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Abstract: Ship classification, as an important problem in the field of computer vision, has been the
focus of research for various algorithms over the past few decades. In particular, convolutional
neural networks (CNNs) have become one of the most popular models for ship classification tasks,
especially using deep learning methods. Currently, several classical methods have used single-scale
features to tackle ship classification, without paying much attention to the impact of multiscale
features. Therefore, this paper proposes a multiscale feature fusion ship classification method based
on evidence theory. In this method, multiple scales of features were utilized to fuse the feature maps
of three different sizes (40 × 40 × 256, 20 × 20 × 512, and 10 × 10 × 1024), which were used to
perform ship classification tasks separately. Finally, the multiscales-based classification results were
treated as pieces of evidence and fused at the decision level using evidence theory to obtain the
final classification result. Experimental results demonstrate that, compared to classical classification
networks, this method can effectively improve classification accuracy.

Keywords: ship classification; multiscale; evidence theory; feature fusion; deep learning

1. Introduction

Image classification, as an important problem in the field of computer vision, aims
to assign input images to predefined categories. Over the past few decades, significant
progress has been made in image classification, especially with respect to deep-learning-based
methods. CNNs can automatically extract rich feature representations from input images and
perform classification using fully connected layers. Compared to traditional machine learning
methods, deep learning approaches can learn more discriminative features automatically
from data, thereby leading to higher classification accuracy. The practical applications of
image classification techniques have become relatively mature and have been widely used in
various domains, such as visual recognition [1], medical image analysis [2], industrial quality
inspection [3], agriculture [4–6], surveillance [7], and autonomous driving [8].

However, due to the complex and diverse characteristics of image data and the variety
of practical application scenarios, improving the accuracy of image classification further
remains a challenging task. For instance, challenges persist in satellite remote-sensing
image classification [9–12], as well as fine-grained image classification [13,14].

For example, ship satellite remote sensing images present specific challenges compared
to traditional natural images in the image classification task: [15–17].

1. Variations in ship size and shape: The appearance and shape of ships in satellite
remote sensing images can be influenced by various factors such as distance, lighting
conditions, and viewing angles. Therefore, ships of the same type may exhibit different
sizes and shapes in different satellite remote-sensing images, thereby making image
classification difficult.
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2. Complexity of the background: Ship satellite remote-sensing images often include
complex backgrounds such as waves, clouds, and ports. These backgrounds can
introduce interference in the classification of ships.

3. Similarity: Ship satellite remote-sensing images encompass various types of ships,
including different ship types that include cargo ships, passenger ships, and fishing
boats. However, apart from some specific ship types, most ship outlines exhibit an
elongated shape with axis symmetry and a pointed bow, which can pose challenges
for classification algorithms.

4. Resolution: Ship satellite remote-sensing images typically have lower resolutions
compared to traditional natural images. This can impact the extraction of fine-grained
ship details and features, thus affecting the performance of classification algorithms.

5. Data quality: Ship satellite remote-sensing images are susceptible to natural factors
such as lighting, weather conditions, and cloud cover, which can result in lower image
quality. Issues such as blurring, distortion, and occlusion can arise, thereby affecting
the accuracy of ship classification.

Currently, most existing improvement methods for ship classification, which rely
on CNNs to automatically extract abstract features, mainly focus on modifying network
structures, optimizing training strategies, or redesigning loss functions in an iterative
manner. However, they overlook the further processing of the classification results.

In the case of fine-grained image classification, which is different from general ship
classification tasks, the main challenge lies in categorizing objects from closely related
subcategories. These objects often exhibit subtle category differences, and the crucial in-
formation containing these differences is typically localized in small regions of the image.
When extracting features using deep neural networks, smaller-sized features in the images
may become diluted as the network deepens, thereby affecting the classification results [18].
Utilizing multiscale feature fusion methods allows deep networks to learn small-sized
features that may have been diluted due to network depth, thereby enhancing the accu-
racy of classification. Therefore, solely focusing on network structure or loss function
improvements may pose challenges in further enhancing the classification performance.

In the CNN-based methods, initially, researchers focused on deepening the network
structure to improve the classification performance and to address issues arising from
deeper networks in order to enhance the classification network. Later, the attention shifted
toward better feature propagation or utilizing detailed features to strengthen the classifi-
cation performance. For example, attention mechanisms were introduced to emphasize
more discriminative features [19], or multiple feature extraction networks were used in
combination with extracted feature maps to complement missing features [20]. Knowl-
edge distillation was also employed to transfer detailed image features to smaller primary
networks, thus resulting in improved performance for the classification network [21]. How-
ever, the above approaches added additional complexity to the network structures in order
to better extract features.

This paper proposes a multiscale ship classification network that applies evidence
theory to decision-level fusion to break free from the improvement loop mentioned earlier
and to enhance the classification accuracy from a different perspective. Three main modules
were utilized in this method to ensure better classification accuracy: (1) a multiscale output
module of the feature extraction network; (2) a pyramid feature fusion module; and (3) a
decision-level fusion module based on evidence theory. The first two parts focused on
improving accuracy using network structures, while the final part emphasized optimizing
classification performance using the final probability distribution information.

To validate the feasibility of this method, experiments were conducted on a tradi-
tional natural image dataset and a remote-sensing image dataset for fine-grained ship
classification. Several comparisons were made with classical classification methods. The
experimental results demonstrate that the proposed method—E-FPN—achieved better
classification accuracy and consistency compared to classical classification methods. The
main contributions of this paper are as follows:
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1. To address the issue of information loss during the feature extraction process, feature-
level fusion was performed by selecting feature maps of different depths from the back-
bone feature extraction network. This fusion aimed to supplement the lost information.

2. The classification results from multiple scales were further fused at the decision level
using fusion rules based on evidence theory. The different classification results were
treated as pieces of evidence, and the differences in the probability distributions were
utilized to optimize the classification results.

The remaining sections of this paper are composed as follows. Section 2 provides a
review of related works. Section 3 introduces the relevant background knowledge. Section 4
presents the overall network structure of the E-FPN. Section 5 provides detailed explana-
tions of the experimental setup, including parameter settings, experimental procedures,
and parameter discussions. Finally, in Section 6, the paper concludes with a summary and
discusses future research directions.

2. Related Work

At the algorithmic level, deep-learning-based image classification methods can be
divided into two categories based on different feature extractors. The first category is
CNN-based image classification methods, which have achieved remarkable breakthroughs
in the past decade based on modern deep learning techniques. Krizhevsky et al. introduced
rectified linear units (ReLU) in convolutional neural networks to achieve nonlinearity and
used the Dropout technique to mitigate overfitting and learn more complex objects [22].
Karen Simonyan and Andrew Zisserman improved upon AlexNet by stacking 3 × 3 con-
volutions and deepening the network structure to enhance the classification accuracy [23].
However, as the networks became deeper, issues such as network degradation, vanishing
gradients, and exploding gradients emerged. To address these problems, Kaiming He et al.
introduced Batch Normalization (BN) to replace Dropout and solve the issues of vanishing
and exploding gradients. They also introduced residual connections to address network
degradation [24]. SainingXie et al. introduced Inception on top of ResNet, thereby trans-
forming single-path convolutions into multi-path convolutions with multiple branches [25].
Gao Huang et al. proposed DenseNet in 2017, which connects each layer with all pre-
vious layers in a feed-forward fashion to alleviate the vanishing gradient problem and
enhance feature propagation [26]. Tsung-Yu Lin et al. used two feature extractors to extract
features from input images and combined them using a bilinear pooling function before
performing classification to compensate for the features lost by a single feature extractor
(B-CNN) [27]. To fully exploit the small features that can differentiate different categories,
Jianlong Fu et al. proposed RA-CNN, which focuses the classification operation on regions
with differentiating features using a recurrent attention projection mechanism [28].

