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Abstract: Urban planning within Riyadh, the capital of Saudi Arabia, has been impacted by the
presence of informal settlements. An understanding of the spatial distribution of these settlements is
essential in developing urban policies. This study used remotely sensed imagery to evaluate and
characterize informal settlements within the city, both with and without expert knowledge of the
study area (defined as expert knowledge, EK). An informal settlement ontology for four study sites
within Riyadh City was developed using an analytical hierarchy process (AHP). Local knowledge
was translated into a ruleset to identify and map settlement areas using spatial, spectral, textural, and
geometric techniques. These were combined with an object-based image analysis (OBIA) approach.
The study demonstrated that combining expert knowledge and remotely sensed data can efficiently
and accurately identify informal settlements. Two classified images were produced, one with EK, and
one without EK, to investigate how a detailed understanding of local conditions could affect the final
image classification. Overall accuracy when using EK was 94%, with a kappa coefficient of 89%, while
without EK accuracy was 68% (kappa coefficient of 61%). The final OBIA classes included formal
and informal settlements, road networks, vacant blocks, shaded areas, and vegetation. This study
demonstrated that local expert knowledge and OBIA helpful in urban mapping. It also indicated
the value of integrating a local ontological process during digital image classification. This work
provided improved techniques for mapping informal settlements in Middle Eastern cities.

Keywords: informal settlements; local expert knowledge; OBIA; AHP; high-resolution imagery

1. Introduction
1.1. Research Background

The development of informal settlements (also known as unplanned areas) is increas-
ing in many parts of the world. This is due to several factors including rural-to-urban
migration, a shortage of affordable housing, rising poverty levels and societal inequal-
ity [1,2]. The reasons may vary between locations, but all informal settlements have some
common features. They tend to be characterized by high population and housing density,
a lack of suitable shelter for many residents, and physically demanding environmental
conditions [3]. Marginalization and displacement issues caused by social conflict, natural
disasters and climate change are key factors in the rise of these settlements [4]. In the
Arabian Peninsula, these developments are mostly due to housing accessibility constraints,
rural-to-urban migration (due to a lack of employment opportunities and low wages in
rural areas) and a lack of government law enforcement. According to a UN-HABITAT [5]
report on the Arabian Gulf area, informal settlements in Saudi Arabia are primarily inhab-
ited by non-Saudi nationals and illegal residents whose allowable stay for work, tourism or
religious activities has expired.

Informal settlements are usually found in the center of urban areas or in proximity
to these areas [6]. In many cases they are comprised of the older residential parts of the
city. They differ from slums because they have evolved in tandem with more recently
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developed urban areas. They can be distinguished by very old buildings combined with
more contemporary structures. This combination of traditional and modern architecture is
found in Riyadh city (Figure 1). No previous studies have been undertaken to delineate
informal settlements in the city, although research has been conducted in other cities within
the Kingdom of Saudi Arabia (KSA) [7,8]. These studies did not, however, use local expert
knowledge to identify indicators useful for defining informal settlement characteristics
specific to the area of interest. This previous work relied on international studies which
examined informal settlements with very different characteristics to those found in the
Arabian Peninsula.
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1.2. Literature Review

During the last decade, there has been a global focus on defining the extent of in-
formal settlement development and improving the standard of living of people in these
areas. Karimi and Parham [9] investigated settlement growth, evolution, and function.
Aljoufie et al. [10] examined at the relationship between urban growth and transportation.
This analysis indicated that transportation network expansion had stimulated Jeddah’s
urban spatial expansion and residential growth. Jehani [11] showed how informal settle-
ment growth continues in the KSA and suggested some methods to improve these urban
environments. El Menshawy and Shafik [12] discussed affordable housing as a solution
to problems associated with informal settlements. More recently, Breengy and Yusof [7]
reviewed informal settlement areas within Saudi Arabia and found that, in general, living
conditions in these settlements were substandard and were commonly associated with
social problems, literacy issues, unemployment and urban decay. Accessibility issues
during emergencies were common and the areas also had high crime and suicide rates
and environmental problems [13].Informal settlements are present in several Arab cities,
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including Cairo, Alexandria (Egypt), Dubai (United Arab Emirates) Sana’a (Yemen), and
Oman (Jordan) [3]. Due to policies implemented by the government, Saudi Arabia has not
suffered from the slum and shanty town issues that have occurred in other developing
countries [3].

