale, several representative
areas were also selected to plot time series curves. To further quantify the possibility of
anomalous fluctuations in the data, we calculated the normalized difference index (NDI),
which captures the interannual variation in light values [41]. The average of the normalized
difference index (ANDI) is the average of the NDI in the time series, which can reflect the
stability of the TSOL time series. A lower ANDI means that abnormal data fluctuations are
less likely. NDI and ANDI were calculated as Equations (5) and (6):

NDIi =

{
|TSOLi − TSOLi+1|
TSOLi + TSOLi+1

, TSOLi + TSOLi+1 6= 0
0, TSOLi + TSOLi+1 = 0

(5)

ANDI =
∑t−1

i NDIi

t− 1
(6)

where TSOLi and TSOLi+1 represent the TSOL of the adjacent two years, NDIi is the NDI of
year i and year i + 1, and t represents the length of the time series. For PCNL, LiNTL, and
ChenNTL, t is equal to 30, 27, and 21, respectively.

Finally, we analyzed the applicability of three products in the socio-economic field.
Nighttime light values have been proven to be highly positively correlated with the econ-
omy and population [42,43], and the correlation between products and socio-economics
reflects, to a certain extent, the quality of the products and their applicability in the socio-
economic field. At global and national scales, we calculated the correlation coefficients of
the TSOL of the three products with the gross domestic product (GDP) and population
(POP) as a comparison. Note that NTL and GDP, as well as POP, may have complex rela-
tionships in some areas. On the one hand, for developed regions, NTL may grow slowly
while GDP may grow rapidly. On the other hand, NTL may be difficult to observe in poorer
regions. Therefore, the correlation coefficients only give a sideways view of the availability
of products in the socio-economic field.

4. Results
4.1. Overall Accuracy

In order to step-by-step evaluate our process of data production, we calculated the
R2 and RMSE after regression and after pixel calibration, respectively. Our processing
results in gradually reducing the discrepancy between CCNL-DMSP and VNL-VIIRS at
the pixel-scale. Figure 5 illustrates the scatter density plots of the resampled VNL-VIIRS
and masked CCNL-DMSP. The chosen linear-logarithmic model is able to portray their
overall relationship and transform the VNL-VIIRS DN values into DMSP-like DN values.
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We calculated the R2 and RMSE of regressed VNL-VIIRS in 2012 and masked CCNL-DMSP
in 2012. After masking and regression, the results show an R2 of 0.81 and an RMSE of 1.37,
which means our regression model has good results. Then we examined the overall accuracy
of PCNL. Note that PCNL has been calibrated based on regressed VNL-VIIRS, and they
have the same values in 2013, so the data in 2013 will not be used to calculate correlations.
Therefore, we used an alternative method to examine the overall accuracy by calculating
the R2 and RMSE of regressed VNL-VIIRS in 2012 and PCNL in 2012. After calibration at
the pixel-scale, the R2 and RMSE are, respectively, 0.93 and 0.77 (Figure 6a), representing
a significant improvement in consistency after calibration. At the city scale, PCNL also
shows a better performance with an R2 of 0.98 and an RMSE of 1883.28 (Figure 6b).
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Although Li et al. [33] did not publish the results of R2 and RMSE, the calculations
of Zheng et al. [32] showed that LiNTL has a lower R2 of approximately 0.5. ChenNTL
has better performance; R2 and RMSE are, respectively, 0.87 and 2.96 nWcm−2sr−1 at the
pixel-scale and 0.95 and 3024.62 nWcm−2sr−1 at the city scale [25]. After regression and
calibration, PCNL showed better results than LiNTL but was not as good as ChenNTL.
Pixel-scale calibration is a characteristic step in the production process of PCNL. After
calibration, PCNL performed better than both LiNTL and ChenNTL at the pixel and
city scales.