To enhance the classification accuracy of CNN-based classification networks for satel-
lite remote-sensing images, Linqing Huang et al. proposed a classification method that
converts images in the dataset into different color spaces and trains separate CNNs on
each color space. Finally, the output results of each classifier were fused using evidence
theory [29]. Yue Chen et al. presented a method called Destruction and Construction
Learning (DCL), which disrupts and shuffles input images to emphasize local detailed
features. They employed a region alignment network to restore the image layout and learn
semantic information from local regions, thereby strengthening the connections between
neighboring regions [30]. Heliang Zheng et al. introduced a technique that extracts precise
attention maps to highlight target regions with rich detailed features at a high resolution.
They also employed knowledge distillation to transfer image detail features to the main
network for image classification [31].

The second approach is based on the visual transformer method [32]. Similar to
CNNs, transformers have dominated the field of natural language processing (NLP) in the
past decade. Initially, when transformers were introduced to computer vision, they were
primarily used to extract global contextual information from images, but their performance
outcomes were not satisfactory. In the past two years, there have been breakthroughs in
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using large-scale pretraining on transformer-based CNN classification networks, which
have surpassed the dominance of CNNs in traditional image domains. Examples of such
networks include the Vision Transformer (ViT) [33] and Shifted Window Transformer
(SWIN-Transformer) [34].

In recent years, advancements in ship classification algorithms have involved various
improvement approaches in academic research. For instance, Chen et al. employed a con-
trastive learning method to replace classical classification techniques. They designed a loss
function to separate different categories and bring together similar ones [35]. Zhang et al.
adopted a combination of traditional feature extraction methods and modern abstract
feature extraction methods to enhance the representation capability of ship features [18].
Guo et al. utilized shape-aware feature extraction techniques, thereby allowing the feature
extraction process to better align with the distinctive spindle-shaped appearance of ships
[36]. Building upon the bilinear pooling method, Zhang et al. made improvements to
make it more suitable for ship classification tasks [37]. Additionally, Jahan et al. employed
knowledge distillation and class balancing methods to achieve ship classification in SAR
ship images [38].

3. Preliminaries
3.1. Cross-Stage Partial Darknet (CSPDarkNet)

CSPDarkNet [39] can be divided into five main parts: Focus, Dark2, Dark3, Dark4,
and Dark5, in sequential order. The Focus module focuses on aggregating the width and
height information of the image into the channel information by subsampling the image’s
pixel values. The structures of Dark2 to Dark4 are well demonstrated in Figure 1, where
each Dark part consists of a BaseConv layer and a CSPLayer. Each BaseConv layer consists
of a convolutional layer, a BatchNorm2d layer, and an activation function. The entire
CSPLayer can be viewed as a residual module, where one side of the residual branch
passes through the BaseConv layer once, while the other side goes through n bottleneck
units after the BaseConv layer. The two parts are then concatenated and subjected to
another BaseConv operation. The structure of the bottleneck unit, as shown in Figure 1,
involves a 1 × 1 and a 3 × 3 convolution for the main branch, while the residual branch
remains unchanged, and the two parts are finally added together. The Dark5 part is slightly
different from the previous three parts. It introduces a Spatial Pyramid Pooling (SPP-
Bottleneck) module between the BaseConv and CSPLayer, which utilizes max pooling with
three different kernel sizes to extract features, and it then combines them to increase the
network’s receptive field. Its structure is depicted in Figure 2.

Figure 1. CSPDarkNet network structure.
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Figure 2. SPP-Bottleneck network structure.

3.2. Feature Pyramid Networks (FPNs)

In convolutional networks, deep layers are more responsive to semantic features, while
shallow layers are more responsive to image details. In image classification tasks, it has
been validated by Karen Simonyan and others that deeper networks have a positive impact
on image classification. However, deep convolutional layers tend to lose fine-grained
details. Therefore, the FPN [40] model can be used to fuse features from shallow and
deep layers, thereby allowing the deep layers to complement the information lost during
multiple convolutional operations, which is beneficial for subsequent classification tasks.
The FPN structure is illustrated in Figure 3.

Figure 3. FPN network structure.
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3.3. Evidence Theory

The evidence theory, established by Dempster and Shafer, represents propositions us-
ing mathematical sets [41]. Unlike probability theory, which considers only single elements,
evidence theory allows for multiple elements within a set. This theory is characterized by
its ambiguity and the ability to perform imprecise reasoning at different levels of abstrac-
tion. It can differentiate between ignorance and equiprobability, thereby enabling a better
representation of uncertain propositions. Evidence theory simulates the normal human
thinking process, where one observes and collects information before synthesizing it from
various aspects to make judgments and obtain results for a given problem.

In the Dempster–Shafer (DS) evidence theory, the sample space composed of all propo-
sitions is defined as a discernment framework, which is denoted as Θ. It is a set comprising
a group of mutually exclusive and collectively exhaustive propositions representing all
the possible answers to a given question. Let us assume another discernment framework
defined as Θ = {θ1, θ2, · · ·, θn}, where θ1, θ2, · · ·, θn represents a set of basic hypotheses,
and θi ∩ θj = ∅, i 6= j i, j = 1, 2, . . . , n are subsets of that set. The power set of Θ is the set of
all its subsets and is denoted as 2Θ.

Basic probability assignment (BPA) refers to the process of calculating the basic prob-
abilities for each piece of evidence in the discernment framework Θ. This process is
accomplished using the basic probability assignment function, which is denoted as the
mass function m(x), which reflects the degree of belief or confidence in a proposition. The
mass function satisfies the following properties:

m : 2Θ → [0, 1], (1)

m(∅) = 0, ∑A⊆Θ m(A) = 1. (2)

In evidence theory, the uncertainty of evidence can be quantified using the belief
function Bel(A) and the plausibility function Pl(A). The definitions and the relationship
between the belief and plausibility functions are as follows:

Bel(A) = ∑
B⊆A

m(B), (3)

Pl(A) = ∑B∩A 6=∅ m(B), (4)

Pl(A) = 1− Bel(A), (5)

m(A) = [m1 ⊕m2](A) =

{
0, A = ∅
∑B∩C=A m1(B)m2(C)

1−K , A 6= ∅
, (6)

K = ∑B∩C=∅ m1(B)m2(C) < 1, (7)

where K represents the conflict coefficient, which can describe the magnitude of conflict
between items of evidence—a higher value of K indicates a greater degree of conflict
between the evidence. 1

1−K serves as a normalization factor. For the combination of
multiple items of evidence, the calculation follows a similar approach. Multiple belief
functions can be combined using an orthogonal sum to generate a new mass function,
which is denoted as m1 ⊕ m2 ⊕ m3 ⊕ · · · ⊕ mn. If this combination exists, the order of
calculation does not affect the result, thus satisfying the commutative and associative
properties.

Suppose that there are n sets of evidence E1, E2, . . . , En, with their corresponding basic
belief assignment functions m1, m2, . . . , mn, respectively, and focal elements A1, A2, . . . , An,
respectively, within the given recognition framework. The classical Dempster’s combination
rule for these sets can be defined as follows:
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m(A) =


∑

∩Ai=A
∏

1≤i≤n
mi(Ai)

1−K , A 6= ∅
0, A = ∅

, (8)

K = ∑
∩Ai=∅

∏
1≤i≤n

mi(Ai). (9)

The classical Dempster’s combination rule is susceptible to paradoxes [42], and there
are several classic paradoxical situations:

1. Conflict of evidence: When the basic belief assignment functions of multiple evidence
sources exhibit strong conflicts, the fusion process may lead to highly unreasonable
results and even fail to generate a consistent synthesis (known as a complete conflict,
i.e., K = 1).

