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Abstract: The intricate structure of hyperspectral images comprising hundreds of successive spec-
tral bands makes it challenging for conventional approaches to quickly and precisely classify this
information. The classification performance of hyperspectral images has substantially improved in
the past decade with the emergence of deep-learning-based techniques. Due to convolutional neural
networks’(CNNs) excellent feature extraction and modeling, they have become a robust backbone
network for hyperspectral image classification. However, CNNs fail to adequately capture the de-
pendency and contextual information of the sequence of spectral properties due to the restrictions
inherent in their fundamental network characteristics. We analyzed hyperspectral image classification
from a frequency-domain angle to tackle this issue and proposed a split-frequency filter network. It is
a simple and effective network architecture that improves the performance of hyperspectral image
classification through three critical operations: a split-frequency filter network, a detail-enhancement
layer, and a nonlinear unit. Firstly, a split-frequency filtering network captures the interactions
between neighboring spectral bands in the frequency domain. The classification performance is then
enhanced using a detail-improvement layer with a frequency-domain attention technique. Finally,
a nonlinear unit is incorporated into the frequency-domain output layer to expedite training and
boost performance. Experiments on various hyperspectral datasets demonstrate that the method
outperforms other state-of-art approaches (an overall accuracy(OA) improvement of at least 2%),
particularly when the training sample is insufficient.

Keywords: hyperspectral image classification; split-frequency filter network; detail-enhancement
layer; nonlinear unit

1. Introduction

Hyperspectral imaging has emerged as a popular field of study in optical remote sens-
ing in recent years due to the rapid growth of remote sensing technologies. By generating
tens to hundreds of related spectral bands with a particular spectrometer, a hyperspectral
image, i.e., a three-dimensional image integrating spatial and spectral information to detect
specific features, captures minute spectral differences across various materials. Therefore,
hyperspectral remote sensing technology is widely used for agricultural land cover [1],
urban green belt planning [2], water quality and pollution detection [3], ecological forest
monitoring [4], and military target detection [5].

Hyperspectral image (HSI) classification uses the spectral variation among image
elements in different wavelength bands and the spatial structure feature information to
accurately classify features. There are still many aspects that can be improved, even
though hyperspectral remote sensing is widely employed for remote sensing detection.
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Specifically, the phenomenon of “same object with different spectrums” lessens the classi-
fication accuracy, the small number of labeled samples makes training difficult, and the
redundancy of data between bands results in a dimensional explosion. In the past decade,
feature extraction has become the most critical aspect of hyperspectral image classification,
and many artificially designed shallow feature extraction and deep learning algorithms
have emerged [6].

Shallow feature extraction initially adopted statistical methods to measure the sim-
ilarity in spectral information. However, this type of method can only achieve a limited
accuracy. With the advancement of machine learning, HSI classification based on machine
learning is now commonly applied. These machine learning methods usually first require
feature engineering on the data and then classification of the pre-processed features using a
classifier. Standard feature engineering methods include the principal component analysis
(PCA) [7], linear-discriminant analysis (LDA) [8], and independent component analysis
(ICA) [9]. Common classifiers include the K-nearest neighbor (KNN) [10], support vector
machine (SVM) [11], random forest (RF) [12], and other methods. PCA-based methods are
also widely used in hyperspectral radiative transfer modeling [13,14]. With the new con-
cepts proposed in other fields, the performance of traditional machine learning algorithms
has dramatically improved. Kang et al. [15] combined edge-preserving filtering with the
SVM to propose a feature suitable for extracting spatial–spectral features. Zhong et al. [16]
However, as the training size grows to be more prominent and the complexity of the training
data increases, shallow feature extraction algorithms experience performance bottlenecks.

With the development of deep learning, deep feature extraction has grown exponen-
tially. These types of feature extraction techniques construct an end-to-end framework by
automatically learning aspects of the data from the original data. Deep-learning-based
feature extraction methods are more robust, differentiated, and abstract than shallow fea-
ture extraction methods [6]. Among the various deep-learning-based models, stacked
autoencoders (SAEs) [17], recurrent neural networks (RNNs) [18], convolutional neural
networks (CNNs) [19], graph convolutional neural networks (GNNs) [20], UNet-based
neural networks [21], and the Transformer [22] are the most popular model frameworks.

To extract hyperspectral features, autoencoders (AEs) are the most frequently used
method in deep learning. In [23], Chen et al. originally used deep learning to categorize
images from downscaled hyperspectral images obtained via PCA by stacking multiple
self-encoders. To simplify the model, Zebalza et al. [24] presented a segmented SAE, which
divided the original spectral information into more minor spectral features and processed
them using numerous SAEs. An AE usually requires the data to be downscaled into
one-dimensional vectors in spatial dimensions, ignoring the rich spectral–spatial structure
information of the hyperspectral data.

Developments in sequential data processing applications such as speech recognition
and machine translation have resulted in the widespread application of RNNs, while
spectral data can also be considered sequential. Mou et al. [18] proposed the first RNN
framework applied to hyperspectral classification by using an improved gated cyclic unit
PRtanh and treating hyperspectral image pixels as sequential data. Hang et al. [25] grouped
adjacent spectra of HSIs and used RNNs for the grouped spectral bands to eliminate
redundant information. Learning long-term correlations is challenging for RNNs, because
they learn spectral characteristics sequentially, which is highly dependent on the sequential
input of the spectral bands; therefore, long short-term memory (LSTM) was proposed as
a solution to the gradient disappearance problem. For this reason, a LSTM is often used
to solve this problem. Liu et al. [26] proposed a bidirectional convolutional LSTM that
takes all spectra as the input to a bidirectional LSTM to learn the dependencies in the
frequency domain. Zhou et al. [27] proposed a spectral–spatial LSTM in which the spectral
information of each pixel is first input to the spectral LSTM for learning. Then, the spatial
information near to the pixel is input to the spatial LSTM for learning, and finally, decision
fusion is used to obtain the spectral classification results. RNNs operate in a recursive-like
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manner and fail to perform parallelized computations, which limits the computational
efficiency of RNNs.

CNNs are mainly used to extract local, two-dimensional spatial or spectral features
from images. Hu et al. [19] utilized 1D CNN models for HSI classification to extract each
pixel’s spectral information. After that, Zhao et al. [28] used the 2D CNN for HSI classifica-
tion and preserved the spatial information of the HSI as much as possible compared to SAE.
Chen et al. [17] applied 3D CNNs to HSI classification and compared the features of 1D
CNNs, 2D CNNs, and 3D CNNs in detail. All three of these works are representative and
are early attempts to apply CNNs for hyperspectral image classification. After that, CNNs
have mainly been used to examine how to use HSI data efficiently and synthetically in
both spectral and spatial dimensions. Lee et al. [29] proposed ContextNet to explore local
contextual interactions by jointly exploiting local spatial–spectral relationships between in-
dividual pixel vectors. Roy et al. [30] proposed a 3D–2D CNN (HybridSN) using a network
with a mixture of 3D CNNs and 2D CNNs to extract features and effectively extracted the
complementary spectral–spatial information. Roy et al. [31] proposed A2S2KResNet, which
enhances the classification performance by using an efficient feature recalibration and 3D
convolution to extract features. CNNs are powerful methods for extracting spatial structure
and local context information, but they inevitably encounter performance bottlenecks for
data with sequence properties, such as spectral data.