Several theories have been proposed regarding informal settlements’ morphological
development. Population census data are commonly used in mapping, with a quantitative
index developed to assist in informal settlement area recognition [14]. In most countries,
census data for inhabited areas are normally collected once a decade. However, a drawback
of this timeframe is that due to the dynamic nature of these populations, the data are often
out of date. An associated issue is that information related to slum location or concentration
may also not be available, as data from these areas are often not collected for formal
statistical studies [14,15].

The use of advanced geospatial methods and remotely sensed data to map informal
settlements has challenges [16]. Many pixel-level classification approaches have extracted
data from high-resolution satellite imagery. This includes the use of a discrete wavelet
frame transform (DWFT) [17], grey level co-occurrence matrix (GLCM) [13,18], and local
binary patterns (LBP) [19]. Many are of limited value, and the ability to classify imagery
often requires adding extra steps to improve accuracy. Mahabir et al. [16] noted that the
reflective surfaces of different objects (in both urban areas and over barren land) may
produce similar spectral responses. Mudau and Mhangara [20] also experienced this issue
in research in South Africa. They undertook extensive fieldwork to define the various
classes of mixed pixels in bare soil and built-up areas. Arid regions and uncultivated
farmland could be mistaken for urban areas due to similar reflectance characteristics in the
visible and infrared wavelengths [16,20].

Due to the issues noted above, per-pixel methods were not considered appropriate for
analyzing complex urban environments exhibiting high spectral diversity, nor for those
areas containing small, clustered objects and those with diverse morphological character-
istics [14]. Image segmentation, which dates to the 1970’s, is the most commonly used
method for generating objects. The close integration of GIS and image processing com-
menced in about 2000 using objectbased image analysis (OBIA) for analyzing geographic
objects [21]. This technique groups pixels into sets or objects. The OBIA method focuses on
the characteristics of objects such as their shape, size, texture, context, and relationship with
adjacent pixels [22]. The mapping of informal settlements with very-high-resolution (VHR)
imagery is commonly achieved nowadays using this method [23,24]. Chang et al. [25] have
shown that using OBIA techniques can substantially overcome issues associated with the
per-pixel method, and these are capable of more precisely defining a spatially complex
urban area by successfully distinguishing between settlement types [20,24,26]. Several re-
searchers, including Ghaffarian and Emtehani [27], Kohli et al. [28] and Jovanović et al. [29],
have studied the use and effectiveness of OBIA. They concluded that OBIA produces highly
accurate results. OBIA does, however, have some limitations. Grippa et al. [30] showed us-
ing a specifically optimized segmentation parameter on a small urban area was ineffective
when applied to large urban areas due to pixel diversity. Researchers have highlighted the
importance of the transferability of the OBIA; however, inconsistent variable selection can
still occur, which may result in inaccurate outcomes [14,16,20]. Extracted textural measures
and a defined ruleset may also perform differently between and within study areas. The
texture of roofs and other features may resemble those of paved roads and other structures
commonly found in urban areas, leading to the misclassification of pixels [16]. In summary,
although OBIA does have some limitations, it is a widely used method for mapping urban
informal settlements [14,24,31]. Expert knowledge about a given area may be required to
correctly apply OBIA indicators [28,32], as well as to define the various elements or objects
which can be used to classify differing resolution satellite imagery and allow the correct
identification of relevant informal settlement indicators [20,23,33,34].