2. One-vote veto: If there is a piece of evidence for which the basic belief assignment
function for a specific proposition is 0, the fusion result will be 0, regardless of the
values of the other evidence’s belief assignment functions. This reflects the limitation
of the DS fusion rule with regard to allocating conflict properly. For example, assume
that there is evidence E1: m1(a) = 0.999, m1(b) = 0.001, m1(c) = 0; E2: m2(a) = 0,
m2(b) = 0.001, and m2(c) = 0.999. Using the formula, we calculate the results as
m(a) = m(c) = 0, and m(b) = 1. Clearly, the results are unreasonable.

3. Poor robustness: Although the changes in the basic belief assignment values of the
focal elements in the evidence are minimal, the synthesized results can be completely
different. For example, modifying the evidence E1 in the previous example results
in: m1(a) = 0.998, m1(b) = 0.001, and m1(c) = 0.001; however, the synthesized result
shows that m(b) = 0.001, which is contrary to the previous result.

The Dezert–Smarandache Theory (DSmT) has made improvements to address the
aforementioned issues. One of these improvements is the Proportional Conflict Redistribu-
tion Rule No. 5 (PCR5) [43], which reduces the generation of unreasonable results caused
by significant conflicts between the items of evidence compared to the DS fusion method.
Additionally, weights can be assigned to the outputs of the FPN before performing the
fusion operation to mitigate conflicts. In the PCR5 fusion rule, the conflicting degrees are
proportionally allocated to each focal element, thereby enabling a more reasonable fusion
of two sources of evidence with high conflicts. The fusion method of the PCR5 is described
as follows:

mConj
1,2 (A) = ∑

A∩B=A
m1(A)m2(B), (10)

mPCR5
1,2 (A) = mConj

1,2 (A) + ∑
X∈2Θ
X∩A=∅

[
m1(A)2m2(X)

m1(A) + m2(X)
+

m2(A)2m1(X)

m2(A) + m1(X)
]. (11)

Among them, m1 and m2 represent the two items of evidence; A and B denote the
focal elements contained in the evidence; mConj

1,2 (A) represents the nonconflicting product,
and the latter part of the sum represents the allocation of all the conflicting products
containing A on A.

The weighting calculation method used in the experiment referred to the approach
proposed by Zhunga Liu et al. [44], which adds a weight to the prefused data by calculating
the difference between two BPAs. The mass values corresponding to the two classifiers
indicate the likelihood of the corresponding class being true, with higher values suggest-
ing a higher probability. The collection of all the classes that are judged as true can be
represented as follows:

Φi = {A| mi(A)

max
B∈Ω

mi(B)
> λ}. (12)

Among them, Φi represents the set of true classes. λ denotes a threshold set between
0 and 1. When the ratio of the mass value corresponding to a class of the maximum mass
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value in that BPA exceeds the threshold, it is considered that the class may also be true. This
approach increases the tolerance for differences between the two classification results while
retaining information that is beneficial for the final classification result. The calculation
method for the difference between the two BPAs is as follows:

K =


0, Φ1 ∩Φ2 6= ∅√
(max
A∈Ω

m1(A) )(max
B∈Ω

m2(B)), Φ1 ∩Φ2 = ∅ . (13)

The weight can be represented as follows:

ω = 1− K. (14)

The weights are used to discount the two BPAs using Shafer’s discounting operation,
thus aiming to reduce conflicts between the two classifiers:{

mi(A) = ω ·mi(A), ∀A ∈ Ω
mi(Ω) = 1−ω

. (15)

By employing the operation of adding weights, it is possible to reduce the negative
impact of the classifier with lower classification ability on the final fusion results when
there is significant conflict between the two classifiers. This, in turn, enhances the accuracy
of the ultimate fusion outcome.

4. Methodolgy

Most existing CNN-based models only utilize features or scales from the final stage as
the ultimate classification features, thereby making them single-scale classification models.
However, the shallow-level features of the network contain more detailed information.
Neglecting shallow-level features without considering them can lead to decreased classifi-
cation accuracy for similar or small objects during the classification process. Particularly
when the image resolution is low, shallow-level features can retain more information and
reduce the risk of feature loss. To better utilize the features of shallow-level networks, this
paper proposes a method that uses multiscale features and employs the feature pyramid
network (FPN) to fuse features from different scales. The fusion of multiple classification
results is achieved using the fusion rules of evidence theory. This approach enables the
model to learn abstract features at different levels of abstraction on different scales, thereby
improving the model’s classification accuracy and enhancing decision-making capabilities.
Consequently, the E-FPN consists of three main components: the feature extraction net-
work, the FPN feature fusion part, and the decision-level fusion based on evidence theory.
Specifically, the feature extraction part is responsible for extracting abstract features from
the images, the FPN feature fusion part combines features from different scales, and the
decision-level fusion part, based on evidence theory, integrates the classification results
from multiple scales into the final classification result. Figure 4 illustrates the overall
network structure of the proposed method in this paper. The feature extraction part utilizes
the backbone network structure of YOLOX, which usies Darknet53 as the main network
for extracting image features. Darknet53 combines the characteristics of ResNet and uses a
residual network to ensure that the gradient problem caused by excessively deep networks
is avoided during feature representation. From Figure 4, it can be observed that the Dark3,
Dark4, and Dark5 parts of the Darknet53 feature the extraction network output feature
maps of three different dimensionalities. These feature maps contain features of the objects
to be classified at three different scales, and all three scales of feature maps are involved
in the final classification decision step. In other words, by utilizing feature maps from
different depths of the network for multiscale feature fusion, better feature representation
capability is ensured. For this feature extraction network, the chosen image input size was
set to 320 × 320. As the network layers increased, the input image dimension transitioned
from 320× 320 to 40× 40 for Dark3, 20× 20 for Dark4, and 10× 10 for Dark5. Considering
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the depth of the feature extraction network, choosing larger or smaller image input sizes
would result in insufficient feature extraction or feature loss, which is not conducive to
classification decision making. In fact, selecting an appropriate input size is also consistent
with mature CNN models, such as VGG and ResNet.

By extracting the features at different stages of the feature extraction network, differ-
ent scales of feature maps are obtained, thereby capturing information at three different
scales. However, directly performing classification operations on these feature maps is not
sufficient. Although the shallow-level feature information can propagate to deeper layers
in the network, it may become diluted during convolutional operations, thereby leading to
the neglect of detailed information in the resulting deep-level features and a decrease in
classification accuracy. From Figure 4, it can be observed that feature maps from different
stages or scales participate in the object classification task. Therefore, the classification
results obtained from the feature maps at different scales will affect the final classification
accuracy. It is necessary to enhance the classification accuracy of the feature maps at differ-
ent scales involved in the classification task as much as possible. To address this issue, this
paper introduces a multiscale feature fusion method. This method allows the deep-level
network to learn detailed feature information from the shallow-level network, while the
shallow-level network can learn abstract feature information from the deep-level network,
thus improving the feature representation capability. With this approach, each scale of the
feature map can learn richer information, thereby leading to better classification accuracy
in the subsequent classification process and ultimately improving the final classification
accuracy. Subsequent experiments demonstrate that using the multiscale feature fusion
methods can improve the accuracy of object classification. It achieves better classification
results compared to using single-scale feature-based classification methods.

Figure 4. E-FPN network structure.

