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Abstract: Observation task planning is a key issue and the first step in the development of automated
Satellite Laser Ranging (SLR) systems. Aiming at the problem of dynamic change of cloud cover
during SLR operation, this paper proposes an autonomous mission planning algorithm for SLR
based on the Rolling Horizon Optimization (RHO) framework. A hybrid event- and cycle-driven
replanning mechanism is adopted, and four functional modules, rolling, planning, information
acquisition and decision-making, are established to decompose the SLR observation task planning
process into a series of static planning intervals. An improved ant colony algorithm is proposed
and utilized to realize the autonomous planning of SLR system observation tasks, and the above
autonomous planning algorithm is verified and analyzed based on the SLR system at station 7237.
The results show that the above algorithm can effectively increase the number of observation satellites
and revenue under cloud disturbance, solve the problems of low efficiency and poor interference
resistance of conventional static algorithms, and provide a new research idea for the establishment of
an unattended SLR system.

Keywords: satellite laser ranging; autonomous task planning; rolling horizon optimization; ant
colony algorithm

1. Introduction

Satellite laser ranging (SLR) technology is a multidisciplinary technology combining
laser, photoelectric detection, automatic control, satellite orbit and other technologies [1,2].
Unlike other space geodesy techniques, SLR uses high heavy frequency, high peak power
and narrow pulse width lasers, which solves the problems of low ranging accuracy, poor
stability and bulky equipment in traditional radar systems, and has been widely used in
astronomical geodynamics, space geodesy and space science research [3-6]. In order to
meet the major national needs of manned spaceflight, satellite navigation systems and deep
space exploration, SLR systems are developing towards long-range, high-precision and
automation. Due to the expensive equipment and technical difficulties, only NASA of the
United States, Stromlo of Australia and Wettzell of Germany have realized research into an
unattended fully automatic satellite laser ranging system [7-10].

With the continuous expansion of the application field, the SLR cooperation targets
are increasing year by year: how to use the observation task planning technique to arrange
the repetitive and large number of SLR observation tasks in the observation window
reasonably; to obtain the optimal observation effect—one of the difficulties to be solved
urgently to improve the efficiency of the SLR system; to realize the automation of the station.
At present, most SLR stations still use manual planning to select observation targets. This
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method has a poor degree of automation and low efficiency, and is prone to leakage of stars
and fewer stars in the observation process, which cannot give full play to the effectiveness
of the high-precision SLR system.

Much of the research on observational task planning issues has centred on aspects
such as Earth observation satellites and imaging satellites. Conventional observation task
planning is usually based on observation task information, building a mathematical model,
designing a static planning algorithm to solve it, and generating observation plans for days
or even weeks [11,12]. However, in actual observations, there are situations where clouds
obscure the observation targets, and pre-generated observation plans are often severely
disrupted. In order to solve this problem, some scholars have developed observation plans
based on static planning algorithms, which are based on the predicted cloud information
provided by the meteorological department. In 2007, Liao et al. converted the observa-
tion task planning problem into a stochastic integer planning problem, combined with
weather prediction information, and utilized a Lagrangian relaxation algorithm to generate
a planning scheme, which was adjusted according to the updated weather prediction
information [13]. In 2013, He et al. developed a model for the impact of cloud cover on the
observation task based on cloud prediction information and designed a heuristic algorithm
to solve the problem [14]; Wang et al. represented the cloud cover occlusion at the time of
observation as a stochastic event, established an integer linear programming (ILP) model,
and proposed a branch and cut (B&C) algorithm based on delayed constraint generation to
solve the ILP model [15]. In 2022, Li et al. first analyzed the cloud information provided
by meteorological satellites and proposed a task planning algorithm solving for generated
observation plans based on cloud information [16].