Graph neural networks were created to process graph data, and with the proposed
graph convolutional neural networks, they became a popular research area for hyperspec-
tral classification. Hong et al. first proposed a miniGCN in [20], explored the feasibility of
fusing CNNs and GCNs, and illustrated the usage scenarios and advantages of a miniGCN.
Zhang et al. [32] proposed a global random graph convolution and network in which
graphs can be generated via random sampling from labeled data. The graph size can
be small to save computational resources. The CNN–Enhanced Graph Convolutional
Network (CEGCN) was proposed by Liu et al. [33]. The CEGCN is a CNN-enhanced
GCN architecture that generates complementary spectral–spatial information in various
dimensions of pixels and superpixels by extracting features from GCNs and CNNs in
large-scale irregular regions. Graphical neural volumes and networks inevitably face the
problem of computationally intensive and insufficient processing of hyperspectral spectral
information when processing hyperspectral data.

U-Net [34] is a classical deep image segmentation network structure composed of
an encoder and decoder. This network better represents deeper semantic features by
combining positional and semantic information. Lin et al. [35] proposed a novel network
structure, CAGU (Context-Aware Attentional Graph U-Net), which combines UNet and
a graph neural network. It can transform the spectral features into a highly cohesive
state, and the classification effect is very good. Li et al. [21] proposed a PSE-UNet model
combining a PCA, attention mechanism, and UNet and analyzed the factors affecting the
model’s performance. Liu et al. [36] combined a CNN, UNet, and graph neural nets and
proposed a Multi-Stage Superpixel Structured Hierarchical Graph UNet (MSSHU) to learn
multiscale features and achieve better classification results. UNet-based networks are often
combined with other network structures and could be a popular field for hyperspectral
analysis in the future.

The Transformer was proposed by Vaswani et al. [37] in 2017 and was initially applied
to NLP. When the Vision Transformer was proposed [38], the difficulty of applying the
Transformer to images was solved by segmenting the image into several image blocks.
Moreover, the Transformer uses self-attention to process and analyze sequential data more
efficiently, which is well-suited for HSI data processing. He et al. [39] was based on a
BERT language model using a multi-headed self-attentive mechanism (MHSA) that can
capture global correlations between input spectral regions. Meanwhile, the number of
papers borrowing the structure of the Transformer model is increasing, and Liu et al. [40]
proposed a CAN (Central Attention Network) to optimize the computational mechanism
of the Transformer and improve the classification performance.
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We hope to reconsider the hyperspectral classification problem from different per-
spectives based on the above discussion. Frequency-domain hyperspectral classification
is yet to be studied. We hope to reconsider the hyperspectral classification problem from
different perspectives based on the above discussion. Rao et al. [41] proposed a global filter
network that overcomes these drawbacks by learning the frequency domain’s medium-
and long-term dependencies. To address the issue of insufficient spectral–spatial feature
extraction in the frequency domain with limited samples, we present a split-frequency filter
network for detailed hyperspectral data, which was inspired by the Global Filter Network
(GFNet). The contributions of this study, specifically, are outlined as follows:

1. The proposed network can model the medium- and long-term dependencies between
bands in frequency-domain hyperspectral sequences by converting the hyperspectral
data feature extraction problem into a frequency-domain sequence learning problem
using a split-frequency filtering network. Compared with the GFNet, our proposed
network can be better adapted to hyperspectral data.

2. For the discrete Fourier transforms, the assumption of global convolution for periodic
images does not apply to hyperspectral images. To compensate for local features and
non-periodic boundaries, we add a detail-enhancement layer after the separation filter
network to improve the classification performance of HSIs.

3. The split-frequency filter network is modified by adding the nonlinear activation
function Mish, which alters the network’s original single linear structure and increases
the classification performance and network throughput.

4. On three well-known HSI datasets, Indian Pines, Pavia University, and WHU Hi
Longkou, we qualitatively and quantitatively assess the classification performance
of the proposed SFFN. The experimental findings demonstrate that our proposed
SFFN significantly outperforms other state-of-art networks (an OA improvement of
at least 2%).

The remaining sections of the essay are arranged as follows. Section 2 reviews the
necessary knowledge and describes the design of the proposed method. Section 3 presents
the dataset, experimental settings, and results. Section 4 carries out a discussion and
analysis of the experiment. Section 5 summarizes and concludes the article.

2. Methods

In this subsection, we first review the global filtering network. On this basis, we pro-
pose improvements such as split-frequency filter networks and frequency-domain detail-
enhancement layers to make them more applicable to hyperspectral classification image
tasks. Finally, we also make other improvements that can improve the classification accuracy.

2.1. Overview of the Global Filter Network

The global filtering network (GFNet) is a novel MLP network proposed by Rao
et al. [41]. The fundamental idea of this architecture is to learn about the spatial inter-
connections of images by exploiting the global features of the frequency domain. This
method learns the relationships between image tokens through a series of global filters
that can be learned, as opposed to the self-attention mechanism [37] of the Vision Trans-
former [38] and the MLP model [42]. Global filters differ from CNN networks, which
usually process images using a person’s relatively small convolutional kernel to mine
local contextual information. Global filters can cover all frequency domains when pro-
cessing an image and, therefore, can model the image globally to capture medium and
long-term dependencies.

The global filtering network’s discrete Fourier transform (DFT) is a crucial component
and is necessary for the design of this network. Images are usually a two-dimensional type
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of information, and for a given piece of two-dimensional information S[x, y], 0 ≤ x ≤ X− 1,
0 ≤ y ≤ Y− 1, the 2D DFT of S[x, y] is given by Equation (1):

S[x, y] =
X−1

∑
x=0

Y−1

∑
y=0

s[x, y]e−j2π( ux
X +

vy
Y ) (1)

where S[x, y] represents an image of size X×Y. Equation (1) must be considered for the
discrete variables u and v in u = {0, 1, 2, . . . , X− 1} and v = {0, 1, 2, . . . , Y− 1}.