In light of the above, this paper employed a feature pyramid network (FPN) to perform
feature-level fusion of the three feature maps obtained from the backbone network, thereby
aiming to complement the diluted detailed features during the feature extraction process.
By obtaining three feature maps with the same input dimensions, classification operations
were separately performed on two of the feature maps, thereby resulting in two sets of
classification results. In this paper, evidence theory was used to fuse the classification
results from different scales. Evidence theory can handle uncertainty and incomplete
information by combining multiple pieces of evidence to improve classification accuracy.
The multiscale output classification results are treated as distinct sources of evidence, which
are fused at the decision level using evidence theory to obtain the final classification result.
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Specifically, the classification results obtained from the feature maps of different scales can
be regarded as different sources of evidence, and the obtained classification results can be
seen as probability distributions, where each element represents the probability value of a
corresponding class. Therefore, the maximum probability value in the obtained probability
distribution cannot solely represent the current target class, as other higher probability
values may correspond to the correct class as well. Hence, the obtained multiple probability
distributions can serve as references from different aspects, rather than being definitive
classification results. The use of evidence theory enables the integration of the probability
distributions obtained from different scales as different pieces of evidence, and through
analyzing the differences between these pieces of evidence, a new probability distribution
is derived as the classification result. This classification method resembles the decision-
making process of human experts, who analyze and study information from multiple
sources to make an informed judgment, thus resulting in a relatively accurate answer.
Subsequent experiments have demonstrated that fusing the multiscale classification results
using evidence theory can further improve the accuracy of ship classification, thereby
validating the effectiveness and applicability of the evidence theory in ship classification.

In this paper, the input images to the network were set to a size of 320 × 320 in order
to retain detailed features in the images. Various image augmentation techniques, such as
random horizontal flipping, occlusion, and cropping, were applied to augment the dataset
and enhance the network’s performance. The input network used was CSPDarkNet, where
the images were processed through the Focus module to extract a value for every other
pixel, thus resulting in four feature maps that were then combined together. This process
reduces the width and height information of the image while increasing the number of
channels. This reduces the number of parameters and improves the network’s performance
while minimizing the loss of original information.

I = concat(X[. . . , :: 2, :: 2], X[. . . , 1 :: 2, :: 2],
X[. . . , :: 2, 1 :: 2], X[. . . , 1 :: 2, 1 :: 2]

. (16)

Among them, the input image X undergoes a slicing operation, which is denoted as
X[], where every pixel value is extracted to obtain four feature maps. The concatenation
operation concat() is then applied to combine these four feature maps. After the focus
operation, the size of the resulting feature maps becomes 160 × 160 × 12.

After the Focus module, the feature extraction stage follows, which consists of
Dark2–Dark5. The Dark5 part includes the SPP-Bottleneck module, which applies pooling
layers with different kernel sizes to the image to increase the network’s receptive field and
extract more features. In this study, the SPP-Bottleneck module utilized pooling kernels of
sizes 5 × 5, 9 × 9, and 13 × 13. The feature maps obtained from Dark3–Dark5, denoted
as I3–I5, were chosen as the outputs of the feature extraction network. The sizes of these
feature maps were 40 × 40 × 256, 20 × 20 × 512, and 10 × 10 × 1024, respectively. Subse-
quently, these three feature maps were fed into the FPN network for feature-level fusion.
In the fusion stage, the FPN layer took the three feature maps with different dimensions
and performed upsampling and downsampling operations to integrate the features from
multiple scales, thus enriching the information within the feature maps at different scales.

I′j = concat( f (Ij), g(Ij)), (17)

f (Ij) = WIj, (18)

g(Ij) = DownSampling(UpSampling( f (Ij))). (19)
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In the provided formulas, f (Ij) represents a convolutional operation applied to the
feature map, while g(Ij) indicates the process of upsampling the feature map, followed by
fusion with a shallow-level feature map and then downsampling. Finally, the resulting
feature map is concatenated with the feature map processed through the f (Ij) operations
to obtain the final feature map used for classification. During the upsampling and down-
sampling process, the combined feature map is further integrated using the CSPLayer. This
results in three feature maps (I′3–I′5) with the same dimensions as the input. Among these,
the feature maps corresponding to the Dark4 and Dark5 dimensions (I′4 and I′5, respec-
tively) are selected for the classification process. The classification component consists of a
BaseConv, two convolutional layers, and three linear layers. In the linear layers, the flat-
tened feature maps are sequentially reduced to the dimensions of 256, 64, and 10, where the
parameter 10 represents the number of classes for classification. The so f tmax() activation
function is applied to obtain the probability distributions (m1 and m2) for the output feature
maps corresponding to the Dark4 and Dark5 scales, respectively. These probability distri-
butions from the two scales are considered as evidence sources for decision-level fusion.

so f tmax(zi) =
ezi

∑C
c=1 ezc

, (20)

where ezi represents the i-th value, and C represents the number of outputs, which is the
number of classes.

Although the feature maps between different dimensions complement each other
with feature information through the FPN operation, the probability distribution results
obtained from different-sized feature maps still exhibit variations after classification. Hence,
the differences in information between these two probability distributions can be utilized
to optimize the classification results. Treating these two probability distributions as two
sources of evidence, whic are denoted as m1 and m2, the DS fusion rule is employed to
merge them. Initially, the conflict coefficient K, which represents the degree of dissimilarity
between the two pieces of evidence, is computed using Equation (7) based on m1 and m2.
Subsequently, Equation (6) is applied to fuse the probability values of each class in m1
and m2, thereby resulting in a unique classification result. During the fusion process, the
probability values corresponding to classes with relatively higher degrees of credibility in
the probability distribution are accentuated, while the probability values corresponding
to other classes are attenuated. If a scenario arises where two probability values in the
distribution are similar, indicating hesitation between two classes, this method can leverage
the differential information from other probability distributions to make decisions, thereby
enhancing the reliability of the final classification result. Consequently, the final classifi-
cation result is obtained. This approach provides a more reliable classification outcome
compared to the individual fused results. The pseudocode for the E-FPN is presented in
Algorithm 1.

In this case, I1, I2, I3, I4, and I5 represent the outputs of each stage in the backbone
network, DarknetN and N ∈ 2, 3, 4, 5 represent different parts of the backbone network,
fFPN(·) refers to the feature fusion operation, and K represents the conflict coefficient
between the evidence. f latten(·) denotes the operation of flattening the feature map, FC(·)
represents the classification operation, and so f tmax{·} maps the obtained classification
results to the range [0,1].
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Algorithm 1 The Method Processing of a Image
Input: A ship image X
begin
Do abstract feature extraction
I1 = X⊗ Focus
I2 = I1 ⊗ Darknet2
I3 = I2 ⊗ Darknet3
I4 = I3 ⊗ Darknet4
I5 = I4 ⊗ Darknet5
End
Do FPN feature fusion
I4
′, I′5 = fFPN(I3, I4, I5)

End
Do Classification
I4
′′ = f latten(I′4)

I5
′′ = f latten(I′5)

m1 = so f tmax{FC(I4
′′)}

m2 = so f tmax{FC(I5
′′)}

End
Do Decision fusion
result = DS(m1, m2)
End
Output: Classification tensor result

5. Experimental
5.1. Dataset

In this section, to validate the effectiveness of the E-FPN and compare it with other
image classification algorithms, two datasets, CIFAR-10 and FGSCR10, were used.

CIFAR-10 is a small-scale dataset used for general object recognition. It consists
of 10 classes of RGB images, with 6000 images per class. The dataset was divided into
a training set of 50,000 images and a test set of 10,000 images. The images have a size
of 32 × 32 pixels. This dataset was used to evaluate the classification performance for
traditional natural images.

The FGSCR-42 dataset is a publicly available dataset for fine-grained ship classification
in remote sensing images. It contains 42 classes with a total of 9320 images, and the images
have varying resolutions. For the experiments in this section, we selected 10 classes with a
larger number of image samples, thus resulting in a total of 5220 images. This dataset was
used to evaluate the classification performance in the context of remote-sensing images
and fine-grained object classification. The composition and sample images are shown in
Table 1 and Figure 5, respectively.

Table 1. Ship image category.