Unlike in the above studies, the observation results and accuracy of SLR systems are
highly susceptible to the influence of cloud cover, and the observation plans generated
using the predicted cloud information cannot meet the requirements of SLR applications.
For this reason, this paper proposes an autonomous planning method for SLR observation
tasks based on the Rolling Horizon Optimization (RHO) framework for dynamic changes
of cloud cover. The task planning process is decomposed into a series of continuous
uninterrupted static planning intervals based on real-time cloud information and rolling
windows. At the same time, an improved ant colony algorithm is designed to solve
the problem, continuously carry out planning and decision-making, and utilize the local
planning several consecutive times instead of one-time global planning, so as to reasonably
arrange the repetitive and large number of SLR observation tasks within the observation
window, and to realize the autonomous planning of observation tasks in the SLR system,
so as to enhance its degree of automation and work efficiency.

2. Problem Analysis
2.1. Problem Description

In the SLR observation task planning problem, there are phenomena such as multiple
targets transiting at the same time, different target priorities, time window constraints
between targets and stations, and cloud cover obscuring the observation targets during the
observation process [17], as shown in Figure 1. How to achieve autonomous avoidance of
clouds in a specific observation time window and maximize the observation results to meet
the satellite tracking priority and observation revenue is the primary problem to be solved
in the autonomous task planning of the SLR observation task.

The satellite tracking priority is established by the International Laser Ranging Service
(ILRS) organization based on satellite orbit parameters and special project requirements.
The priority list is shown in Table 1 (partial).
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Figure 1. Schematic diagram of station observation.

Table 1. Priority list (partial).

Priority Full Name of Satellite
1 GRACE-FO-1
2 ICESat-2
3 CryoSat-2
4 PAZ

The 7237 observation station combines the priority list provided by ILRS to convert
observation efficiency into observation revenue. Each satellite has three scores based
on observation time. The higher the score, the higher the observation efficiency. The
7237 observation station rating table is shown in Table 2 (partial).

Table 2. 7237 observation station rating table (partial).

Full Name Satellite Minimum Qualified Full Marks Minimum Qualified Full Score
of Satellite Code Duration Duration Duration Score Score
ajisai AJ 1 min 2 min 5 min 3 5 8
beaconc BE 1 min 2 min 3 min 3 5 8
galileo102 12 3 min 5 min 30 min 5 9 15
etalonl El 5 min 10 min 30 min 5 9 15

2.2. Decision Variables

Based on the above problem description, the decision variables for the SLR systematic
observation task planning problem are expressed as follows:

o — 1, Satellite i is not covered by clouds )
Y71 0, otherwise
1, the observation duration of satellite i is the minimum

Xj = . (2)
0, otherwise

~_ | 1, the observation duration of satellite i is the qualified 3)
Yi= 0, otherwise

I 1, the observation duration of satellite i is the full marks @)
71 0, otherwise
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Equations (1)—(4) represent the decision variables of the planning model. Among them,
k; is a variable indicating whether the satellite is obscured by clouds. When k; is set to
1, it indicates that satellite i can continue to observe without being obscured by clouds.
Otherwise, it is set to 0. x;, y;, z; respectively represent the observation duration variables
of satellite i. When satellite i is observed, one and only one of the three variables is not zero.
When satellite i is not observed, all three variables are zero.

2.3. Constraints to Be Met

In the task planning process of the SLR system, for a particular laser ranging station H
on the ground, the satellite selected needs to satisfy the following constraints:

1. The station is not visible to the satellite at all times, so there is a visibility time window
constraint that needs to be satisfied for target selection;

2. Satellites need to meet a certain elevation angle in order to carry out effective observations;

3. Observation targets need to be selected based on a prioritized list of satellites provided
by ILRS;

4.  The selection of the observation target should be such that the observable duration of
the target is not less than the minimum duration;

5. Once the target has been selected, there are only three choices of observation duration:
minimum, qualified and full, corresponding to three scores;

6. Observation start and end times for all targets should be within the task planning time
frame;

7. Observation targets must not be obscured by clouds.

2.4. Problem Modeling

The above constraints will affect the station’s selection of observation satellites, and
these constraints are expressed in the constraint satisfaction model below:

max : f = él(xigb +yign + zi&m) @)
ki#0,1<i<n (6)

pt = max{py, p2, - ,pi} @)