Many studies have used settlement characteristics to define the features helpful in
detecting informal settlements from remotely sensed data, although the level of accuracy
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of these has varied. Using only the spectral characteristic of the imagery is not regarded
as ideal. Kohli et al. [28] developed an ontological framework, the generic slum ontology
(GSO), to assist in the developing a formal concept of an informal settlement structure when
using remotely sensed data. The GSO methodology identifies and uses three morphological
characteristics at differing levels in the built environment: the environs, the settlement, and
the object levels. At the environmental level, external or pull factors (e.g., hazards arising
from floodplains and marshy conditions) are essential [28,33]. At the settlement level, the
texture is the key, while at the object level, the significant components of the ontological
framework are building and road attributes. Morphological characteristics of the built
environment may also differ because of geographical location [28,35].

Various studies have recommended defining the indicators for mapping work de-
veloping a rigorously defined ontological framework. Kohli et al. [28] proposed the use
of six indicators (location, neighborhood characteristics, shape, density, buildings, and
access networks) when using OBIA. In a study in the coastal city of Jeddah in KSA, Fal-
latah et al. [8] showed that the vegetation extent, the lacunarity (the number of gaps within
a defined space) of housing structures/vacant land, the road network, and the roofing
extent of built-up regions could be used to map informal settlements. They also found that
several elements were ineffective in the mapping process, indicating that the definition
and characteristics of an informal settlement are specific to the area of study. Building
density remains a commonly used informal settlement indicator with the greatest accu-
racy [28,36,37]. GLCM textural techniques using the shape of the various settlement areas
have also been applied with varying degrees of success [14]. In some cases, GLCM textural
analysis appears unable to distinguish informal settlements from built-up areas [8,17].

Many studies have relied solely on data-driven approaches to deriving spatial in-
dicators from satellite data and have ignored local knowledge [38,39]. Many of these
settlements (including those found in the Arabian Peninsula) are constructed using the
same building materials as formal settlements, so local knowledge about specific uses is
regarded as an additional and valuable tool. Local knowledge may assist in distinguishing
between differing settlement types with very similar spectral characteristics [8].

Several studies have been undertaken on this topic in many diverse locations; however,
a completely automated methodology for mapping such settlements using satellite data is
not yet available. This study aims to combine OBIA, local knowledge and remote sensing
to develop an ontology of informal settlements, focusing on Riyadh, the capital of Saudi
Arabia. This study is structured as follows: Section 2 outlines the materials and methods.
Section 3 presents the results; and Section 4 discusses the findings. A summary and
recommendations for further research are presented in the final section.

2. Materials and Methods
2.1. Study Area

Riyadh is the largest city and capita, of Saudi Arabia. It is located on the Najd
Plateau about 600 m above sea level at latitude 24◦18′′ to 25◦11′′N, and longitude 46◦15′′

to 47◦19′′E (see Figure 2).Like other cities within Saudi Arabia, Riyadh has experienced
rapid urbanization since the discovery of large oil deposits in the region in the 1970s [40].
It has also experienced the country’s most rapid growth in population numbers, with an
estimated eight million people residing in the city in 2020 [41].

Government policies have laid the groundwork for a rapidly expanding urban econ-
omy by attracting substantial investment in the education, health, defence and financial
sectors. Compared to other cities in Saudi Arabia, Riyadh has a relatively small number
of informal settlements. A key reason for the presence of these informal areas is the rapid
development and modernization of Riyadh in recent years. This has resulted in people
migrating from rural areas to the city for work and an improved lifestyle. The require-
ment for cheap accommodation to house these workers has also driven this settlement
increase [3,42].
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The stated goal of the Riyadh City Centre Development Plan (RCCDP) is to reshape
the city center into a national administrative, cultural, historical, and economic hub while
at the same time preserving existing urban and cultural heritage. The plan also focuses
on retaining current commercial activities, improving road networks, public services, and
employment opportunities, diversifying existing housing trends and patterns, working
towards a demographic and social balance, increasing the size and number of open areas
and improving the overall security of the area [41,43]. Twenty-eight informal settlements
within the city were identified by the Riyadh Municipality (Figure 2), with four informal
neighborhoods chosen for this study: (a) Al Shomaisi (1.49 km2), (b) Meekal (0.21 km2),
(c) Al Dirah (0.24 km2), and (d) Al Dubiya (1.56 km2). Most of the buildings in the study
area are constructed of concrete. Examples of these buildings are shown in Figure 3.