Category Train Test

Arleigh_Burke-class_destroyer 290 290
Cargo_ship 189 189
Civil_yacht 389 388

Container_ship 228 227
Medical_ship 161 161

Nimitz-class_aircraft_carrier 277 276
San_Antonio-class_transport_dock 160 159

Ticonderoga-class_cruiser 304 303
Towing_vessel 389 389

Wasp-class_assault_ship 227 226
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Figure 5. FGSCR-10 image examples.

5.2. Experimental Parameter Settings

In this study, we compared classic classification algorithms, namely ResNet50, ResNeXt50,
VGG19, and VGG16, along with the fine-grained image classification algorithms B-CNN
and DCL, against the E-FPN to evaluate its effectiveness. For the classic classification algo-
rithms, the image size was uniformly adjusted to 224× 224. Data augmentation techniques,
including random horizontal flipping, random occlusion, and random cropping, were ap-
plied to the dataset images. The initial learning rate was set to 0.0001, and the training batch
size, weight decay, and decay epoch were set to 64, 0.1, and 50, respectively. The Adam
optimizer was selected, and the cross entropy loss function was employed for calculating
the loss. In the proposed method, to preserve more image feature information, the dataset
images were uniformly resized to 320 × 320 while keeping the remaining parameters
consistent with the aforementioned settings. This was done to evaluate the effectiveness of
the E-FPN in terms of classification performance by comparing it with the baseline models.
Further details regarding the metrics and evaluation will be presented in the following
sections. The experiments were conducted using the GPU resource A5000-24G.

5.3. Evaluation Indices

In this experiment, the overall accuracy (OA) and the Kappa statistic were employed
as evaluation metrics to assess the classification performance of the models. The details are
as follows:

1. OA: Overall accuracy is defined as the ratio of correctly classified samples to the total
number of samples. The calculation method is as follows:

OA =
1
N

N

∑
i

f (i), (21)

where N represents the total number of image samples in the dataset. f (i) represents
whether the classification of the ith sample is correct. If the classification is correct,
the value of f (i) is 1; otherwise, it is 0.

2. The Kappa coefficient is used for consistency testing and can also be used to measure
classification accuracy. Its calculation is based on the confusion matrix. The calculation
method is as follows:

k =
p0 − pe

1− pe
, (22)
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where p0 represents the ratio of the sum of correctly classified samples in each class to
the total number of samples, which corresponds to the overall accuracy. Assuming
that the true number of samples in each class is denoted as a1, a2, . . . , ac, the predicted
number of samples in each class is denoted as b1, b2, . . . , bc, respectively, and the total
number of samples is n, then the equation can be expressed as follows:

pe =
a1 × b1 + a2 × b2 + · · ·+ ac × bc

n× n
. (23)

The calculation result of Kappa falls between [−1:1], but it typically ranges between
[0:1]. It can be categorized into five levels to represent different levels of agreement:
[0.0:0.20] indicates slight agreement, [0.21:0.40] indicates fair agreement, [0.41:0.60] indicates
moderate agreement, [0.61:0.80] indicates substantial agreement, and [0.81:1] indicates
almost perfect agreement.

5.4. Performance Evaluation

In this section, the effectiveness of the proposed method is evaluated by comparing it
with classical image classification networks on the CIFAR-10 and FGSCR-10 datasets. The
validation results are shown in Tables 2 and 3. The bold typeface represents the best results,
while underlining represents the second-best results.

Table 2. Comparison with classical network OA.

Method FGSCR-10 CIFAR-10

Resnet50 0.9677 0.9320
Resnext50 0.9631 0.9319

VGG16 0.9685 0.9330
VGG19 0.9405 0.9451
B-CNN 0.9663 0.9242

DCL 0.9731 0.9504
E-FPN 0.9804 0.9478

Table 3. Comparison with classical network Kappa.

Method FGSCR-10 CIFAR-10

Resnet50 0.9638 0.9220
Resnext50 0.9681 0.9327

VGG16 0.9573 0.9424
VGG19 0.9336 0.9390
B-CNN 0.9621 0.9157

DCL 0.9693 0.9449
E-FPN 0.9776 0.9450

In Tables 2 and 3, two metrics were used to evaluate the classification performance, as
well as to compare the four classical classification networks and two fine-grained image
classification networks with the E-FPN. The proposed method was evaluated on the CIFAR-
10 dataset using two metrics—OA and Kappa. The results indicate that the E-FPN achieved
excellent performance in both metrics, with an OA of 94.78% and a Kappa value of 0.945,
thereby obtaining the second-best and best scores, respectively. This demonstrates the
effectiveness of the E-FPN with respect to the traditional natural image dataset.

In the FGSCR-10 dataset, the proposed method achieved an OA of 98.04% and a
Kappa value of 0.9776. Compared to the other four classical methods, the E-FPN showed an
improvement in the OA that ranged from 1.15% to 3.95% and an improvement in the Kappa
metric that ranged from 0.0095 to 0.044. When compared with the other two fine-grained
image classification algorithms, the E-FPN also achieved excellent results with the highest
OA and Kappa values.

Through the experiments on the two datasets, it can be observed that all algorithms
showed similar performance on the CIFAR-10 dataset, and in some cases, the B-CNN even
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exhibited lower accuracy compared to the baseline model. This could be attributed to the
low resolution of the images in this dataset, as certain algorithmic improvements may not
perform as effectively under such conditions.

In the FGSCR-10 dataset, the performance of the proposed method surpassed that
of the other four baseline models. This may be due to the fact that the FGSCR-10 dataset
involves fine-grained classification targets. After feature extraction by the backbone net-
work, the E-FPN utilizes the FPN method to fuse features at different scales, which allows
for complementary details among the three-dimensional feature maps. Finally, the clas-
sification results of the different feature maps are fused using the evidence-theory-based
decision-level fusion method, thus further correcting the classification results. For example,
when an image is misclassified, its correct classification has a probability value that is close
to the probability value of the current misclassification. When another set of probability
distributions is fused, the probability value corresponding to the correct classification is
also large. After fusion, the probability value of the correct classification may become
the largest, thus resulting in the final correct result. As a result, the proposed method
demonstrates an advantage over the other methods in the FGSCR-10 dataset. Compared
to the other two fine-grained image classification algorithms, our proposed E-FPN out-
performed the B-CNN and DCL. This may be attributed to the effective extraction of the
objects’ fine-grained features using our multiscale approach, and the decision-level fusion
enables a comprehensive analysis of the classification results from different perspectives.

In terms of the Kappa metric, all classification methods achieved a performance ex-
ceeding 90% on both datasets, thus indicating a level of consistency that is considered
“almost perfect”. Compared to the other four baseline models, the E-FPN exhibited further
improvement in this metric, thus signifying enhanced classification accuracy for each class
and its general applicability. Additionally, when compared to the fine-grained image recog-
nition algorithms (B-CNN and DCL), the E-FPN also showed improvement in terms of the
Kappa value. Furthermore, Figure 6 provides a detailed visualization of the classification
results for each class, which demonstrates the proposed method’s performance in terms of
confusion matrices for both the CIFAR-10 and FGSCR-10 datasets. There are very few dark
areas outside of the diagonal, thus indicating a reduced number of misclassifications. This
visual representation intuitively demonstrates the effectiveness of the E-FPN.