4.2. Evaluation of Spatial Consistency

We chose the Beijing-Tianjin-Hebei region (BTH) in China, New York and nearby areas
of the US, and Damascus in Syria to represent developing regions, developed regions, and
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regions suffering from war. Beijing and Tianjin are China’s municipalities and metropolises;
BTH has been continuously and steadily growing over the past 30 years. New York is one of
the most prosperous cities in the US and one of the most developed cities in the world. New
York has a well-developed infrastructure and high population density, with consistently
high light values over the past 30 years. Damascus, the capital of Syria, has prospered
and, unfortunately, has suffered from war, which has resulted in human casualties and the
destruction of infrastructure. Figure 7 shows the spatial texture of the three NTL products
in BTH, New York, and Damascus.
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Figure 7. Spatial texture maps comparing PCNL (1992–2021), LiNTL (1992–2018), and ChenNTL
(2000–2020) in (a) BTH, China, (b) New York, US, and (c) Damascus, Syria. Due to the different
distribution ranges of the values of the three NTL products and different areas of varying light values,
to better demonstrate spatial details, develop color stretching rules based on the 99th percentile of
each product in each area.

In the developing region, PCNL demonstrates well both the gradually increasing
lighted area and the general trend of progressively higher light values. LiNTL also reflects
the changes in lighted area and light intensity well, but due to incomplete removal of
blooming and saturation effects, the lighted area of LiNTL seems to be larger, and the value
in the city center always remains at the saturation value (DN = 63). ChenNTL also presents
a good spatial texture map, but ChenNTL and PCNL have interannual fluctuations in urban
centers. In developed areas, PCNL and LiNTL show high light values. LiNTL is almost
saturated in the region, and it is difficult to see the spatial texture, while PCNL can show
the difference between high- and low-value areas. ChenNTL demonstrates well the spatial
distribution of lights in the region, with a clear contrast between high- and low-value areas.
In areas suffering from war, PCNL, LiNTL, and ChenNTL are able to demonstrate a sudden
reduction in the spatial extent of lighted areas and a sudden dimming of light intensity.

Details of the spatial consistency are shown in Figure 8. In BTH, China, in 2013,
four lines crossing the city center were chosen to demonstrate the continuous spatial
variation of DN values. In terms of the overall shape, PCNL shows a robust inverted
U-shape along the central axis of the city. PCNL has high-values in the city center, while in
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the suburbs it has low or even zero values. ChenNTL has more dramatic fluctuations, but
an overall inverted U-shape can also be observed. In terms of trends, PCNL and ChenNTL
have consistent trends, although ChenNTL rises and falls more dramatically. LiNTL is
affected by the saturation of DMSP-OLS, showing consistent highest values in the city
center (DN:63), and no differences or details can be observed.
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Figure 8. DN curves comparing PCNL, LiNTL, and ChenNTL in BTH, China, in 2013. (a1–a3) are the
spatial texture maps of three NTL products, and the four dashed lines in the maps correspond to the
DN curves of (b1–b4).

4.3. Evaluation of Temporal Consistency at Regional Scales

We first evaluated the temporal consistency at regional scales by plotting the time series
of TSOL of three NTL products at three scales: global, national, and urban. Three coun-
tries, China, the United States, and Syria, are chosen to represent developing countries,
developed countries, and countries that suffer from accidents due to war and other reasons,
respectively. Three representative cities, Beijing, New York, and Damascus, are selected in
each of the three countries.