Given F(u, v), the original signal S[x, y] can be recovered via inverse discrete Fourier
transform (IDFT), as shown in Equation (2):

S[x, y] =
1

XY

X−1

∑
x=0

Y−1

∑
y=0

S[u, v]ej2π( ux
X +

vy
Y ) (2)

For the actual input S[x, y] for DFT, the nature of the conjugate symmetry can be
proven using Equation (3), S[X − u, Y − v] = S∗[u, v]. Similarly, the real discrete signal
can be recovered using IDFT for the conjugate symmetric S[k]. Furthermore, the fast
Fourier transform (FFT) algorithm [43] can improve the computational efficiency of the
2D DFT. The FFT is a fast algorithm for DFT, and all references to DFT in the article were
implemented using the FFT. With this property, we can save only the value of S to save all
information.

S[X− u, Y− v] =
X−1

∑
x=0

Y−1

∑
y=0

s[x, y]e−j2π
(
(X−u)m

X +
(y−v)n

Y

)

=
X−1

∑
m=0

Y−1

∑
n=0

s[x, y]ej2π( ux
X +

vy
Y ) = S∗[u, v]

(3)

In [41], the H×W image is split into several non-overlapping image patches as h × w
and then projected into flattened patches of dimension d as L = XY. For the data s, a two-
dimensional FFT operation is performed using Equation (2), as shown in Equation (4).

S = F [s] ∈ Ch×w×d (4)

where F [·] represents the two-dimensional FFT. A complex tensor named S is used to
indicate the spectrum of c. As illustrated in Equation (5), the spectrum can be modified by
multiplying by a global filter (W∈Ch×w×d).

S̃ = W � S (5)

where the filter W is referred to as the global filter, and � is the Hadamard product. Finally,
as stated in Equation (6), the modulated spectrum S̃ is converted into the spatial domain,
and s is updated using the inverse fast Fourier transform (IFFT) of Equation (3).

s← F−1[S̃] (6)

The global filter W , which has a filter size of h×w, is analogous to the global circular
convolution in deep learning and can be thought of as a collection of learnable frequency
filters with various hidden dimensions.

2.2. Split-Frequency Filter Network

We propose a new general network based on improving the global filter network,
the split-frequency filter network (SFFN). Compared with the global filtering network,
this network focuses on the spectral characteristics in hyperspectral images and can be
effectively applied to high-precision and fine hyperspectral image classification. For this
purpose, we design two focus modules, the split-frequency filter module (SF) and the
frequency-domain detail-enhancement module (FDE), to improve the spectral discrimina-
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tion of fine spectral differences and reduce the detail loss caused by the frequency-domain
transform, respectively. Our proposed network architecture is depicted in Figure 1.

…

Patch Embedding

Split-Frequency Filter Layer

Feed Forward Network(FFN)
N×

Global Average Pooling

Linear

Class

Spectral Band from 1 to n

MLP

Layer Norm

Layer Norm

2D FFT

Frequency Split

× ×

Concatenate

2D IFFT

Detail Enhancement Layer

Nonlinear Unit

𝒉×𝒘/𝟐× 𝒄

𝒉×𝒘× 𝒄

𝒉×𝒘/𝟐×𝜶𝒄 𝒉×𝒘/𝟐× (𝟏−𝜶) 𝒄

𝒉×𝒘× 𝒄

𝒉×𝒘/𝟐× 𝒄

𝒉×𝒘/𝟐× 𝒄

Figure 1. An overview of the split-frequency filter network. Our network structure based on GFNet
with numerous alterations. We added a detail-enhancement layer, a nonlinear network, and a
split-frequency filter in favor of a global filter.

Unlike the RGB images presented in [41], the hyperspectral images are densely sam-
pled by hundreds of spectral channels at tiny intervals (e.g., 10 nm) from the electromagnetic
spectrum to produce near-continuous spectral features. The spectral dimensions at different
locations in the image reflect the absorption characteristics of different objects for different
wavelengths. They can be learned as object-classification features to capture small differ-
ences in the spectra of different objects. Unlike in the previous analysis, we reconsidered the
backbone network design from the frequency-domain perspective. Because of the similarity
between spectral information and sequence data (i.e., a continuous and strong interclass
correlation between data), they are used as sequence information input to the network.
The spectral bands of the hyperspectral datasets (such as the Indian Pave Data without
bands 104–108, 150–163, and 220) are not continuous and contain some discontinuity. Some-
times this redundancy may reduce the classification accuracy due to its increase within the
variance in the feature space and the decrease between the category variances. Inspired
by [44], we propose the split-frequency filter network to improve this phenomenon.

In order to create a spectral cube, the input vector is created by selecting nearby
pixels and centering them on the training pixel. Along with spectral information about the
point, this spectral cube also includes spatial data about the area around the point. For a
given spectral feature S = [s1, s2, . . . , sc] ∈ R1×C, to analyze the medium- and long-term
dependencies between the spectra, it is necessary to introduce the relative and absolute
positional information about the spectra, where the position encoding approach is used.
After the FFT, the feature map can be transformed into S f ∈ RH×W×C, where S f ,H,W and
C represent the feature map after the FFT, the height, the width, and the dimension of
the feature, respectively. The intended spectral space patch size defines H and W, while
the hyperspectral number is defined as C. We split and analyze the spectra using specific
ratios to better investigate the frequency-domain correlations between the surrounding
spectra. The segmentation S f is first performed along the spectral channel dimension,
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i.e., S f = {Sl , Ss}, where Sl ∈ RH×W×(1−αin)C represents the segmented long features,
Ss ∈ RH×W×αinC represents the segmented short features, and αin ∈ [0, 1] represents the
percentage assigned to the feature channels. S̃ ∈ RH×W×C is used as the output tensor.
Similarly, let S̃ = {S̃l , S̃s} be the global split, and the global ratio of the output tensor is
determined by the hyperparameter αout ∈ [0, 1]. The specific flowchart of split-frequency-
domain filtering is shown in Figure 2. We assume that the segmentation ratio is 0.5 to
simplify the computation. The spectral information of two branches learns different types
of filtering information through two uncorrelated local filters. Finally, the global news
and the two other pieces of filtered information are concatenated to ensure that the fused
channel size is the same as the input channel size.

Channel concatenate

FFT FFT

Local filter Local filter

Figure 2. The overall flowchart of the split-frequency filter. In this figure, the split ratio is 0.5.
By determining the proper division ratio, the hyperspectral image classification capabilities may have
been significantly enhanced.

The updated Equations (7) and (8) are written as follows:

S̃l = W1 � Sl (7)

S̃s = W2 � Ss (8)

where K1 and K2 represent two different frequency-domain filtering kernels of W1 ∈
RH×W×(1−αin)C and W2 ∈ RH×W×αinC, respectively. After applying the split-frequency filter,
the two feature maps are fused, and skip connections are set to reduce the information loss
before and after split-frequency filter convolution and enhance the information exchange
between layers. The equation is shown in (9).

Y = Concatenate{W2 � Ss, W1 � Sl}+ S (9)

We discuss the specific role of the split-frequency filter in Section 4.