2.2. Data and Image Pre-Processing

WorldView-3 panchromatic and multispectral images with spatial resolutions of 0.31 m
and 1.24 m, respectively, were used in this study. These were obtained from the King Ab-
dulaziz City for Science and Technology (KACST), a government organization located in
Riyadh City (KSA) (Table 1). Before analysis, radiometric and atmospheric corrections were
undertaken using ENVI 5.7 software. Gram-Schmidt (GS) spectral sharpening invented by
Laben and Brower in 1998 was used for panchromatic fusion [44]. Fusion of the panchro-
matic and multispectral images was undertaken to obtain high-resolution multispectral
images with a spatial resolution of 0.4 m. The Gram-Schmidt (GS) process is integrated into
the sharpening module used by the ENVI software. In maintaining the consistency of the
spectral information contained within the images before and after fusion. GS sharpening
is a good high-fidelity remote sensing image pan-sharpening approach. The initial pre-
processing step was required for the high-resolution images with the results being used to
select the optimum spectral bands for the segmentation process. For WorldView-3 imagery,
the optimal bands were judged to be bands 2 (450–510 nm), 3 (510–580 nm), 5 (630–690 nm),
7 (770–895 nm), representing blue, green, red, and infrared wavelengths, respectively.
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Additionally, an GeoEye-1 image with a panchromatic (0.41 m) and multispectral
(1.64 m) bands were obtained from (KACST). The GeoEye-1 data was used as a reference
to assess the OBIA classification accuracy. Road network, informal settlements and neigh-
borhood boundary vector data were also obtained from the Riyadh Municipality (RM) in
December 2020, December 2021, and March 2022. A local expert knowledge survey was
conducted in May 2022 to provide detailed indicator information for the study area. The
four study areas were defined as “informal settlements” or “old residential and historical
neighborhoods” by the local experts.

The survey data were used to determine all the indicators to be incorporated into the
OBIA classification process. This study relied on expert knowledge to identify 16 unique
indicators which could be used during the OBIA segmentation process. To choose the best
filter to use for defining building border edges, three different edge detection operators
were tested (Canny, Gaussian, and Sobel). The Sobel filter provided the best border index
extraction and was used for image filtering. Four subset windows (512 × 512 pixels) were
defined from the WorldView-3 image. Each subset represented one neighborhood in the
study area. There are three processing steps used in Sobel filtering. The first step uses a
kernel size of 3 × 3 to measure the intensity difference in vertical, horizontal, right, and
left directions. This is followed by a gradient realization step to identify edges, with the
final step comparing results corresponding to the gradient object at each pixel point in
the image [45,46]. This generates the gradient of image intensity at each point while also
considering the direction and magnitude of intensity variation. Selection of a suitable image
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band to extract the specific classes is crucial. Sobel filtering was applied to the selected
bands (bands 2, 3, 5 and 7) to identify feature boundaries and define the optimum spectral
band for image processing.

Table 1. Characteristics of satellite images, DEM and DSM.

Data Image Attributes Band Spectral
Resolution

Ground Sampling
Distance (GSD) Source

WorldView-3

Panchromatic Band Panchromatic 450–800 nm 0.30 m GSD at nadir 0.34 m
at 20◦ off-nadir

KACST

MS (multispectral)
bands and VNIR
(visible near-infrared)

Coastal Blue 400–450 nm

1.24 m at nadir, 1.38 m
at 20◦ off-nadir

Blue 450–510 nm

Green 510–580 nm

Yellow 585–625 nm

Red 630–690 nm

Red edge 705–745 nm

Near-infrared1 770–895 nm

Near-infrared2 400–450 nm

Acquisition date 8 June 2021

Swath width 13.1 km

Total cloud cover 0%

GeoEye-1

Panchromatic Panchromatic 450–900 nm 0.41 m GSD

KACST

MS and NIR

blue 450–510 nm

1.64 m GSD
green 520–580 nm

red 655–690 nm

Near-infrared 780–900 nm

Acquis. date 17 February 2021

Swath width 15.2 km

Total cloud cover 0%

DEM and DSM
Spatial resolution 5 m

KACST
Coverage 3.5 km2

Both digital elevation model (DEM) and Digital Surface Model (DSM) models with
a pixel size of 5.0 m were obtained from KACST (Table 1). They were constructed from
34 archive aerial photos captured on 5 February 2020 at a scale of 1:30.000. A nearest-neighbor
method was used to resample DEM/DSM to 1.64 m to match with other raster datasets.