As shown in Figure 9, at the global scale, the TSOL of PCNL increases steadily with
time, while the time series of LiNTL and ChenNTL are not smooth. There was an abrupt
rise in TSOL for LiNTL in 2013–2014 and for ChenNTL in 2010–2013. 2012–2014 are the
bridging years for CCNL-DMSP and VNL-VIIRS, and the TSOL of LiNTL and ChenNTL
may have problems because there seems to be an abrupt change in the bridging years.
At the national and urban scales, PCNL presents equally good results, with a smooth
trend near connection years 2013. For PCNL, TSOL consistently and steadily increases in
developing countries; TSOL has small fluctuations in developed countries; and in war-
affected countries TSOL has a significant decrease in war years. However, at the urban
scale, the interannual fluctuations in PCNL are greater than that at the national scale. LiNTL
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and ChenNTL performed better in developing countries, but in developed countries there
was still an abrupt increase in light values in bridging years. In countries suffering from
war, LiNTL and PCNL show consistent trends, but ChenNTL seems to demonstrate a more
volatile time trend. At the urban scale, LiNTL and ChenNTL are similar to them at the
national scale, but the saturation problem of LiNTL in developed cities requires attention.
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Overall, PCNL has the most stable temporal trends at the global, national, and urban
scales, with flat changes near connection years, but more severe interannual fluctuations in
PCNL exist in smaller regions. LiNTL has a good general trend, but the saturation problem
in developed cities cannot be ignored. ChenNTL has had a more active dynamic change,
with an abrupt increase in TSOL values globally and in developed countries and cities in
the connection years.
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A comparison of ANDI further demonstrates the stability of TSOL for the three NTL
products (Figure 10). Generally, the time series curves of TSOL are stable at large scales.
The larger the ANDI is, the more likely there are abnormal fluctuations. At the global scale,
the ANDI of PCNL, LiNTL, and ChenNTL is 0.023, 0.046, and 0.042, respectively. The
ANDI of PCNL is the lowest, and the time series stability of TSOL is the highest. At the
national scale, the time series stability of PCNL is generally high, indicating that the TSOL
of PCNL is stable in most countries, but the ANDI is slightly elevated in island areas such
as Greenland. For LiNTL and ChenNTL, the interannual fluctuations are overall larger than
for PCNL. The problems of LiNTL are mainly reflected in the islands, and the problems
of ChenNTL are reflected in the islands and in the high latitudes of Europe (Sweden and
Norway). We did not calculate ANDI at the city scale because the stability of the time series
is not very relevant to product quality due to the diversity of development patterns in
different cities.
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4.4. Evaluation of Temporal Consistency at the Pixel-Scale

At the pixel-scale, we selected eight representative cases in different regions of the
world. For each case, we set nine spatially evenly distributed pixels based on their own
representativeness and plotted the time series of three NTL products (Figure 11). These
cases are categorized into two types: stable trend (ST) and sudden change (SC).

(1) New York, US, is a famous developed city in a developed country, and its nighttime
lights are relatively stable. For LiNTL, the nighttime light values are saturated and stable
around 63. On the one hand, the high-values of nighttime light correspond to the actual
conditions in the city center. On the other hand, the saturated values do not reflect temporal
variations orspatial differences. For PCNL, the nighttime light values had some fluctuations
until 2013 and were more stable after 2013. The advantage of PCNL is that the unsaturated
values can reflect spatial differences. However, similar fluctuations for all pixels suggest
that the interannual correction for DMSP-OLS is still imperfect and difficult to resolve. As
for ChenNTL, the overall trend is similar to that of PCNL, but the interannual variation in
values seems to be more random.

(2) London, UK, is a developed city, the same as New York. The situation in London is
similar to that in New York.
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Figure 11. Time series of pixel nighttime light comparing PCNL (1992–2021), LiNTL (1992–2018),
and ChenNTL (2000–2020). For each case, the location on the world map is marked, and the PCNL
nighttime light for band composite in the R (2021), G (2007), and B (1992) bands is shown. For
each case, the time series of PCNL, LiNTL, and ChenNTL are plotted for the selected 9 pixels,
marked as red or white dots. The administrative divisions were plotted on parts of the maps to aid
point selection.
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(3) India is a developing country, and the suburbs, of New Delhi is still developing. All
three NTL products reflect steadily increasing nighttime light values. Relative to ChenNTL,
PCNL, and LiNTL suffered fewer interannual fluctuations.

(4) Lagos, Nigeria, is also a developing city in a developing country. Similar to
New Delhi, the three NTL products reflect a general trend of steady growth in Lagos.
There appear to be some incomprehensible fluctuations in ChenNTL, but the overall trend
remains correct.