Table 4 presents the number of parameters, FLOPs (floating-point operations), and
inference times for the seven models. It can be observed that the VGG16 and VGG19 had
significantly higher numbers of parameters and FLOPs compared to the other baseline
models. This is likely due to their deeper network architectures and the utilization of
numerous convolutional layers. On the other hand, the ResNet50 and ResNeXt50 had
smaller numbers of parameters and FLOPs. This reduction can be attributed to the utiliza-
tion of residual structures, which help reduce network depth and complexity. Among the
five methods, the E-FPN had a higher number of parameters compared to the ResNet50
and ResNeXt50, but it was lower than the VGG16 and VGG19. However, its FLOPs were
the lowest among the five methods, thus indicating a relatively low computational cost
when performing the classification task. This is because the proposed method introduces
an additional FPN network, while the backbone network adopts the residual approach
to reduce its depth. When comparing the fine-grained image classification models, the
E-FPN had the highest number of parameters, thus suggesting higher storage requirements.
However, its FLOPs remained the lowest, which indicates that, compared to the other
six models, the E-FPN requires fewer computational resources during the inference phase,
thereby making it suitable for deployment on mobile and edge devices. This observation is
evident from the inference speed, where all three fine-grained image recognition models,
including the E-FPN, required higher inference times than the four baseline models. How-
ever, in the fine-grained image recognition models, the inference time of the E-FPN model
was lower than the other two (B-CNN and DCL). This demonstrates the advantage of the
E-FPN in terms of the inference speed.
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Additionally, the DS fusion method used in the E-FPN incurred minimal additional
computational costs for the network. As a result, the increase in network parameters was
relatively small, and the FLOPs were the lowest among the all models.

By comparing the experimental results from the two aforementioned tables, it can
be concluded that the E-FPN is effective with respect to both traditional natural image
datasets and fine-grained remote sensing image datasets. In the description of the FPN
network structure, it was mentioned that three feature maps of different dimensions
were utilized, but during the final decision-level fusion, only the results from the deeper
two scales of the feature maps were selected for fusion. In the following, we will discuss
the impact of choosing different dimension feature maps for decision-level fusion on the
final results. The results of these experiments are presented in Tables 5 and 6.

Table 4. Comparison of the number of parameters and FLOPs.

Method Params (M) FLOPs (G) Inference Time (ms)

Resnet50 23.53 4.13 35.854
Resnext50 23 3.82 35.418

VGG16 134.33 15.52 33.658
VGG19 139.62 19.96 34.574
B-CNN 17.34 61.93 49.243

DCL 23.57 16.53 48.165
E-FPN 79.22 3.58 45.224

Table 5. Fusion of results from different scales in CIFAR-10 dataset. (The symbol “X” indicates the
usage of feature maps at that scale, while the “×” indicates their exclusion).

Dataset Dark3 Dark4 Dark5 OA Kappa

CIFAR-10

X × × 0.9374 0.9304
× X × 0.9438 0.9375
× × X 0.9516 0.9462
X X × 0.9431 0.9367
× X X 0.9492 0.945
X × X 0.948 0.9422
X X X 0.9478 0.942

Table 6. Fusion of results from different scales in FGSCR-10 dataset. (The symbol “X” indicates the
usage of feature maps at that scale, while the “×” indicates their exclusion).

Dataset Dark3 Dark4 Dark5 OA Kappa

FGSCR-10

X × × 0.9773 0.9746
× X × 0.9773 0.9746
× × X 0.9773 0.9746
X X × 0.978 0.975
× X X 0.9804 0.978
X × X 0.9804 0.9478
X X X 0.9804 0.978

In this experiment, different combinations of feature maps were fused for each dataset,
and the impact of the pairwise fusion of different feature maps on the final results was
compared. The last line represents the results obtained by fusing all three feature maps
together. Dark3–Dark5 represent the probability distributions of the classification results
from the FPN fused outputs of the backbone network. In Table 5, the CIFAR-10 dataset was
used. It can be observed that, before decision-level fusion, the OA gradually improved as
the network layers deepened. However, after fusion, the OA was lower than the OA of the
Dark5 output result. Among the fused results, the fusion of Dark4 and Dark5 achieved the
highest OA of 94.92%. Furthermore, its Kappa value was superior to the other three results,
which came out to 0.945. Preliminary analysis suggests that this may be due to significant
conflicts in the probability values among certain categories before fusion, thereby resulting
in an unreasonable probability distribution after fusion, thus leading to incorrect fusion
results. Further investigation of this issue will be discussed in subsequent sections.
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Figure 6. The confusion matrices of E-FPN on CIFAR-10 and FGSCR-10 are presented. (a) shows the
confusion matrix obtained from the CIFAR-10 dataset, while (b) shows the confusion matrix obtained
from the FGSCR-10 dataset.

Table 6 displays the results obtained from the FGSCR-10 dataset: Dark3–Dark5 had
the same classification OA of 97.73%. However, the OA improved after fusion. The fusion
of the Dark3 and Dark4 achieved an OA of 97.8%, while the fusions of the Dark4 and Dark5,
Dark3 and Dark5, and all three (Dark3–Dark5) had an OA of 98.04%. The performance
of the Kappa index was consistent with the OA, with the fusion of the Dark3 and Dark4
resulting in a Kappa value of 0.975, while the other three fusions all had Kappa values of
0.978. By comparing the results before and after fusion, it can be observed that the samples
correctly classified by the Dark3–Dark5 were not entirely the same, and, in the probability
distributions of misclassified samples, the probability values for the correct class were close
to those of the misclassified class. Therefore, after fusion, some misclassified samples were
corrected, thereby resulting in an improvement in the final OA of the results.

According to the above table, it can be observed that the highest OA resulted after
fusions were obtained by combining Dark5 with other parts, and these results were supe-
rior to the results obtained by fusing the Dark3 and Dark4. It can be seen that the results
obtained from the deeper parts of the network had a more reliable probability distribution.
However, the results obtained by fusing all three parts together showed a slight decrease
compared to the fusion of the Dark4 and Dark5. This may be due to the fact that, dur-
ing fusion, the probability values of the correct class and the misclassified class for all
three inputs were very close, and since the Dark3 had classification errors, the final result
was not corrected to the correct class during fusion, thereby resulting in a decrease in the
OA. Therefore, in the experiment, this study chose to fuse the Dark4 and Dark5 for the
fusion process.

The E-FPN in this paper consists of three parts: the feature extraction network, the
FPN network, and the decision fusion part. During the training process, the crossentropy
loss values of the three outputs from the FPN were summed to calculate the overall loss
value. Specifically, the obtained loss values in the network are referred to as loss_0, loss_1,
and loss_2. However, for the final decision, only the output results from the Dark4 and
Dark5 were selected for fusion. Therefore, the next step was to explore the impact of the
loss_0 value obtained from Dark2 on the classification performance and the effect of using
the FPN for fusion at the feature level.
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According to the experimental results in Table 7, for the CIFAR-10 dataset, the removal
of the loss_0 slightly improved the OA to 95.13%. This may be because the FPN has multiple
output classification results, and adding the loss_0 during the training process may have
led to oscillation and decision risk. Additionally, the OA gap between the Dark4 and Dark5
was very small, and their Kappa values were similar. Without using the FPN for feature-
level fusion, the OA was lower in both cases, and the fused OA and Kappa values were also
lower compared to the two cases with theFPN. This indicates that the classification results
of the shallow layers may have had a negative impact on the decision-making and fusion in
the datasets with clear image features. However, the positive impact of the shallow layers
in the feature-level fusion should not be ignored, as shown in Table 8.

When conducting experiments on the FGSCR-10 dataset, it was found that adding
the loss_0 and using the FPN for feature-level fusion resulted in a higher OA and Kappa
values compared to not using the FPN or not adding the loss_0, wherein 98.04% and
0.978 were achieved, respectively. This indicates that the classification performance for each
class object in the dataset was excellent. Under the conditions of removing the FPN and
removing the loss_0, the OA gap between the Dark4, Dark5, and the fused result was small.
However, it can be observed that the OA of the fused result was better than the individual
results. As mentioned earlier, although the outputs of the shallow network can have a
negative impact on the final decision-level fusion, the features learned by the shallow
network still have a positive influence on the classification results in the feature-level
fusion process.

Table 7. The ablation experiments of E-FPN for the CIFAR-10 dataset (Dark3–Dark5 represent the
classification OA for three different scales).