2.3. Detail-Enhancement Layer

When hyperspectral images are being used, the discrete Fourier transform is not as-
sumed to conduct convolution operations on periodic images. We build a detail-enhancement
layer to carry out information compensation, increase the classification accuracy, and make
up for the loss of local features and non-periodic boundaries. The detail-enhancement layer
is mainly composed of FcaNet and a skip connection.

FcaNet is a novel channel attention mechanism that was proposed by [45], and the
main idea of FcaNet is to view the channel of attention. The two-dimensional DCT is used
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to compress more feature information on behalf of multiple frequency-domain components
for better information compression. The main flowchart of Fca is shown in Figure 3.
The different colored blocks represent the results of dot multiplication with different 2D
DCT frequency-domain components in Figure 3.

H

W
C

Split

0 1 N-1…

DCT 0 DCT 1 DCT N-1…

H
W

C’ C’ C’ C’

H

C

W

FC

sigmoid

Figure 3. The overall architecture of the detail-enhancement layer. Our architecture is based on
FcaNet with some minimal modifications.

The input feature map X is divided into several sections along the channel dimension,
indicated as [X0, X1, . . . , Xn − 1], where Xi is divisible by n and C is equal to Xi in Xi ∈
RC

′×H×W , where i in 0, 1, . . . , n − 1,C
′
= C

n . By multiplying the corresponding Xi by
the corresponding 2D DCT frequency components and summing all of the components,
the compression result of the channel’s attention can be obtained. The equation is shown
in (10).

F i = 2DDCTui ,vi
(

Xi
)

,

=
H−1

∑
h=0

W−1

∑
w=0

Xi
:,h,wBui ,vi

h,w i ∈ {0, 1, · · · , n− 1}
(10)

where [ui, vi] corresponds to the two-dimensional component of the frequency of Xi, and
Fi is the compressed C

′
. The compressed vectors can be obtained by merging, and the

Equation (11) is shown below.

F = compress(X)

= cat
([

F 0, F 1, · · · , F n−1
]) (11)

where F is the obtained multi-frequency vector. The acquired multi-frequency vector
is processed by the fully connected layer and sigmoid function to reveal the data on the
feature map. The obtained detailed information is placed on the feature map to compensate
for the loss of local features and non-periodic boundaries. The Equation (12) expresses the
whole process.

ms_att = sigmoid( f c(F))�X + X (12)

2.4. Other Optimization Methods
2.4.1. Nonlinear Unit

After frequency-domain transformation, the image’s information is distributed un-
evenly; most is concentrated in the low-frequency range, while the high-frequency informa-
tion is frequently ignored. The performance and accuracy of the network can be enhanced
by making the network more nonlinear at the frequency-domain depth, which can better
represent the interdependence between low and high frequencies. The nonlinear activation
function can introduce richer features and greater expressiveness, allowing the neural
network to adapt better to hyperspectral image classification.

The Mish activation function [46] is a nonlinear activation function proposed by
Diganta Misra in 2019. Compared to other common activation functions, it has the
following characteristics:



Remote Sens. 2023, 15, 3900 9 of 21

• Smoothness: The Mish is a smooth, nonlinear function whose first- and second-order
derivatives are continuous throughout the real domain.

• Negative values are supported: Unlike ReLU [47], the Mish activation function can
support negative-valued inputs without the problem of dead neurons.

• Non-monotonicity: The Mish activation function has a local minimum when the input
is 0. This monotonicity can help the network to avoid falling into local optima under
certain conditions.

• The Mish activation function morphology is similar to that of tanh. However, it has a
more expansive “plateau area” than the tanh function and can be more efficient than
the tanh function in certain situations.

The Mish activation function equation can be written as (13).

Mish(x) = x tanh(so f tplus(x)) (13)

where so f tplus = ln(1 + ex). The Mish activation module is placed after Formula (9),
through which the operation increases the nonlinearity of the network in the frequency
domain and adaptively adjusts the frequency characteristics according to the split-frequency
filters in the frequency domain, improving the network’s robustness and hyperspectral
classification ability. A comparison between the nonlinear unit and the linear unit can be
seen in Figure 4.

−4 −2 0 2 4

−2

−1

0

1

2

3

4

5

ReLU

Mish

Figure 4. Graph of the difference between the nonlinear unit and the linear unit.

2.4.2. Improvement in MLP

The Vision Transformer mainly uses gaussian error linear unit (GELU) [48] as the
activation function between MLP and the layers. We were inspired by [49] to use StarReLU
as the activation function. The equation that can be used for GELU is (14).

GELU(x) = xΦ(x) ≈ 0.5× x
(

1 + tanh
(√

2/π
(

x + 0.044715× x3
)))

(14)

The StarReLU equation can be written as (15).

StarReLU(x) = s · (ReLU(x))2 + b (15)

where s ∈ R and b ∈ R are learnable parameters. StarRelU requires four FLOP, which is
much lower than the fourteen FLOP of GELU and indicates a better performance. Following
testing, this activation function can increase the classification accuracy of hyperspectral
classification while speeding up training. Figure 5 reflects the variation in the StarRelu
curve for different values of s and a. Compared to the fixed and constant GELU curve,
StartRelu can be well-adapted to the changes in the model.



Remote Sens. 2023, 15, 3900 10 of 21

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5
starRelu,s=1, b= −0.2
GELU
starRelu,s=0.5, b=0

Figure 5. Graph of the differences in the activation functions (GELU and different values of StarReLU).

3. Results

This section first presents the characteristics and parameters of the three datasets,
followed by the precise optimization details of the implementation, which are contrasted
with those of state-of-the-art techniques. Finally, the proposed hyperspectral classification
performance method is evaluated qualitatively and quantitatively.

3.1. Description of the Experimental Datasets

In this experiment, we selected three real-shot hyperspectral datasets as experimen-
tal objects to verify the effectiveness of SFFNet. The three hyperspectral datasets were
the Indian Pines (IP), the University of Pavia (PU), and The WHU-Hi-LongKou (WHU),
and their essential information is shown in Table 1. Among these datasets, the spectral
bands of the IP and PU datasets were removed from the noise and water vapor bands to
prevent interference with the classification task. The Indian Pines dataset originally had
220 bands, and after removing the noisy bands 104–108, 150–163, and 220, the remaining
200 bands of data were retained. The Pavia University dataset originally had 115 bands,
and the dataset producer removed 12 noisy bands. Our search of the data did not find the
removed band numbers. It should be noted that the WHU-Hi-LongKou dataset [50] is a
hyperspectral dataset collected by the Intelligent Remote Sensing Data Extraction Analysis
and Application Research Group of Wuhan University, and it was made using unmanned
aerial photography of agricultural areas. We did not perform a deletion wave operation on
this dataset.

Table 1. Basic information on IP, PU, and the WHU-Hi-LongKou.