2.3. Ontological Framework

Sowa [47] defined the concept of ontology as the vocabulary of classification, taxonomy,
relations, and domain axioms. Ontological concepts have previously been used in object
recognition work to provide a structure for potential informal settlement identification.
A local ontology of informal settlements (LOIS) was adopted for the Riyadh study using
the knowledge of local experts and the generic slum ontology (GSO) recommended by
Kholi et al. [28]. A flowchart of the process is shown in Figure 4. A local knowledge survey
was used to collect specialist information about the areas. Twelve unique indicators were
identified as inputs for during the satellite image processing phase. Four main categories
were used to build the ontological framework—shape, geometry, texture, and pattern.
The conversion of qualitative data indicators into quantitative indicators was achieved
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using OBIA parameterization. This tested the individual indicators and provided optimum
values for each indicator. The resulting classification accuracy was then assessed.
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2.4. Expert Survey

This study focused on observable characteristics in very high-resolution (VHR) images.
A literature review was carried out to produce an initial list of potential indicators. A
semi-structured questionnaire survey was used to refine this list and identify missing
indicators. and ensure that the indicators chosen were valid for the study areas. A ques-
tionnaire on informal settlements was developed, and ethics approval was obtained in
April 2022. The survey comprised of ten questions regarding indicators considered helpful
in identifying and mapping informal settlements. The questions were both open-ended and
multiple-choice. Fifty experts with knowledge of unplanned and informal urban areas were
interviewed. This selection included urban planners, remote sensing experts, geospatial
academics, and local administrators. The experts were chosen based on a various criteria,
including but not limited to experience, education, and affiliation (education or indus-
try). The sample population included professionals with experience in GIS (geographic
information systems), remote sensing, urban science, environmental science, and relevant
engineering fields.

The survey was also sent to urban specialists at King Abdulaziz City for Science and
Technology in Saudi Arabia (KSA), Riyadh Municipality, The Royal Commission for The
Development of Riyadh, King Saud University, and Princess Nora University. The basis for
selection included involvement in urban planning and housing, individual specialization
areas, and length of experience in the field. The questionnaire listed what was perceived as
the most important indicators for each feature of interest, the type of building structure, the
period of settlement growth, the most common building size, the approximate percentage
of vegetation cover, and the most common roof materials.

The variance inflation factor (VIF) and tolerance statistics were calculated for the
indicators to test multicollinearity and uncertainty and to verify that the identified indi-
cators were effective and that the results were statistically significant. This included the
production of mean, standard deviation, and percentage values.
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A review of previous research noted that not all indicators of informal settlements were
relevant for mapping in all situations and that general indicators used in other work could
require some modification [14,36,48]. This observation was made using “local condition”
knowledge a prime requirement in the current study. The final set of indicators produced
was regarded as the most effective at separating informal from formal settlements (Table 2).

Table 2. OBIA parameters and relevant indicators used in segmentation.