CIFAR-10 DarkNet + FPN + Loss_0 DarkNet + FPN DarkNet + Loss_0

Dark3 0.9374 0.8865
Dark4 0.9438 0.9401 0.9344
Dark5 0.9516 0.9511 0.9428

E-FPN OA 0.9492 0.9513 0.944
E-FPN Kappa 0.945 0.945 0.9377

Table 8. The ablation experiments of E-FPN for the FGSCR-10 dataset (Dark3–Dark5 represent the
classification OA for three different scales).

FGSCR-10 DarkNet + FPN + Loss_0 DarkNet + FPN DarkNet + Loss_0

Dark3 0.9773 0.9605
Dark4 0.9773 0.9743 0.972
Dark5 0.9773 0.9754 0.9735

E-FPN OA 0.9804 0.975 0.9781
E-FPN Kappa 0.978 0.972 0.9754

Based on the experiments and discussions, it can be concluded that using the FPN
structure and training the shallow network for classification improved the classification
performance on the fine-grained remote-sensing image dataset. The FPN structure comple-
mented the detailed features that were lost in the deep network. Since the FPN structure
used in the paper involved the fusion of the information from the three layers, adding
the loss_0 for classification training in the top layer of the network could facilitate the
learning of more useful feature information, thereby further enhancing the feature fusion
effect. The results in Table 8 indicate that employing the feature-level fusion method helped
improve the classification performance of fine-grained remote-sensing image classification
and further enhanced the classification performance after decision-level fusion.

The experimental parameter section in this paper mentions that, unlike the four other
classification methods used in the comparative experiments, the image input size for the
E-FPN in this paper was 320 × 320, while the four classical classification methods used
an image input size of 224 × 224. The purpose of this choice was to preserve more image
feature information. However, it should be noted that a larger input image size does not
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necessarily guarantee better performance. Tables 9 and 10 present a comparison of the
impact of different input image sizes on the classification performance.

In the experiments comparing the impact of different input image sizes on the clas-
sification performance, the image size of 224 × 224, which is the same as the other four
classical algorithms, was selected. Additionally, scaled versions of the 640 × 640 and
160 × 160 were used. Based on the data in Tables 9 and 10, it was found that the input
image size of 320 × 320 achieved the best performance in terms of the classification OA
and Kappa value. Furthermore, in both tables, as the input image size decreased from large
to small, the classification the OA initially increased and then decreased. Therefore, it is
not necessarily true that a larger input image size leads to better performance, and the
appropriate size should be chosen based on the specific circumstances.

Table 9 presents the influence of different input image sizes on classification perfor-
mance, which reveals that the classification OA for each size increased with the depth of
the network. Except for the 320× 320 size group, all other size groups exhibited an increase
in the classification OA after decision-level fusion. However, the final accuracy remained
lower than that of the 320 × 320 size group. Regarding the Kappa index, the 320 × 320 size
group still performed the best. These data indicate that, for traditional natural image
datasets, which have easily discernible image features, adequate feature extraction enabled
effective classification, thereby only necessitating the selection of an appropriate input
image size.

Table 10 demonstrates the impact of different input image sizes on the classification
performance in the FGSCR-10 dataset. In contrast to Table 9, Table 10 does not observe an
increase in the classification OA with the network depth. In the 640× 640 and 160× 160 size
groups, a decline in the classification OA was observed as the network depth increased.
This may have been due to excessively large or small feature maps that failed to effectively
propagate relevant features in the FPN feature fusion. For the 160 × 160 size group, the
small image size may have led to the loss of crucial detail features, thereby resulting in
a reduced classification OA. This could also result in significant conflicts between the
generated probability distributions, thereby making it difficult to correct misclassifications
during the decision-level fusion and ultimately decreasing the OA of the fused results.
In the 320 × 320 size group, the Dark3–Dark5 exhibited a higher classification OA than
the other groups. Although these three groups had the same classification accuracy, the
decision-level fusion further enhances their OA values. These data demonstrate that
the proposed classification method, when applied to fine-grained remote sensing image
datasets, benefits from using appropriately sized input images. This enabled the extraction
of abstract features while retaining some detailed features, thereby facilitating subsequent
image classification operations.

Table 9. Input images of different sizes in CIFAR-10 (Dark3–Dark5 represent the classification OA for
three different scales).

CIFAR-10 640 × 640 320 × 320 224 × 224 160 × 160

Dark3 0.9161 0.9374 0.9171 0.9012
Dark4 0.9164 0.9438 0.9277 0.9123
Dark5 0.9242 0.9516 0.9341 0.9169

E-FPN OA 0.9248 0.9492 0.9348 0.9174
E-FPN Kappa 0.9164 0.945 0.9275 0.9082

Table 10. Input images of different sizes in FGSCR-10 (Dark3–Dark5 represent the classification OA
for three different scales).

FGSCR-10 640 × 640 320 × 320 224 × 224 160 × 160

Dark3 0.9758 0.9773 0.9551 0.9677
Dark4 0.9746 0.9773 0.9605 0.9674
Dark5 0.9654 0.9773 0.9635 0.9616

E-FPN OA 0.9693 0.9804 0.9628 0.9658
E-FPN Kappa 0.9655 0.978 0.9582 0.9616
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In the previous sections, we discussed the network architecture and input image data.
In Section 2, the limitations of the DS fusion method were mentioned; specifically, the
issue of unreasonable fusion results when significant conflicts exist between two input
evidence factors were discussed. To overcome this problem, this paper adopted the PCR5
fusion method and utilized the Shafer discounting method to weigh the evidence, thereby
reducing the conflicts between input evidence. The obtained results were compared with
those of the DS fusion method.

Tables 11 and 12 present the OA and Kappa values obtained using three different
fusion rules for the CIFAR-10 dataset. The DS fusion rule was the fusion rule adopted
in this paper, the PCR5 was the proportional conflict redistribution method mentioned
in Section 2 of this paper, and wPCR5 refers to the addition of weights to the probability
distributions before using the PCR5 fusion rule by applying the Shafer discounting method
to discount the evidence and reduce conflicts between input data. From Table 11, it can
be observed that the OA values of the Dark3 × Dark4, Dark3 × Dark5, and Dark4 × Dark5
combinations under the DS fusion rule and PCR5 fusion rule were almost indistinguish-
able. However, for the Dark4 × Dark5 combination, the OA decreased when using the
PCR5 rule compared to using the DS rule. After applying the wPCR5 fusion rule, the
OA improved compared to both the DS rule and the PCR5 rule for all three combina-
tions. This improvement may have been attributed to the already high classification
OA before fusion, thereby indicating a relatively small conflict between the probability
distributions of the two input data. The PCR5 fusion rule primarily aims to mitigate
the impact of the conflicts on the fusion results and to prevent the generation of unrea-
sonable output values. By adding weights and employing the PCR5 rule, the conflicts
between the two inputs can be further effectively reduced, thereby leading to better results.
The Kappa values generally exhibited a similar pattern to the OA results. The wPCR5 rule
yielded slightly better results compared to the DS and PCR5 rules, but the improvement
was marginal, while there was little difference between the DS rule and the PCR5 rule.

Tables 13 and 14 compare the OA and Kappa values for the FGSCR-10 dataset. Similar
to the results obtained on the CIFAR-10 dataset, the DS fusion rule and the PCR5 fusion
rule yielded nearly identical results. However, for the Dark3 × Dark5 combination with
higher conflicts, the PCR5 rule slightly outperformed the DS rule. When using the wPCR5
rule, the performance was slightly worse than when using the previous two rules. The
same trend was observed in the Kappa values. However, in the case of the fine-grained
remote-sensing image datasets, the probability values of each class in the classification
distributions were close, thereby making it difficult to compute favorable weights, as was
mentioned in Section 2. Consequently, the weighting approach weakened the confidence of
certain correctly classified classes during the discounting operations, thereby resulting in
suboptimal final results. Regarding the Kappa values, there was little difference among the
three fusion methods.