No. IP PU The WHU-Hi Longkou

Number of bands 200 103 270used for classification
Spectral range (µm) 0.4–2.5 0.43–0.86 0.4–1

Data size (pixel) 145 × 145 610 × 340 550 × 400
Spatial resolution (m) 20 1.3 0.463

Spectral resolution (nm) 10 5 6
Number of classes 16 9 9

Number of labeled data points 10,249 42,776 204,542

The truth samples of the three datasets were divided into training, validation, and test
sets in this experiment at random. Only the truth samples of 5% IP, 1% PU, and 0.1% WHU
were utilized to train the models to explore the robustness of the classification performance
of different models under minor sample conditions. Additionally, the validation set was
designed to contain the same number of samples as the training set, but it was not used in
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training to track changes in performance. All of the sample characteristics of these datasets
are dissimilar. The sample distribution for the IP dataset is imbalanced, such that some
categories contain only a small number of training samples, which might have a significant
impact on the classification results. A similar issue of unequal sample distribution exists
for the PU and WHU datasets. However, at the same time, there is a greater chance of
misclassification because there are substantially fewer training samples than test samples.
Tables 2–4 illustrate the corresponding ranges of the training, validation, and testing
samples for the IP, PU, and WHU datasets.

Table 2. Detailed sample distribution of the training, validation, and testing datasets from Indian Pines.

No. Category Labeled Samples Training Validation Testing

1 Alfalfa 46 2 3 41
2 Corn 1428 71 72 1285
3 Corn-mintill 830 42 41 747
4 Corn 237 12 12 213
5 Grass-pasture 483 24 24 435
6 Grass-tree 730 36 37 657
7 Grass-pasture-moved 28 2 1 25
8 Hay-windrowed 478 24 24 430
9 Oats 20 1 1 18
10 Soybean-notill 972 48 49 875
11 Soybean-mintill 2455 123 122 2210
12 soybean-clean 593 30 29 534
13 Wheat 205 10 10 185
14 Woods 1265 63 63 1139
15 Buidings-Grass-Trees-Drives 386 19 20 347
16 Stone-Steel-Towards 93 5 4 84

Total 10,249 512 512 9225

Table 3. Detailed sample distribution of the training, validation, and testing datasets from the
University of Pavia.

Class Class Name Labeled Samples Training Validation Testing

class 1 ASphalt 6631 66 66 6499
class 2 Meandows 18,649 186 186 18,277
class 3 Gravel 2099 20 20 2049
class 4 Trees 3064 30 30 3004
class 5 Painted metal sheet 1345 13 13 1319
class 6 Bare Soil 5029 50 50 4929
class 7 Bitumen 1330 13 13 1304
class 8 Self-Blocking Bricks 3682 36 36 3610
class 9 Shadows 947 9 9 929

Total 42,776 423 423 41,930

Table 4. Detailed sample distribution of the training, validation, and testing datasets from the WHU-
Hi-LongKou.

Class Class Name Labeled Samples Training Validation Testing

class 1 Corn 34,511 34 34 34,443
class 2 Cotton 8374 8 8 8358
class 3 Sesame 3031 3 3 3025
class 4 Broad-leaf soybean 63,212 63 63 63,086
class 5 Narrow-leaf soybean 4151 4 4 4143
class 6 Rice 11,854 11 11 11,832
class 7 Water 67,056 67 67 66,922
class 8 Roads and houses 7124 7 7 7110
class 9 Mixed weed 5229 5 5 5219

Total 204,542 202 202 204,340

3.2. Experimental Environment and Contrasting Models

The hardware environment employed for this experiment was as follows: the graph-
ics card was NVIDIA GTX 3090Ti 24 GB, the CPU is i7-12700K, and the memory was
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64 GB. The software environment for the experiment was deployed in Pytorch 1.11.0 and
Python 3.8. To verify the validity of SFFN, the above-mentioned SVM [15], ResNet [51],
SSRN [52], DPyResnet [53], ContextualNet [29], A2S2KResNet [31], PSE-UNet [21], Spec-
tral Former [22], and GFNet [41] were used as comparison models for the experiments. It is
important to note that SVM refers to the algorithm developed by Kang et al. [15], not the
conventional SVM.

The comparison models’ network and parameter designs were in line with the cor-
responding publications. AdamW served as the optimizer for the SFFN described in this
research, with the starting learning rate set to batch size

1024 × 0.001 and used cosine scheduling
to decay the learning rate to 2 × 10−5. In the experiments, linearity was used to warm up
the learning rate in the first ten cycles, and gradient cropping was later used to stabilize the
training process for 300 epochs.

The evaluation metrics quantified the classification performance of each model using
the overall accuracy (OA), average accuracy (AA), and kappa coefficient (κ). OA represents
the percentage of correctly identified samples out of all samples. It is calculated by summing
the confusion matrix’s diagonal elements and dividing by the overall sample size. AA
stands for the average accuracy for each class. It is obtained by averaging these values
after dividing the confusion matrix’s diagonal elements by the total number of samples for
each class. A measure of agreement that accounts for the potential for random agreement
is the kappa coefficient (κ), which indicates how well the classification and the reference
data agree. The estimated value is obtained by comparing the observed agreement (OA)
with the expected agreement (EA), which is based on the marginal frequencies of the
confusion matrix.

3.3. Quantitative Results and Analysis

Tables 5–7 present quantitative classification results for three general metrics (i.e., OA,
AA, and kappa) for IP, PU, and WHU, respectively. We mark the optimal results in bold
in Tables 5–7. Overall, we propose that SFFN achieves the best classification accuracy in
all datasets and that SFFN achieves the highest classification accuracy across all datasets.
In Table 5, our proposed method has the best ratings in terms of the OA, AA, and kappa at
98.47%, 98.78%, and 98.26%, respectively. Compared with SVM, ResNet, SSRN, PyResNet,
ConTexualNet, A2S2KNet, PSE-UNet, SpectralFormer, and the basic framework GFNet, the
OA was improved by 9.91%, 8.4%, 1.76%, 11.47%, 11.04%, 2.08%, 6.23%, 25.68%, and 3.11%,
respectively.

Table 5. Classification results (%) of different models in the Indian Pines dataset.