Indicators Description Definition

NDVI Normalized difference
vegetation index Measures vegetation

VB Visible brightness Measures roads

SD (B) Standard deviation
(Blue) band

Measures how dispersed the data are concerning
the to mean brightness of band 2

DSM Roof Digital surface model

GCLM
texture

Entropy Measures randomness to detect the texture of an
input image

Contrast
Measures the local variations in the GLCM

through the intensity contrast between a pixel
and its whole neighbor

Homogeneity High value, if GLCM concentrates along
the diagonal

Correlation Values range between −1 and 1

Mean
Pixel value is

weighted by the frequency of its occurrence in
combination with a certain neighboring value

BI Border index Percentage of the image border length between
the object and the smallest enclosing rectangle

MDS (B) Mean and standard
deviations (blue band)

Digital number values of a blue band and
all pixels

Dwelling size Pixel size (area) The size of an image object is measured by the
number of pixels in the image

Dwelling shape Shape index The smoothness of an image object border

Building density Density The image object that contains the current
candidate pixel/voxel

Housing
orientation Accessibility The corner of the object that is used as the

calculation base for the coordinates

Proximity to
hazardous areas
(e.g., flooding,

landslides)

DEM Slope

2.5. Analytical Hierarchy Process (AHP)

The analytical hierarchy process (AHP) was used to obtain the priority ranking of
the typical site and road conditions within the informal settlements [48]. Three criteria
were investigated concerning typical site conditions proximity namely the proximity to
hazardous industries, distance from social services, and steepness of the land surface
(slope). Five criteria were used in assessing typical road conditions: (i) the number of
narrow roads, (ii) a large number of crossings with short road segments, (iii) straight roads,
(iv) curved roads, and (v) paved roads. Based on indicators from the survey and the VIF
and AHP work, a ruleset for OBIA was defined and used to develop a local ontology of
informal settlements (LOIS).
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2.6. OBIA Segmentation

The Estimation of Scale Parameter (ESP) was used for the multi-resolution image
segmentation. The ESP method was developed by Drǎguţ et al. [49].The technique allows
determining changes in object heterogeneity within a scene, especially to recognize spectral
variation within and between objects. The scale parameter (SP) values, shape and compact-
ness parameters were used in this work. An SP of 30 was selected [50]. The weight values
of 0.3 and 0.5 were assigned to shape and spectral compactness. Six classes i.e., informal
settlements, formal settlements, road networks, shadows, vacant areas and vegetation were
defined using the OBIA. These classes were categorized according to the indicators listed
in Table 2.

2.7. Indicators

Important indicators of informal settlements were calculated such as the size of homes,
road segments and materials, vegetation, roofing, the spatial distribution of housing struc-
tures, vacant land, and built-up area texture measurements were calculated (see Table 2).
These were mapped with a high degree of accuracy as they were spectrally distinct from
other features such as vegetation and contained areas similar in size to those of formal
settlements. Built-up areas normally have less spectral reflectance than vacant land and
house buildings, so these areas were mapped using only the brightness value. Spectral
indices’ performance tends to be impacted by the spectrum reflectance of surface features
(which can vary across regions) and by variations in topography.

The DSM provided the height and area information for the image objects. The data rep-
resented above-ground features and reduced the impact of topography on image processing
(Figure 5). DSM data were also used to enhance segmentation accuracy by calculating
the roof area of the dwellings. These data accurately identified the shape of the built-up
regions in both informal and formal settlement and enabled the calculation of dwelling
size according to pixel. The building extraction step was used, as there were significant
height and shape differences existed between the buildings and other objects in the DSM.
A threshold-based approach was then used with the building extraction data, as building
size was one of the indicators used for settlement identification in the LOIS. Based on local
experts, the maximum dwelling size within an informal settlement was set at ≤280 m2.
Road network buffering was also used in the accessibility model. The slope was extracted
and reclassified using the DEM. Considering the slope of the land was essential to calculate
the impact of risks from natural hazards such as flooding and landslides in the AHP.

The grey-level cooccurrence matrix (GLCM) developed by Haralick et al. [13] was
used in this study to extract texture of roof and building. Five separate textural measures
were applied: (i) GLCM entropy, (ii) GLCM homogeneity, (iii) GLCM contrast, (iv) GLCM
correlation and (v) GLCM mean. The roofs of buildings were extracted from band 5 of
WorldView-3 image using the GLCM entropy measure.