0, >ua;,1<i<n (8)
t>8;,1<i<n,Tstrt <t < Temd )

t+ tsgiten + TPP€% < E; 1 < i <, TSt < p < Tond (10)
Tstart < i (Tlpbserve + tswitch) < Tend (11)

i=1
In the above model, Equation (5) indicates that the optimization goal of SLR system
task planning is to maximize the observation revenue, and Equations (6)—(11) indicate the
constraints that need to be met for SLR observation task planning problems. The specific
instructions are shown in Table 3:
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Table 3. Constraint Description.

Constraint Description Equation
Indicates that the selected satellite cannot be obscured by clouds 6)
Indicates that the selected satellite has the highest priority ()
Indicates that the satellite can only be .seilected if its elevation angle meets ®)
the conditions
Indicates that the current time can only be selected after the start time of the ©)

satellite time window
Indicates that the current moment can only be selected if the sum of the

telescope’s tangent rotation time and observation time is less than the end of the (10)
satellite’s time window
Indicates that the sum of the observation time of all satellites and the telescope (1)

tangent rotation time should be within the task planning time period

3. Autonomous Planning Algorithm for Observation Tasks in SLR System

Based on the above constraint model, this paper adopts the Rolling Horizon Optimiza-
tion (RHO) framework for the SLR system observation task. Rolling Horizon Optimization
(RHO) is a framework of continuous short-term local optimization over time to achieve
continuous online optimization [18-20]. A hybrid event- and cycle-driven replanning
mechanism is used, with cloud cover of the satellite as a contingency. When an emergency
occurs, an event driven replanning mechanism is adopted to immediately carry out replan-
ning. Otherwise, a cycle driven replanning mechanism is adopted to continuously roll
out planning and quickly respond to cloud dynamic changes. This method includes four
functional modules: rolling, planning, information collection, and decision-making, with
information transmission and feedback between the modules, as shown in Figure 2.

Information
collection module

external

information
satellite planning decision
Rolling information Planning results Decision results
Actuator
module module module

whether to carry out re planning

satellite information obscured by clouds
Figure 2. The relationship between modules.

3.1. Rolling Module

The rolling module is responsible for creating rolling windows [21]. For the SLR
system observation task autonomous planning problem, the role of the rolling window is
mainly to establish the static planning interval, combined with the decision-making module
passing the information of the satellite obscured by clouds, to obtain the information on
observable satellites within the interval, and pass it to the planning module, as shown in
Figure 3. The flow of the rolling module is shown in Figure 4.
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Figure 3. Schematic diagram of rolling window.

Read satellite predictions

Obtain observable satellite
information based on the set length
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obscured by clouds?

Deletion of the code names of cloud-obscured
satellites from the information on observable
satellites

!

Passing infarmation to the planning
module

Figure 4. The flow of the rolling module.

3.2. Planning Module

The planning module is responsible for planning observable satellites within the
rolling window, often using static planning algorithms. The ant colony algorithm is one of
the preferred algorithms for static planning and has high computational speed in solving
optimization problems [22,23]. In this paper, the ant colony algorithm is improved by
combining the ideas of the greedy algorithm and wolf pack algorithm according to the
established constraint model of the problem. The details are as follows:

3.2.1. Node Transfer Improvement

In this paper, the greedy algorithm is introduced to improve the node transfer of ants,
which not only solves the problem of large randomness in the node transfer of the ant
colony algorithm, but also meets the principle of satellite tracking priority for the SLR
system. There are two methods for the improved node transfer as follows:
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Method 1: At the time of node transfer, the set of observable satellites A exists, and
there are unobserved satellite sets Ab. The observed satellites are placed in the taboo list
tabu, meeting the requirements A/O = Ap — (Ap Ntabu). At this point, node transfer is
carried out through Greedy Algorithms for satellite selection from Ab. The greedy criterion
set in this article is satellite priority [24,25]. After finding the satellite with the highest
priority for the current node, the ant colony algorithm is used for processing, and the
observation time of the satellite is selected through the roulette wheel method. This not
only satisfies satellite priority, but also relies on the dynamic optimization characteristics of
the ant colony algorithm to obtain the optimal observation sequence. The roulette wheel
expression is:

[ ()] [ ()]
Pz?;z(t) = Ljealiorw, [5; (D] [ (1)]
0, j & allowy

5, ] € allowy (12)

In the formula, Pi’}7 (t) represents the probability that ant m will transfer from Node i to
Node j at time ¢, and select the next node based on the roulette wheel method, where T;;(t)
represents the pheromone content on the path (i, j) at time ¢; ;j(t) represents heuristic
information on path (i, j) at time ¢; and « is the pheromone heuristic factor, representing
the importance of pheromone to path selection. The greater the «, the greater the role of
the pheromone in selecting the next node; § is the expected heuristic factor, and the larger
the B, the greater the role of heuristic information in path selection; allowy, is the set of next
paths that can be selected.

Method 2: At the time of node transfer, Ay indicates that the set of satellites can be
observed, while the unobserved set of satellites is A/O = @. At this time, the node transfer
is consistent with the traditional ant colony algorithm, and the next observation target and
its observation time are selected according to the roulette wheel method.

At the moment of node transfer, if there are unobserved satellites, the satellite with
the highest priority among them is to be preferred, when the node is transferred in method
1; if there are no unobserved satellites, all satellites are randomly selected, at which point
the node is transferred in method 2.

3.2.2. Improvement of Pheromone Updating Method

In order to ensure that the computational speed of the algorithm meets the require-
ments of the planning module, this paper is based on the idea “the weak is strong and the
strong is strong” in the wolf pack algorithm [26], which penalizes the paths other than the
optimal paths in each iteration, and reduces their pheromone concentration:

Ti(t+1) = (1 - p)7;(t) + Myj-ATij(t) (13)
m
ATi(t) = ¥ AT (14)
k=1
B _ ..
Ak (t) = Q To— Tt the k-th ant passes through psth i, j (15)
g 0, not passed through

_ LG ely

Mij = {m, (i,j) € Lw (16)
where T;;(t + 1) represents the updated pheromone concentration; p € (0, 1) represents the
volatilization coefficient of pheromone; AT;;(t) represents the sum of pheromone increments
of all ants; ATZ} (t) represents the pheromone increment of ant k on path (i, j); Q represents
the pheromone strength, which is a constant; P is the total score of ant k in this cycle;
Tonq represents the planned termination time; Ty, represents the planning start time;
M;; represents the penalty function for the path (i,); m € (0,1) represents the penalty
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coefficient; L;, represents the optimal path in this iteration; and L, represents the paths
other than the optimal path in this iteration.

By updating the pheromone on the path through Equation (14), the differentiated path
information of the ant colony in the iterative process is utilized to increase the guiding
effect of the better ants in the colony for the progeny, which reduces the interference of the
worse ants on the path search, and improves the computational speed of the algorithm.

Figure 5 shows the flowchart of the improved ant colony algorithm. The process is as

follows:
Step 1:

Step 2:
Step 3:

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:
Step 9:

Step 10:

Receive observable satellite information transmitted by the rolling module, and
initialize algorithm parameters;
Place all ants at time t = 0 and prepare to launch;

At time t, to determine if the unobserved satellite set Ab is @. If it is @, continue
to step 4. If it is not &, jump to step 5;

Use Equation (12) to select observation target i and its observation time ¢; from
the observable satellite set Ap, add the target to taboo table tabu, and update the
taboo table;

Use the greedy algorithm to select observation target i from the unobserved
satellite set Ap and the selection of target observation time ¢; utilizes Equation (12),
while updating the taboo table tabu, and update the taboo table;

If the ants reach the end of the task planning interval, continue to the next step,
otherwise jump to step 3;

Number of ants + 1. If the maximum number of ants is reached, continue to the
next step; otherwise, jump to step 2;

Update the pheromone with Equation (13);

Iterations + 1. If the maximum number of iterations is reached, continue to the
next step; otherwise, jump to step 2;

Output the observation plan with the highest revenue, and the algorithm ends.