Class SVM ResNet SSRN PyResNet ContexualNet A2S2KNet PSE-UNet SpectralFormer GFNet Proposed

class 1 1.0000 1.0000 1.0000 0.9444 0.7878 0.9743 0.6511 0.6315 0.9473 1.0000
class 2 0.7982 0.9177 0.9657 0.8350 0.9174 0.9759 0.9013 0.7449 0.9589 0.9953
class 3 0.8198 0.8244 0.9757 0.8077 0.7441 0.9755 0.9271 0.4953 0.9393 0.9815
class 4 0.5228 0.9592 0.9681 0.9714 0.7500 0.9490 0.7476 0.4954 0.9393 0.9862
class 5 0.9395 0.9676 0.9832 0.9496 0.7556 0.9739 0.9445 0.6923 0.9570 0.9615
class 6 0.9956 0.9700 0.9571 0.8825 0.9307 0.9640 0.9501 0.8092 0.9200 0.9984
class 7 1.0000 1.0000 0.8064 0.8889 1.0000 0.8620 0.6086 0.480 1.0000 1.0000
class 8 0.9978 0.9260 0.9954 0.9504 0.9821 0.9954 0.9931 0.9614 1.0000 1.0000
class 9 0.8333 0.3333 1.0000 0.8461 0.6538 0.7727 0.9285 0.7647 1.0000 1.0000
class 10 0.7824 0.9406 0.9407 0.9101 0.8878 0.9055 0.9079 0.7172 0.9402 0.9724
class 11 0.9822 0.8453 0.9769 0.8060 0.9233 0.9838 0.9766 0.9423 0.9423 0.9846
class 12 0.8795 0.9205 0.9470 0.9212 0.6258 0.9312 0.8897 0.4158 0.8588 0.9477
class 13 1.0000 0.9831 0.9531 0.9150 0.7731 0.9104 0.8064 0.8961 0.9945 1.0000
class 14 0.9912 0.9288 0.9850 0.9437 0.9352 0.9816 0.9947 0.9238 0.9752 0.9911
class 15 0.7635 0.8794 0.9856 0.9634 0.8669 0.9853 0.6571 0.4797 0.9768 0.9855
class 16 0.8356 0.9836 0.7321 0.9333 0.9761 0.7663 0.45 0.2682 1.0000 1.0000

OA 0.8856 0.9007 0.9671 0.8700 0.8743 0.9639 0.9224 0.7279 0.9536 0.9847
AA 0.8838 0.8987 0.9482 0.9043 0.8444 0.9317 0.8334 0.6598 0.9588 0.9878

Kappa 0.8699 0.8859 0.9625 0.8500 0.8563 0.9588 0.9110 0.6885 0.9471 0.9826
Train Times (s) 8.26 419.16 133.00 299.81 81.73 192.6 173.88 89.63 76.03 103.24
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Table 6. Classification results (%) of different models in the University of Pavia dataset.

Class SVM ResNet SSRN PyResNet ContexualNet A2S2KNet PSE-UNet SpectralFormer GFNet Proposed

class 1 0.9028 0.8456 0.9541 0.8074 0.8934 0.9920 0.9761 0.8802 0.9904 1.0000
class 2 0.9393 0.9295 0.9935 0.9533 0.9863 0.9988 0.9991 0.9728 0.9947 0.9991
class 3 1.0000 0.8304 0.9801 0.7810 0.74008 0.9287 0.6755 0.6928 0.9105 0.9647
class 4 0.9944 0.9975 0.9964 0.9830 0.9453 0.9938 0.9535 0.9232 0.9717 0.9857
class 5 0.9530 0.9802 0.9946 0.9795 0.9969 0.9984 0.9908 1.0000 1.0000 1.0000
class 6 0.9957 0.9261 0.9954 0.9720 0.9921 0.9935 0.9920 0.7460 0.9802 1.0000
class 7 1.0000 0.8305 0.9780 0.8438 0.8666 0.9852 0.6922 0.7372 0.9587 0.9976
class 8 0.7840 0.8009 0.9335 0.8163 0.8069 0.9197 0.8875 0.8913 0.9716 0.9827
class 9 0.9537 0.9940 0.9911 0.9729 0.8445 0.9956 0.6106 0.9563 0.9377 0.9924

OA 0.9291 0.9041 0.9814 0.9119 0.9362 0.9860 0.9476 0.9007 0.9824 0.9952
AA 0.9470 0.9039 0.9796 0.9010 0.8969 0.9784 0.8642 0.8666 0.9684 0.9914

Kappa 0.9047 0.8712 0.9753 0.8819 0.9152 0.9815 0.9302 0.8672 0.9767 0.9936
Train Times (s) 4.88 451.85 310.3 268.75 91.39 227.04 105.98 171.37 100.55 183.23

Table 7. Classification results (%) of different models in the WHU-Hi-LongKou dataset.

Class SVM ResNet SSRN PyResNet ContexualNet A2S2KNet PSE-UNet SpectralFormer GFNet Proposed

class 1 0.9620 0.9839 0.9980 0.8702 0.9686 0.9195 0.9905 0.9689 0.9853 0.9968
class 2 0.6561 0.6717 0.8526 0.5469 0.2566 0.7953 0.9385 0.3510 0.9384 0.9996
class 3 0.9201 0.5121 0.9684 0.5806 0.1686 0.9915 0.1779 0.2710 0.8290 0.9616
class 4 0.8958 0.7851 0.8984 0.7624 0.8673 0.9015 0.9850 0.9706 0.9853 0.9966
class 5 0.2790 0.8500 0.8154 0.6667 0.1710 0.9417 0.2540 0.7009 0.7304 0.7130
class 6 0.9502 0.9418 0.9950 0.9908 0.7822 0.9964 0.9023 0.8144 0.9667 0.9919
class 7 0.9989 0.7647 0.9820 0.7970 0.9985 0.9928 0.9999 0.9944 0.9992 0.9997
class 8 0.8495 0.9810 0.9106 1.0000 0.2934 0.8566 0.5941 0.65513 0.8943 0.8979
class 9 1.0000 0.4383 0.9184 0.4074 0.2272 0.9868 0.6852 0.1436 0.9035 0.9363

OA 0.9304 0.8115 0.9477 0.8008 0.8566 0.9375 0.9361 0.8917 0.9743 0.9861
AA 0.8346 0.7699 0.9265 0.7358 0.5259 0.9314 0.7253 0.6221 0.9148 0.9437

Kappa 0.9074 0.7379 0.9303 0.7221 0.8097 0.9167 0.9149 0.8560 0.9661 0.9817
Train Times (s) 3.88 118.8 76.67 72.24 34.60 107.44 58.34 41.34 21.09 41.32