(5) Daxing Airport in Beijing, China, began construction in about 2015. Prior to 2015, it
was a large field of farmland with little nighttime light. After the construction of the airport,
the surrounding area began to flourish. We chose Daxing Airport and were 8 pixels close
to it. A sudden increase in nighttime light values can be observed in three NTL products
around 2015. Before the airport’s construction, LiNTL had a nighttime light value of around
10, caused by the blooming effect of nighttime lights, while PCNL and ChenNTL seemed
more reasonable.

(6) Created with the oil boom, Punta de Mata, Venezuela, has experienced a sudden
population explosion in the last decade. As the population grew, buildings and roads
flourished, businesses flourished, and lights became brighter at night. Three NTL products
show that the growth of nighttime light values suddenly became faster in 2010.

(7) Aleppo is Syria’s second-largest city, densely populated, and with a long history.
Unfortunately, the Battle of Aleppo (2012–2016) caused widespread damage to the city,
and many lives were lost as a result. For PCNL and LiNTL, it can be observed that the
nighttime light values suddenly decreased to very low levels in 2012. PCNL can observe
the decreasing trend from different values to low-values, and LiNTL can observe the
change from saturation to low-values. For ChenNTL, despite an outlier occurring, a sudden
decrease in nighttime light values in 2012 can still be observed. PCNL is more applicable
for detecting temporal mutations and spatial differences.

(8) In 2008, a massive earthquake of over 8 magnitude struck Wenchuan County,
Sichuan Province, China. After the earthquake, the Chinese government announced that it
would rebuild the earthquake-stricken area within the next three years. From 2009 to 2011,
the nighttime lights in Wenchuan County brightened due to post-earthquake reconstruction,
peaking in 2010. PCNL and LiNTL have better observations, plotting the peaks equally in
space. ChenNTL can observe the peak in 2010 in some pixels, but a more complex time
series is observed for others.

4.5. Applicability in the Socio-Economic Field

At the global scale, the correlation coefficients of PCNL, ChenNTL, and LiNTL with
GDP are 0.945, 0.881, and 0.776, respectively. The correlation coefficients of PCNL, Chen-
NTL, and LiNTL with POP are 0.971, 0.937, and 0.815, respectively. The three NTL products
show a higher correlation with POP than GDP. Comparing the three NTL products, PCNL
demonstrates the strongest correlation with GDP and POP, ChenNTL also has good results,
and LiNTL has a slightly lower correlation than the other two NTL products.

For countries globally, the correlation coefficients of the three NTL products with socio-
economic data (GDP and POP) were calculated separately. The World Bank uses countries
and economies as the statistical scale, and the NTL products use countries and regions as
the statistical scale. 204 countries and regions with consistent statistical units are selected,
which are all the countries with available data. As shown in Figure 12, the correlation
coefficients between three products (PCNL, LiNTL, and ChenNTL) and socio-economic
data (GDP and POP) are plotted. Considering the positive correlation between NTL data
and socio-economic data, only countries and regions with positive correlation coefficients
are shown in the figure. PCNL has the best correlation with GDP and POP and is most
suitable for socio-economic studies. The results of ChenNTL are better than those of LiNTL.
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Figure 12. Comparison of correlation coefficients between three types of NTL products (PCNL,
LiNTL, and ChenNTL) and socio-economic data (GDP and POP) at the national scale. (a–c) are
two-by-two comparisons of the correlation coefficients of the three NTL products and GDP. (d–f) are
two-by-two comparisons of the correlation coefficients of the three NTL products and POP. For each
point below the red dotted line, the NTL product represented by the horizontal coordinate of that
point is superior to the NTL product represented by the vertical coordinate.