Algorithm parameter
initialization

v

Ants placed at time t=0 |<7

Time at t.

Ay = 0?

>  Number of ants + 1

Reaching the
maximum
qumber of ants?

Pheromone update

Y
Greedy algorithm selects
observation target i,.Roulette
formula selection observation
time t;.update Tabu Table

Select observation target i and
observation time t; based on
roulette formula.update Tabu

Table

v

Iterations + 1

Figure 5.

Reached

maximum

—>| update timet =t + t; |

number of
iterations?

Output observation
sequence

Algorithm flow chart.

3.3. Information Collection Module

In this paper, a hybrid-driven replanning mechanism is used and the satellite is ob-
scured by clouds as a contingency. When an emergency occurs, an event-driven replanning
mechanism is used for immediate replanning, otherwise a cycle-driven replanning mech-
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anism is used for continuous rolling planning to quickly respond to dynamic changes in
the cloud cover [27]. To determine whether the satellite is obscured by clouds, an all-sky
camera is used to obtain information on cloud cover over the station. Setting the sampling
moments with fixed time intervals, the information acquisition module transmits the infor-
mation to the decision-making module at each sampling moment, and the decision-making
module makes a judgment on the relationship between the satellite and the cloud cover.

The information collection module is responsible for obtaining the pixel position of
the cloud cover from the image acquired by the all-sky camera at each sampling moment.
In this paper, we use the image processing method to separate the sky background from
the cloud cover and pass the cloud position information to the decision module, and the
separation result is shown in Figure 6.

Figure 6. Separation results of sky background and cloud cover.

3.4. Decision Making Module
3.4.1. Decision Output

When each sampling moment arrives, the decision module obtains the observation
satellite i at the current sampling moment from the planning results passed by the planning
module, and combines the cloud information passed by the information collection module
to determine whether the observation satellite i is obscured by clouds. The decision module
will output two different decision results according to the different judgment results,
which are:

Decision 1: When the observation satellite i is obscured by clouds, the decision module
obtains the observable satellite information at the current sampling time, removes the
satellite i obscured by clouds from the observable satellite information, selects the satellite
with the highest priority among the remaining satellites, makes a judgment again until
the observation satellite k is selected, and outputs satellite k as the observation satellite
from the current sampling time to the next sampling time. At the same time, the decision
module, based on the event-driven replanning mechanism, passes the information o, the
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remaining satellites that have not been obscured by clouds and the replanning signal to the
roll module to initiate a new round of rolling.

Decision 2: When satellite i is not obscured by clouds, output satellite i as the observed
satellite from the current sampling moment to the next sampling moment. At the same
time, the decision module judges the sampling moment; if the next sampling moment is
the end of the rolling window, then according to the cycle-driven replanning mechanism,
the replanning signal will be passed to the rolling module to start a new round of rolling.

3.4.2. Cloud and Satellite Position Determination

In order to determine whether the satellite is obscured by clouds, the satellite position
information is converted to the same coordinate system as the cloud position information
for evaluation, and the conversion steps are as follows:

Step 1: Obtain the ground fixed coordinates of the satellite at the current sampling time
from the satellite predictions, and convert the satellite’s ground fixed coordinates
into a point P(x,y, z) in the camera coordinate system;

Step 2: Based on the imaging principle of a pinhole camera, obtain the image point Py(a, b)
of point P without distortion, represented in polar coordinates as (7, ¢), and the
projected incidence angle of point P as 0;

Step 3: Due to the presence of distortion, the actual angle of light emission is §; # 6, and
the actual image pointis p’(x/,y');