The enhanced SVM performs significantly better than the original SVM. But, it suffers
from an overfitting phenomenon during training with small samples, leading to accuracy
degradation. ResNet uses only spatial features for analysis and employs PCA dimension-
ality reduction, which ignores the spectral properties between neighboring spectra and
leads to poor classification. The SSRN is designed with continuous spectral and spatial
residual layers to analyze the spectral correlation, overcoming the problems present in the
2DCNN and obtaining better classification results. However, the inherent characteristics of
convolutional networks limit it, and it cannot analyze the sequence features of the spectrum.
PyPesNet gathers features by enlarging the convolutional layer’s feature map. However,
its method needs to be able to perform well with a large number of training examples while
producing subpar classification results with tiny samples. ContextualNet uses the local
space–spectral vector of individual pixels to mine the spectral differences; however, em-
ploying fewer samples harms the classification accuracy. In order to learn spatial–spectrum
spectral features, A2S2KResNet features a spectral attention mechanism. However, the clas-
sification performance is constrained by the structure’s excessive complexity and processing
time. The overall classification accuracy of PSE-UNet is high. However, in terms of the
average accuracy, it is lower than other methods, indicating that it is not very effective for
classifying certain classes. Furthermore, PSE-UNet uses the PCA to reduce the number of
dimensions, which significantly reduces the number of parameters in the network. Spectral-
Former is a framework based on a Vision Transformer (ViT) that mines different levels of
spectral properties through group-wise spectral embedding and cross-layer adaptive fusion.
However, because Vision Transformer networks require more training samples, training
with fewer training samples leads to severe overfitting, so the classification accuracy is not
substantial. By evaluating the spectral features in the frequency domain, the GFNet and
our suggested method rethink the spatial–spectral properties and enhance the classification
performance. Among these, GFNet is the original network, which lacks the targeted pro-
cessing of spectral features. Since the proposed method has measures, such as separating
frequency-domain filter networks to achieve effective spectral–space feature extraction and
using detail enhancement to compensate for the drawbacks of frequency-domain networks
and nonlinear modules to enhance frequency-domain spectral extraction, the most effective
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framework is the one we have proposed for the SFFN. For the PU and WHU databases,
as shown in Tables 6 and 7, our proposed SFFN achieves the best accuracy in both cases,
and its classification performance is comparable to the prior ones.

3.4. Visual Evaluation

We visualized different methods to obtain classification maps for qualitative assess-
ment. Figures 6–8 show the classification visualization graphs of the evaluation model for
the IP, PU, and WHU databases, respectively. The false color map and the ground truth
image are depicted in Figures 6a,b, 7a,b and 8a,b, respectively, whereas Figures 6–8 of
(c) through (l) are produced using various deep learning algorithms. The SVM, ResNet,
PyResNet, and ContextualNet may all be observed to produce higher levels of noise for
classification with fewer training data, which indicates that these models are incapable
of recognizing the categories of objects. In contrast, the SSRN, A2S2KResNet, SPectral
Former, PSE-Unet, GFNet, and our proposed method show better visualization results due
to the mining of more relationships between spectra. As an emerging network architecture,
the frequency-domain analysis network can smooth the frequency-domain relationships
from HS image spectral adjacencies and the edges by using a detail enhancement layer. We
can produce perfect classification maps with fewer noise points than previous approaches
with limited sample training, demonstrating a greater capacity to examine neighboring
hyperspectral bands. With finer classification edges, the edges of the classified regions have
better spatial continuity, demonstrating that our suggested method can accurately capture
the variability of spatial information.

(a) False color map (b) Ground truth (c) SVM (d) ResNet (e) SSRN (f) PyResNet

(g) ContextualNet (h) A2S2KResNet (j) SpectralFormer(i) PSE-UNet (k) GFNet (l) Proposed

Alfalfa Corn-n Corn-m Corn Grass-p Grass-t Grass-m Hay-win Oats

Soybean-n Soybean-m Soybean-c Wheat Woods Buildings Stone Unlabeled

Figure 6. Classification maps of Indian Pines.
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(a) False color map (b) Ground truth (c) SVM (d) ResNet (e) SSRN (f) PyResNet

(g) ContextualNet (h) A2S2KResNet (j) SpectralFormer(i) PSE-UNet (k) GFNet (l) Proposed

Asphalt Meadows Gravel Trees Metal Bare Soil Bitumen Bricks Shadows Unlabeled

Figure 7. Classification maps of the University of Pavia.
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(a) False color map (b) Ground truth (c) SVM (d) ResNet (e) SSRN (f) PyResNet

(g) ContextualNet (h) A2S2KResNet (j) SpectralFormer(i) PSE-UNet (k) GFNet (l) Proposed

Figure 8. Classification maps of The WHI-HI-LongKou datasets.

4. Discussion
4.1. Ablation Study

Apart from the network’s learnable parameters and the hyperparameters needed
for training, the final classification performance is greatly influenced by the different
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split-frequency filter ratios. Investigating the optimal separation filtering parameters is
crucial. We look at the ablative sensitivity of this parameter for the Indian Pines dataset
and how the classification parameters will change if only the ratio of the split parame-
ter is applied. Table 8 shows the classification accuracy trend as the separation filtering
changes by different proportions. We mark the optimal results in bold in Table 8. The first
nine columns indicate the classification accuracy with different separation ratios, and the
last column indicates the performance of the unimproved GFNet with the same param-
eter settings. The results show that the best accuracy occurs at a 65% separation ratio.
However, the performance of the separated frequency-domain convolution method is
better than that of the GFNet at different separation ratios (all have an OA of more than
1%). Therefore, we can analyze the local spectra of different segments to understand that
separation-frequency-domain filtering exploits subtle spectral differences. The classification
performance increases and drops as the separation ratio parameter changes, peaking at
70%. This model raises the top bound of the hyperspectral frequency-domain analysis,
as shown by the fact that all three classification metrics are higher than those of GFNet.

Table 8. Ablation analysis of the split-frequency filter with different split ratios for the Indian
Pines dataset.

The Split Ratio (%) 10 20 30 40 50 60 70 80 90 GFNet

OA 0.9700 0.9745 0.9763 0.9757 0.9779 0.9781 0.9847 0.9785 0.9698 0.9536
AA 0.9720 0.9774 0.9785 0.9787 0.9780 0.9795 0.9878 0.9825 0.9762 0.9588

Kappa 0.9658 0.9710 0.9729 0.9723 0.9748 0.9750 0.9826 0.9770 0.9655 0.9471

Additionally, by gradually installing several modules, we evaluate the development
of the performance of each module for the SFFN network model. In order to confirm the
suitability of each module in the SFFN model for applications requiring hyperspectral
classification, we orchestrate experiments thorough ablation on the Indian Pines dataset.
In Table 9,×means that this module is not added while X means indicates that this module
is added. As shown in Table 9, the classification result of the proposed split-frequency filter
network without detail enhancement and the other modules is the lowest, and when the
modules are added step-by-step, it can be noted that the detail-enhancement layer can
enhance the model’s overall reliability. Other improvements can make the classification
accuracy better, and a better classification performance can be obtained.

Table 9. Ablation analysis of different modules and the model’s performance gain for the Indian
Pines dataset.