Table 11. Precision comparison of different decision-level fusion methods in CIFAR-10.

CIFAR-10 OA Dark3 × Dark4 Dark3 × Dark5 Dark4 × Dark5

E-FPN with DS 0.9431 0.948 0.9492
E-FPN with PCR5 0.9432 0.9479 0.9489

E-FPN with wPCR5 0.9442 0.9508 0.9509

Table 12. Kappa comparison of different decision-level fusion methods in CIFAR-10.

CIFAR-10 Kappa Dark3 × Dark4 Dark3 × Dark5 Dark4 × Dark5

E-FPN with DS 0.9367 0.9422 0.945
E-FPN with PCR5 0.9368 0.9421 0.9432

E-FPN with wPCR5 0.938 0.945 0.945
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Table 13. Precision comparison of different decision-level fusion methods in FGSCR-10.

FGSCR-10 OA Dark3 × Dark4 Dark3 × Dark5 Dark4 × Dark5

E-FPN with DS 0.978 0.9804 0.9804
E-FPN with PCR5 0.978 0.9812 0.9804

E-FPN with wPCR5 0.977 0.9796 0.98

Table 14. Kappa comparison of different decision-level fusion methods in FGSCR-10.

FGSCR-10 Kappa Dark3 × Dark4 Dark3 × Dark5 Dark4 × Dark5

E-FPN with DS 0.975 0.978 0.978
E-FPN with PCR5 0.976 0.978 0.978

E-FPN with wPCR5 0.975 0.977 0.9776

Based on the above analysis, it can be observed that the DS fusion rule and the PCR5
fusion rule yielded almost identical results on both datasets. The wPCR5 method performed
slightly better than the previous two methods with respect to the traditional natural image
datasets but slightly worse with respect to the fine-grained remote-sensing image datasets.
Additionally, the computation complexities of the PCR5 and wPCR5 were higher than
that of the DS rule, and the complexities increased more noticeably with a larger number
of classes to be classified. Therefore, when there was no significant conflict between the
two probability distributions, the DS fusion rule was chosen in this paper.

In the previous experiments, it was mentioned that, in the fine-grained remote-sensing
image dataset, the method of adding weights to reduce the conflicts between the evi-
dence actually weakened the credibility of some correctly classified results. In the pro-
cess of calculating the weights, a threshold was set for the ratio between the mass val-
ues of each class and the maximum mass value to preserve the differences between the
two classification results.

In the previous experiments, a threshold of 0.5 was set. The impact of the threshold
value on the OA and Kappa value after fusion can be seen in Tables 15 and 16.

Table 15. Comparison of different thresholds for the CIFAR-10 (The value λ represents the threshold
chosen for calculating weights).

λ OA Kappa

0.1 0.9493 0.9436
0.2 0.9497 0.9441
0.3 0.95 0.9444
0.4 0.9501 0.9445
0.5 0.9509 0.945
0.6 0.9516 0.9462
0.7 0.9516 0.9462
0.8 0.9517 0.9463
0.9 0.9517 0.9463

Table 16. Comparison of different thresholds for the FGSCR-10 (The value λ represents the threshold
chosen for calculating weights).

λ OA Kappa

0.1 0.98 0.9776
0.2 0.9796 0.9771
0.3 0.9796 0.9771
0.4 0.9796 0.9771
0.5 0.98 0.9776
0.6 0.98 0.9776
0.7 0.98 0.9776
0.8 0.98 0.9776
0.9 0.9796 0.9771
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The above table demonstrates the influence of the threshold values ranging from 0.1 to
0.9 for the classification OA and consistency with respect to the two datasets. In the CIFAR-
10 dataset, as the threshold value increased from 0.1 to 0.9, the classification OA gradually
rose to 95.17%. Compared to the threshold value of 0.1, there was an improvement of
0.24%. The Kappa value increased from 0.9436 to 0.9463. In this dataset, when the threshold
value increased, it filtered out categories with lower probability values in the probability
distributions, thereby retaining other potential options for correct classification. This
preserved some differences between the classifiers as complementary information, which
benefitted subsequent fusion operations.

In the FGSCR-10 dataset, changing the threshold value from 0.1 to 0.9 had almost no
impact on the classification OA and Kappa values. This indicates that the threshold value
had little effect on the fusion results in this dataset. Table 17 displays the partial probability
distributions generated by Dark5. It can be observed that the reason for this phenomenon is
that one class in the probability distribution—before fusion—had a significantly high prob-
ability value, and the ratios of other probabilities to it were lower than 0.1. Consequently,
the variation in the threshold value did not affect the final result.

Table 17. Partial probability distribution for the FGSCR-10 with E-FPN.

Category m1 m2 m3

Arleigh_Burke-class_destroyer 0.98235 1 0
Cargo_ship 0.00001 0 0
Civil_yacht 0 0 0

Container_ship 0 0 0
Medical_ship 0 0 0

Nimitz-class_aircraft_carrier 0 0 0
San_Antonio-class_transport_dock 0 0 0

Ticonderoga-class_cruiser 0.01764 0 1
Towing_vessel 0 0 0

Wasp-class_assault_ship 0 0 0

Based on the experiments, it can be concluded that the threshold value has almost no
impact on the classification of OA in the FGSCR-10 dataset. In the CIFAR-10 dataset used
in this experiment, setting a higher threshold value allows for the rational utilization of
the differences between different classifiers, thereby obtaining complementary information
and improving the OA of the classification results.

6. Conclusions

This study proposed a feature fusion and decision fusion method that combined the
FPN with evidence theory to improve the classification accuracy. The effectiveness of this
method was validated on both traditional natural image datasets and fine-grained remote-
sensing image classification datasets. For the fine-grained remote-sensing image dataset,
the FPN was utilized for feature-level fusion to capture the lost detailed features in the
shallow networks. Simultaneously, evidence theory was applied to modify the generated
probability distributions. In the experimental section, the network architecture and the
parameters of this method were discussed, and the impact of different fusion rules on the
final classification accuracy was compared. The experimental results demonstrate that
selecting appropriate sizes of input images and using both feature-level fusion and decision-
level fusion can effectively improve the classification accuracy. Additionally, reducing the
conflicts between different classifier results through the addition of weights contributes to
the enhancement of the classification results in certain cases.

The proposed E-FPN method still has some issues that need to be optimized. For
instance, as demonstrated in Tables 2–4 in Section 5.4 of the paper, the E-FPN did not
achieve significant improvement compared to the other three fine-grained image classifica-
tion algorithms in the ship fine-grained classification task. Furthermore, when compared
to the baseline models for the CIFAR-10 dataset, the improvement of our proposed method
was not significant. We believe this is due to the small-image resolution in this dataset,
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where the utilization of multiscale features might not effectively extract and fuse large-scale
and small-scale features, thereby leading to the incomplete exploitation of the advantages
of multiscale features. Additionally, the E-FPN has a higher number of parameters than
other algorithms, which demand significant storage resources when deployed, and this
limitation requires optimization in future work.

Moreover, the current usage of the E-FPN involves the classification of single, complete
images, which poses significant challenges when encountering scenarios with multiple
objects or complex background environments in the image.

Future work should focus on applying this method to different feature extraction
networks and exploring its generalizability. Additionally, further research should explore
detail-oriented feature extraction and fusion methods to replace the fusion of entire feature
maps, thereby aiming to reduce the complexity and the number of parameters of the
method. Simultaneously, it is important to explore methods that prioritize the object’s
location in the image to mitigate the interference caused by the background objects in the
classification process.
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