5. Discussion
5.1. Comprehensive Comparison of the Three NTL Products

Table 2 summarizes the comparison of the three NTL products from eight perspectives:
temporal horizon, spatial extent, spatial resolution, overall accuracy, spatial consistency,
regional temporal consistency, pixel temporal consistency, and applicability in the socio-
economic field. PCNL and LiNTL have a much longer time horizon, and PCNL and
ChenNTL products are still being updated annually. All three products achieve global
coverage, but ChenNTL has a higher spatial resolution. PCNL and ChenNTL have higher
overall accuracy at the pixel-scale and the city scale, while the overall accuracy of LiNTL is
slightly lower than the other two products. The spatial texture maps of all three products
demonstrate good spatial consistency, but LiNTL is unable to show spatial details in
developed regions due to saturation and blooming effects. PCNL has the highest temporal
consistency globally, while LiNTL and ChenNTL have close calculations of ANDI. All three
products have reasonable time series at regional and pixel-scales and can also monitor
abrupt changes in light values due to special events, but all three products have their
own problems. The TSOL and pixel values of PCNL have interannual fluctuations around
2005. LiNTL is saturated in the developed regions and has an abrupt increase in light
values in the bridging years of CCNL-DMSP and VNL-VIIRS. ChenNTL fluctuates a bit
more and also has an abrupt rise in light values in the bridging years of CCNL-DMSP and
VNL-VIIRS. All three products have a strong correlation with socio-economic data. The
correlation coefficients with GDP and POP were calculated, and PCNL obtained the best
result, ChenNTL obtained a slightly lower result, and LiNTL ranked third.
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Table 2. Comparison summary of PCNL, LiNTL, and ChenNTL.

Evaluation Perspectives PCNL LiNTL ChenNTL

Time Horizon 1992–2021 (updating) 1992–2018 2000–2020 (updating)
Spatial Extent Global Global Global

Spatial Resolution 30 arc seconds (~1 km) 30 arc seconds (~1 km) 15 arc seconds (~500 m)