Method

Module Metric Times

Split-Frequency Filter Detail-Enhancement
Layer Others OA AA Kappa Training

Time (s) Test Time (s)

GFNet × × × 0.9536 0.9588 0.9471 76.03 1.57
SSFN X × × 0.9785 0.9825 0.9755 102.68 1.489
SSFN X X × 0.9785 0.9849 0.9766 117.57 1.848
SSFN X X X 0.9847 0.9878 0.9826 103.24 1.037

4.2. Influence of the Size of the Image Patch

The influence of different spectral–spatial patch sizes on the efficacy of the classification
is the main topic covered in this section. We mainly use the target spectrum and the
surrounding spatial neighborhood as cube information for the network input, so the cube’s
size will significantly impact the classification performance. The network cannot thoroughly
learn information in adjacent spatial domains when the spectral–spatial cube is too small,
since it can only use a limited amount of spatial information. The receptive field also
increases with an enormous spectral–spatial cube, contributing extraneous information
and hindering network learning. As the size of the input space cube rises (see Figure 9),
the OAs of the IP, PU, and WHI databases rise and subsequently fall, IP and PU reach a
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maximum size of 9× 9 with 98.47% and 99.01%, respectively. In comparison, WHI reaches
a maximum size of 7× 7 with 98.48%. By examining the experimental data from the three
datasets, it was discovered that for IP and PU, the best performance is achieved with a
spatial patch size of 9× 9, and the best performance on WHI is achieved with a size of 7× 7.
As a result, for IP and PU, this research utilizes an input size of 9× 9; for WHI, it applies
a spatial input size of 7× 7. Additionally, we set the network’s depth to 5. Overly deep
networks might hamper the network performance in terms of classification.

3×3 5×5 7×7 9×9 11×11
92

93

94

95

96

97

98

99

100

OA
(%

)

93.72

95.95
96.28

97.78
97.97

98.18 98.11

98.58 98.61 98.47

99.01

98.48

97.49

98.59

98.12

IP
PU
WHI

Figure 9. Overall accuracy (%) of input patches with different spectral–spatial sizes on the four datasets.

4.3. The Influence of a Spatial Disjoint Split

In this subsection, we focus on the effect of a spatial disjoint split on the test accuracy
in the training and test sets. In [54], the effects of the random division of training and
test sets, as well as the spatial disjoint split of the training and test sets on the training set
are mentioned. However, the spatial disjoint split mentioned in the paper is not entirely
disjointed. Therefore, we propose our method to verify the complete spatial disjointedness,
as shown in Figure 10.

Train Pixel Test Pixel Receptive field

Test Pixel in Receptive field The Pixel removed from test set

Random train/test Disjoint train/test

Train Pixel in Receptive field

Figure 10. Illustration of a split that is random and spatially disjointed. The right figure depicts an
entirely disjointed split, while the left figure displays a random selection.

We still use the same randomized division ratio as before, meaning that the training
data do not change. The different thing from before is that we traverse all receptive fields
in the training set and eliminate all contained test sets. As the test set shrinks, we reach a
state of total spatial disjoint. Furthermore, we also perform a comparison test on the Pavia
University data, as shown in Table 10.
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Table 10. Comparison of the accuracy of different methods under a random split and a spatially
disjoint split for the University of Pavia dataset.

Random Disjoint

OA AA kappa OA AA kappa

SVM 0.9291 0.9470 0.9047 0.9291 0.9470 0.9047
ResNet 0.8849 0.8816 0.8452 0.8081 0.8343 0.7502
SSRN 0.9626 0.9501 0.9504 0.9264 0.9024 0.9069

PyResNet 0.7972 0.8132 0.7183 0.7840 0.7909 0.7171
ContexualNet 0.8094 0.7572 0.7407 0.7603 0.7009 0.6916
A2S2KResNet 0.9413 0.9343 0.9216 0.9349 0.9313 0.9143

PSE-UNet 0.9224 0.8334 0.9110 0.8834 0.8163 0.8584
SpectralFormer 0.879 0.8647 0.8487 0.8156 0.7086 0.7613

GFNet 0.9663 0.9460 0.9551 0.9499 0.9329 0.9367
Proposed 0.9904 0.9820 0.9872 0.9843 0.9730 0.9801

SVM is a traditional machine learning algorithm that creates a spectral cube from
a single point without using spatial neighborhood information during training. As a
result, no points are removed from the test set, and both tests have identical results.
For instance, algorithms like ResNet, ContexualNet, and PSE-UNet are more affected
by total spatial disjointedness. They are more concerned with the spatial information
from the neighborhood than the spectral information. However, methods like PyResNet,
GFNet, and the proposed algorithm place greater emphasis on the spectrum’s sequence
information and, as a result, are more generalizable, even in the presence of complete
spatial disjointedness. Comparing our algorithm’s 1% OA degradation to that of other
approaches demonstrates our algorithm’s robustness. The drop in accuracy here may
be due to the reduction in the test set involved in the evaluation. Whether in the case
of random selection or the case of complete disjointedness, our proposed algorithm can
achieve the best performance.

4.4. Visual Evaluation

To demonstrate the different feature classification abilities of different algorithms,
we visualize the feature distribution of ten methods in two-dimensional space using the
t-SNE algorithm [55] for the IP database. As seen in Figure 11, with the same t-SNE
settings, the classification boundary of our proposed SFFN is more prominent, there is less
overlapping of different classes, and the classification results can be seen more intuitively.
Compared with other methods, such as ResNet and other algorithms, the clustering effect
is poor and cannot reliably classify the same class with serious cross-over. Therefore, our
proposed SFFN model can effectively learn the representative information from the spectral
frequency-domain.

Class2Class1 Class3 Class4 Class5 Class6

Class15

Class7

Class9

Class8

Class11 Class12Class10 Class13 Class14 Class16

(i) GFNet (j) Proposed(f) A2S2KResNet

(d) PyResNet (e) ContextualNet
(a) ResNet (b) SVM

(h) Spectral Former

(c) SSRN

(g) PSE-UNet

Figure 11. The feature representation capability of eight methods on the IP test set: t-SNE,
(a) ResNet, (b) SVM, (c) SSRN, (d) PyResNet, (e) ContextualNet, and (f) A2S2KResNet, (g) PSE-UNet,
and (h) Spectral Former, (i) GFNet, and (j) our proposed method.
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5. Conclusions

In this paper, we validated the features of a split-frequency filter network for hyper-
spectral classification using intuitive experiments. The results show that hyperspectral
frequency-domain networks can have a high classification accuracy and be used as a new
backbone network. We proposed a new split-frequency filter network. In the proposed
method, the spectral disparities between the hyperspectral spectral bands are taken ad-
vantage of and segmented for the frequency-domain analysis, which can significantly
boost the accuracy of hyperspectral frequency classification. Our approach consists of
three main components: a split-frequency filter network, a detail-enhancement layer, and a
nonlinear function enhancement. Compared to the GFNet, the separated split-frequency
filter network enhancement is the most obvious. Our experiments on three renowned
hyperspectral datasets show that better classification results could be obtained than other
recently proposed methods.

Future research will examine how to adaptively employ frequency-domain segmenta-
tion to fully utilize hyperspectral frequency-domain filtering networks. In order to increase
the classification accuracy and model efficiency with fewer training samples, we will also
enhance the model structure to fully exploit the spectrum frequency-domain characteristics
of hyperspectral images.
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