Step 4: Using the equidistant projection formula and Taylor expansion can approximately
obtain 6; = 9(1 + k162 + ko0* + k30° + k498), where ki, ko, k3, k4 is the camera
distortion parameter, which is provided by the camera calibration results;

Step 5: Because of ry = 6, the polar coordinate of point p’ is (6, ¢), and the Cartesian

coordinate value x’ = (97"’) a,y = (97d> b is obtained;
Step 6: Finally, convert p’ to the pixel coordinate system based on the camera’s internal
parameters, u = fxx' 4 ¢y, v = fyy' +cy.

Through the above steps, the satellite position is converted to the pixel coordinate
system to determine whether the satellite is obscured by clouds. Figure 7 shows the
schematic diagram of the satellite position information coordinate conversion process.

Pix» yr 2)

N All day camera imaging area

Figure 7. Coordinate conversion of satellite position information.
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4. Experiments and Analysis

In order to verify the performance of the autonomous task planning algorithm for
satellite laser ranging based on the Rolling Horizon Optimization framework, two sets
of simulation experiments are conducted based on the 7237 station SLR system. The first
set of experiments is a cloud environment simulation experiment to verify the ability of
the autonomous planning method to avoid cloud cover for observation task planning; the
second set of experiments is an algorithm comparison experiment, in which the autonomous
planning method is simulated with two static planning algorithms in cloud environments
with different occupancy ratios to validate the advancement of this paper’s method in
dealing with the planning problem of observation tasks in SLR systems.

4.1. Cloud Environment Simulation Experiment

In the actual observation process of the SLR system, the observation results are sus-
ceptible to the influence of cloud disturbances. For this purpose, three experiments are
conducted, and one disturbance is set up in each experiment; the cloud disturbance mo-
ments are shown in Table 4, and the simulation tasks are given in Table 5.

Table 4. Disturbance settings.

Experiment Number Disturbance Time Disturbance Target
1 6 min LAGEOS-2
11 min LAGEOS-2
3 20 min Galileo-202

Table 5. Simulation task list.

Priority Full Name SaCt(e)g;te Start Time End Time Dul?;?gf:/:nin
13 Swarm-B SB 0000 0005 5
16 HY-2D HD 0019 0030 11
27 LAGEOS-2 L2 0000 0018 18
36 Galileo-202 A6 0016 0030 14
37 BeiDou-3M3 BP 0000 0030 30
44 IRNSS-1B IN 0010 0030 20
48 IRNSS-11 RI 0000 0030 30

Figure 8 shows the results of three cloud disturbance experiments. In experiment 1, the
decision module received a signal that satellite L2 was obscured by clouds at 6 min. As can
be seen from the results of Experiment 1, the decision module performs automatic cloud
avoidance, selects satellite BP to continue the observation, and reformulates the planning.
In experiment 2, the decision module received a signal that satellite L2 was obscured by
clouds at 11 min. As can be seen from the results of Experiment 2, the decision module
performs automatic cloud avoidance, selects satellite BP to continue the observation, and
reformulates the planning. In experiment 3, the decision module received a signal that
satellite A6 was obscured by clouds at 20 min. From the results of Experiment 3, it is clear
that the decision module automatically avoids the clouds, selects satellite HD to continue
the observation, and reformulates the planning.
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Figure 8. Experimental results of cloud disturbance. (a) Results before inserting clouds; (b) results

after inserting clouds.

Table 6 shows the results of the comparison of the revenue obtained from the observa-
tion according to the original planning sequence after setting up the cloud perturbation
with that obtained from the re-formulated planning observation. From Table 6, it can be
seen that after setting up the cloud disturbance, the revenue obtained from re-planning is
higher compared to the revenue obtained from the original plan. This is due to the fact
that the autonomous planning algorithm automatically avoids clouds and fully utilizes the
observation time to search for other observable satellites, which improves the observation
efficiency of the system and provides resistance to cloud disturbances.
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Table 6. Comparison of the revenue obtained from the original planning sequence and the replanning
sequence after insertion of the cloud perturbation.