Overall Accuracy
Pixel-scale: R2 = 0.93,

RMSE = 0.77 City scale:
R2 = 0.98, RMSE = 1883.28

Pixel-scale: R2 ≈ 0.5 in China

Pixel-scale: R2 = 0.87,
RMSE = 2.96 nWcm−2sr−1

City scale: R2 = 0.95,
RMSE = 3024.62 nWcm−2sr−1

Spatial Consistency Stable Stable but saturated Stable

Regional Temporal
Consistency

Global: ANDI = 0.023
Developing regions: stable

Developed regions:
fluctuating then stable

War regions: able to
detect changes

Global: ANDI = 0.046
Developing regions: stable

Developed region: saturated,
with unreasonable

abrupt changes
War regions: able to

detect changes

Global: ANDI = 0.042
Developing regions: stable

Developed regions:
fluctuating, with

unreasonable abrupt changes
War regions: able to

detect changes

Pixel Temporal Consistency

Advantages: able to display
stable trends and detect

sudden changes
Disadvantage: existence of

interannual fluctuation,
but acceptable

Advantages: able to display
stable trends in low-value

regions and detect
sudden changes

Disadvantage: disable to
compare differences of values

in high-value regions due
to saturation

Advantages: able to display
general trends and detect

sudden changes
Disadvantage: existence of
many unreasonable abrupt

changes and fluctuation over
a larger range

Applicability in the
socio-economic field

Global: r = 0.945 with GDP,
r = 0.971 with POP

Country scale: better than
LiNTL and ChenNTL for both

GDP and POP

Global: r = 0.776 with GDP,
r = 0.815 with POP

Country scale: worse than
PCNL and ChenNTL for both

GDP and POP

Global: r = 0.881 with GDP,
r = 0.937 with POP

Country scale: better than
LiNTL, slightly worse than

PCNL, for both GDP and POP

Overall, PCNL has unique advantages over other NTL products due to the fact that it
combines two reliable global NTL datasets (CCNL-DMSP and VNL-VIIRS) using a series of
spatiotemporal consistency calibration methods. First, PCNL covers the full range of years
available and has the ability to be continuously updated. In addition, PCNL has better
spatial consistency and spatial analysis capabilities. Although PCNL is based on DMSP-
OLS, it is not limited by the dynamic range of DMSP-OLS (6 bit) and generates products
with no upper limit of values. PCNL has better observation ability for internal differences
in high-value areas, while other DMSP-like products (e.g., LiNTL) have values in urban
centers mainly ranging from 61 to 63. Moreover, PCNL has excellent performance in
temporal consistency, which is validated at regional and pixel-scales. At the regional scale,
there is no sudden unreasonable change in the bridging year (2012–2014) between DMSP-
OLS and NPP-VIIRS, which is a great improvement over the existing NTL products. More
importantly, PCNL has pixel-level observational capabilities. Existing NTL products are
criticized for pixel-scale saturation or fluctuation and are applied to the regional scale rather
than the pixel-scale. Based on the current results, PCNL has not yet found unreasonable
fluctuations at the pixel-scale (relative to ChenNTL), no saturation (relative to LiNTL),
and is able to see stable trends (including developed and developing regions) as well as
abrupt trends (e.g., new airports, cities with population explosions, war zones, and regions
suffering from earthquakes). Also, the high correlation with GDP and population at global
and national scales is another advantage of PCNL over LiNTL and ChenNTL, although the
actual relationship between NTL and GDP is complex rather than linear.

However, we understand that all three products have unique strengths, so our recom-
mendations are as follows: When developing studies of time series longer than 20 years,
PCNL and LiNTL are preferred. When there is a strict requirement for spatial resolution,
ChenNTL is the optimal choice. When there is a serious request for the spatial extent
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of the lighted area, such as conducting urbanization studies, PCNL and ChenNTL are
better choices. When the study area is a global or developing region, PCNL and LiNTL
perform better. When the study area is a developed region, ChenNTL is more reflective of
spatial details. When the statistical scale is a regional scale, the results of PCNL are more
reasonable. When conducting studies at the pixel-scale, PCNL seems better, but no dataset
is perfect, and attention needs to be paid to interannual fluctuations of PCNL, the saturation
of LiNTL, and unreasonable abrupt changes of ChenNTL. When conducting studies in
the socio-economic field, PCNL and ChenNTL can better help establish the relationship
between NTL data and socio-economic indicators.

5.2. Understanding of the Role of PCNL Production Steps

PCNL is generated by a series of spatiotemporal consistency calibration methods.
Regression is a generally accepted method for constructing DMSP-OLS and NPP-VIIRS
consistency correction models. Based on the regression model, we designed a set of five-
step correction methods that were designed with the goal of spatiotemporal consistency.
Preprocessing corrected the outliers in VNL-VIIRS. Resampling unified the spatial resolu-
tion of CCNL-DMSP and VNL-VIIRS. The masking method removed the blooming spatial
extent of CCNL-DMSP and was used to resolve the spatial extent inconsistency between
CCNL-DMSP and VNL-VIIRS. The regression method unified the numerical ranges of
CCNL-DMSP and VNL-VIIRS, making CCNL-DMSP and VNL-VIIRS roughly similar in
numerical values. Calibration at the pixel scale was used to correct CCNL-DMSP based
on VNL-VIIRS after the regression method to optimize the spatial comparability of CCNL-
DMSP while maintaining temporal consistency and matching the values of CCNL-DMSP
and VNL-VIIRS.

Masking and calibration are the key steps for spatial and temporal consistency. As
shown in Figure 13, the case of the UK shows that masking reduces the spatial inconsistency
of CCNL-DMSP with VNL-VIIRS, while calibration reduces the temporal inconsistency of
CCNL-DMSP with the regressed VNL-VIIRS. Spatially, CCNL-DMSP has a larger spatial
extent compared to VNL-VIIRS due to transit time and other sensor differences, and mask-
ing removes the different spatial extent, which accounts for 51.2% of the global lighted
pixels of CCNL-DMSP. Without masking, the area of lighted pixels expands almost twice,
which illustrates the necessity of masking. Temporally, the calibration avoids the misidenti-
fication of NTL time series development patterns. The Theil-Sen median trend analysis and
Mann-Kendall trend test [44–46] are used to identify the time series of NTL, and the types
are classified as significant increase, non-significant increase, significant decrease, and non-
significant decrease. As shown in Table 3, unmasked and uncalibrated CCNL-DMSP has
a large number of pixels with incorrect types compared to PCNL. The correct identification
rates for significant increase, insignificant increase, significant decrease, and insignificant
decrease are 84.4%, 20.3%, 54.2%, and 25.7%, respectively. The low correct identification
rate for NTL types illustrates the need for calibration.