Revenue from Insertion of Cloud Cover

Experiment Number

Original Planning Sequence Replanning Sequence
1 34 43
2 40 43
3 40 43

4.2. Comparative Experiments

In order to further validate the performance of the autonomous task planning algo-
rithm based on the Rolling Horizon Optimization framework, the above algorithm and
two static planning algorithms are applied to SLR observation task planning. The above
algorithms are utilized to process the same observation tasks in simulated environments
with different cloud amounts.

First, a cloud simulation environment is established. The simulated cloud was set
as a circle, with an initial position tangent to the imaging area of the all-sky camera, and
constantly moving along the image axis. At the end of the planning time, the cloud moves
to the other side of the image of the all-sky camera and is at a tangent to the image, as
shown in Figure 9, assuming that the cloud moves with a fixed speed in the image.

Figure 9. 5% simulation of cloud environment.

The SLR observation task example from 0-1 o’clock on 18 April 2023 was selected to
conduct five experiments with simulated clouds occupying 0%, 5%, 10%, 20% & 40% of the
imaging area of the all-day camera image, and the results are shown in Figures 10 and 11,
respectively. The comparison results are shown in Table 7, where the percentage improve-
ment of autonomous planning algorithm compared to the ant colony algorithm and greedy
algorithm is calculated as:

_A-B
- B
where « represents the percentage improvement of the autonomous planning algorithm
compared to the ant colony algorithm and the greedy algorithm, A represents the observa-
tion revenue or the number of satellites observed by the autonomous planning algorithm,

o (17)
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and B represents the observation revenue or the number of satellites observed correspond-
ing to the ant colony algorithm and the greedy algorithm.

N Greedy algorithm  EEEE Autonomous planning algorithm
7% Ant colony

100 3. 9

80 4

60

Observation income

20 A
14 13

7
1L

AR N T R T R T R R R TR T R ERRY
NANNNNNNNNNNNNN &

0% 5%

-

10% 20% 40%
Cloud coverage ratio

Figure 10. Schematic diagram of the observation income at 7237 stations under different algorithms.
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Figure 11. Schematic diagram of the number of observation satellites at 7237 stations under different
algorithms.

Table 7. Comparison results of the autonomous planning algorithm with the ant colony algorithm

and greedy algorithm.
Percentage Improvement of Percentage Improvement of
Scene Autonomous Planning Algorithm over =~ Autonomous Planning Algorithm over
ant Colony Algorithm Greedy Algorithm

Cloud coverage Revenue 0% 5.31%

ratio 0% Number of satellites 0% 25%
Cloud coverage Revenue 11.76% 26.66%

ratio 5% Number of satellites 9.09% 9.09%
Cloud coverage Revenue 52.5% 56.41%

ratio 10% Number of satellites 10% 10%
Cloud coverage Revenue 68.69% 96%

ratio 20% Number of satellites 100% 150%
Cloud coverage Revenue 207.69% 185.71%

ratio 40% Number of satellites 100% 166.66%

Figure 10 shows the observation revenue of station 7237 under different algorithms.
From Figure 10, it can be seen that when the sky is cloudless, there is not much difference
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between the revenues of the three algorithms. All three algorithms show gradually decreas-
ing revenue when the percentage of cloud cover gradually increases, but the autonomous
planning algorithm has a lower decrease in revenue than the other two static algorithms.
Combined with Table 7, it can be seen that the greedy algorithm observation revenue
decreases to 14, the ant colony algorithm observation revenue decreases to 13, and the
autonomous planning algorithm observation revenue decreases to 40 when the cloud cover
percentage reaches 40%. Compared to the greedy algorithm and ant colony algorithm, the
autonomous planning algorithm observation revenue is improved by 185.71% and 207.69%,
respectively. This is due to the fact that, in cloudy environments, clouds can interfere with
the observations, and for static planning algorithms, the planning results are fixed. As
the percentage of cloud cover gradually increases and the number of satellites obscured
by clouds gradually increases, the revenue obtained by the static planning algorithms
decreases dramatically. For the autonomous planning algorithm, when the observation
satellite is obscured by clouds, the system will actively switch the observation target and
re-plan the optimal observation sequence, which avoids the disturbance of clouds to a
certain extent and ensures the observation revenue. Therefore, the autonomous planning
algorithm obtains a higher observational revenue compared to the static planning algorithm
in the face of cloud disturbance. The higher the percentage of cloud cover, the more obvious
the advantage of the autonomous planning algorithm in terms of observation revenue.

Figure 11 shows the number of satellites observed at station 7237 under different
algorithms. As can be seen from Figure 11, the number of satellites observed by all
three algorithms decreases gradually when the cloud cover percentage increases gradu-
ally. When the percentage of cloud cover reaches 40%, the number of observed satellites
decreases dramatically for the greedy algorithm and the ant colony algorithm, while the
autonomous planning algorithm decreases to a lesser extent. At this time, the number of
satellites observed by the greedy algorithm is three, the number of satellites observed by
the ant colony algorithm is four, and the number of satellites observed by the autonomous
planning algorithm is eight. The autonomous planning algorithm is significantly better
in terms of the number of observed satellites compared to the greedy algorithm and ant
colony algorithms. This is due to the fact that the static planning algorithms obtain a fixed
observation target, whereas the autonomous planning algorithms can automatically avoid
clouds and select satellites that are not obscured by clouds for observation, and are able
to successfully observe more satellites. Therefore, the autonomous planning algorithm
observes a larger number of satellites compared to the static planning algorithm in the
face of cloud disturbance. The higher the percentage of cloud cover, the more obvious
the advantage of the autonomous planning algorithm in terms of the number of satellites
observed.

5. Conclusions

In this paper, for the dynamic change of cloud cover in the actual SLR observation
process, an autonomous SLR task planning method based on the Rolling Horizon Optimiza-
tion framework is proposed to solve the problems of poor automation and low efficiency
in the existing SLR observation methods. This algorithm adopts a hybrid event and cycle
driven replanning mechanism, establishing four modules: rolling, planning, information
collection, and decision-making. The planning process is decomposed into a series of static
planning intervals, and an improved ant colony algorithm is designed to handle tasks
within the static planning interval. Design of experiments was pursued to validate the
performance of an autonomous task planning algorithm for Satellite Laser Ranging based
on a Rolling Horizon Optimization framework. The results show that the autonomous
planning algorithm can automatically avoid cloud perturbations and re-plan when they
occur, and has the ability to resist cloud disturbance. The higher the percentage of cloud
cover, the more obvious the advantage of autonomous planning algorithms over static
planning algorithms. When the percentage of cloud cover reaches 40%, the observation
revenue obtained by the autonomous planning algorithm is improved by 185.71% com-
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pared with the greedy algorithm and 207.69% compared with the ant colony algorithm, and
the number of observation satellites is significantly improved compared with the greedy
algorithm and the ant colony algorithm. This work can be used to rationalize the repetitive
and large number of SLR observation tasks within the observation window, to improve
the efficiency and automation of the SLR system, and to lay the research foundation for
the realization of research into an unattended and fully automated laser ranging system.
The work of our future research is: (1) calculate the effect of cloud thickness on the echoes
generated by targets at different orbital altitudes, and incorporate cloud thickness as a
judgment criterion when performing autonomous planning; (2) based on the generated
SLR observation plan, SLR intelligent subsystems, such as target tracking, observation and
identification, are established to realize the development of an unattended and fully auto-
mated SLR system; (3) to carry out research on the planning of autonomous observation
tasks for other high-precision laser ranging technologies, such as space debris laser ranging
and lunar ranging, in order to expand the range of applications. These issues are expected
to be addressed in further detailed studies.
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