Table 3. Type identification of NTL time series curves before and after masking and calibration.

Types Identified
by PCNL

Types Identified by Unmasked and Uncalibrated CCNL-DMSP
and Regressed VNL-VIIRS

Significant
Increase

Non-Significant
Increase

Significant
Decrease

Non-Significant
Decrease

Significant increase 84.4% 8.1% 0.9% 6.6%
Non-significant increase 48.7% 20.3% 11.8% 19.2%

Significant decrease 12.3% 15.7% 54.2% 17.8%
Non-significant

decrease 28.4% 17.9% 28.1% 25.7%
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5.3. Limitations of PCNL

PCNL is a DMSP-like NTL dataset with a uniform spatial resolution compared to
CCNL-DMSP. We discarded the advantage of the high resolution of VNL-VIIRS and resam-
pled VNL-VIIRS to 30 arcsec, which was consistent with CCNL-DMSP. The reduction in
spatial resolution is a loss of product quality; however, it is necessary to produce PCNL.
The spatial resolution of VNL-VIIRS is higher than that of CCNL-DMSP, which means
that four pixels of VNL-VIIRS correspond to one pixel of CCNL-DMSP. We can resample
four pixels of VNL-VIIRS into one pixel by resampling, but it is not easy to do the opposite.
Compared with the traditional regression method, machine learning and deep learning
methods can compensate for this deficiency [25,47], which is worth exploring in the future.

All three NTL products have unreasonable fluctuations around 2005 due to the in-
terannual inconsistency problem of DMSP-OLS, which is prominent during that time,
and the interannual correction methods used for these products still fail to address the
problem entirely. Among the interannual correction methods used by PCNL, ChenNTL,
and LiNTL, the stepwise interannual correction method [17] used by LiNTL is the most
effective. The method of the invariant region [36] used by CCNL-DMSP is relatively simple,
but interannual fluctuations still need to be removed entirely. Some novel interannual con-
sistency correction methods are proposed [48], which are worthy of continued exploration
in the future.

6. Conclusions

In this study, we proposed the DMSP-OLS and NPP-VIIRS inter-correction methods.
Based on the processed DMSP-OLS dataset CCNL-DMSP and the processed NPP-VIIRS
dataset VNL-VIIRS, a set of long time series global NTL products PCNL (1992–2021), which
meets pixel-scale research needs, was developed through the processes of outlier removal,
resampling, masking, regression, and calibration. In order to examine the quality of PCNL,
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PCNL and two existing global long-time series NTL products, LiNTL and ChenNTL, are
compared from several angles, including overall accuracy, spatial consistency, temporal
consistency, and applicability in the socio-economic field.

PCNL demonstrates good overall accuracy at both the pixel-scale (R2: 0.93, RMSE: 0.77)
and the city scale (R2: 0.98, RMSE: 1883.28). The spatial texture maps of PCNL show good
spatial consistency in developing, developed, and war regions. At global and national
scales, the plotted time series curves and calculated ANDI indicate a stable time trend
and good temporal consistency for PCNL (ANDI: 0.023, global). In the bridging year of
CCNL-DMSP and VNL-VIIRS (near 2013), PCNL well bridges CCNL-DMSP and VNL-
VIIRS. At urban and pixel-scales, PCNL also performs well in stable developed regions,
in stable developing regions, and regions experiencing sudden development and sudden
disaster. At the global scale, PCNL has a high correlation coefficient with GDP (r: 0.945)
and population (r: 0.971). For more than half of the countries, the correlation coefficients
of PCNL with GDP and population are higher than the results of ChenNTL and LiNTL,
which indicates the strong applicability of PCNL in the socio-economic domain.
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