GLCM contrast, GLCM correlation and GLCMmean measures were used to extract
the lacunarity of housing structures and to enhance the texture of the built-up areas. This
allowed for better identification of the differing settlement types. The shape, size and
brightness of the built-up areas, shadows, and the standard deviation of the blue band
values were examined to obtain the mean difference. Differences in visible brightness
(VB) and pixel size was also used to classify areas of shadow and vacancy in the study
area. Vegetation was extracted from the red and infrared bands of the imagery using the
normalized difference vegetation index (NDVI) [51].

2.8. Accuracy Assessment

The classified image and segmented sampling image e.g., GeoEye-1 were used to
compute classification accuracy. A total of 600 samples were randomly selected for use
as reference data. The sampling segments were defined using the class types identified
within the image and used in the segmentation and classification work [52]. A comparsion
between the classification result and the sampled segments was then undertaken to define
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the classification accuracy. Using the methodology of Matarira et al. [15], 1750 random
points were selected as the reference data in the GeoEye-1 image. The results were used
to compare OBIA classification using EK with the alternative OBIA classification which
did not use EK-identified indicators. A confusion matrix was constructed. The producer’s
accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and kappa coefficients (kappa)
were calculated. The classification accuracy between the OBIA classification implemented
using EK and the alternative implemented without using EK was assesed.

Remote Sens. 2023, 14, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 5. DSM data is used to segment buildings,’ roofs, and dwelling sizes. 

The grey-level cooccurrence matrix (GLCM) developed by Haralick et al. [13] was 
used in this study to extract texture of roof and building. Five separate textural measures 
were applied: (i) GLCM entropy, (ii) GLCM homogeneity, (iii) GLCM contrast, (iv) GLCM 
correlation and (v) GLCM mean. The roofs of buildings were extracted from band 5 of 
WorldView-3 image using the GLCM entropy measure. 

GLCM contrast, GLCM correlation and GLCMmean measures were used to extract 
the lacunarity of housing structures and to enhance the texture of the built-up areas. This 
allowed for better identification of the differing settlement types. The shape, size and 
brightness of the built-up areas, shadows, and the standard deviation of the blue band 
values were examined to obtain the mean difference. Differences in visible brightness (VB) 
and pixel size was also used to classify areas of shadow and vacancy in the study area. 
Vegetation was extracted from the red and infrared bands of the imagery using the 
normalized difference vegetation index (NDVI) [51]. 

2.8. Accuracy Assessment 
The classified image and segmented sampling image e.g., GeoEye-1 were used to 

compute classification accuracy. A total of 600 samples were randomly selected for use as 
reference data. The sampling segments were defined using the class types identified 
within the image and used in the segmentation and classification work [52]. A comparsion 
between the classification result and the sampled segments was then undertaken to define 
the classification accuracy. Using the methodology of Matarira et al. [15], 1750 random 
points were selected as the reference data in the GeoEye-1 image. The results were used 
to compare OBIA classification using EK with the alternative OBIA classification which 
did not use EK-identified indicators. A confusion matrix was constructed. The producer’s 
accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and kappa coefficients (kappa) 
were calculated. The classification accuracy between the OBIA classification implemented 
using EK and the alternative implemented without using EK was assesed. 

  

Figure 5. DSM data is used to segment buildings,’ roofs, and dwelling sizes.

3. Results
3.1. Survey Assessment

The experts consulted for this survey had 3–10 years of relevant experience. In total,
80% worked directly in the urban planning and housing sector, and the remainder worked
in academia. Of these, 80% specialized in geoscience (GIS and remote sensing) technology,
while 20% worked in cadastral, civil, and urban planning. Responses were generally based
on the background of the individual and the level of knowledge of the specific subject
area. The survey results indicated that 82% of the informal settlement-type structures in
Riyadh City were unplanned and 18% were planned. Overall, 76% of informal settlement
growth in Riyadh city had occurred over a long period, while 24% had appeared very
quickly. Regarding the most common size of buildings found in the informal settlements,
40% of the experts indicated an area of ≤100 m2, 52% indicated an area of ≤280 m2 and 8%
indicated an area of >280 m2. The study selected the most common response, which was
≤280 m2. Regarding the percent of vegetation cover, 82% considered a vegetation cover of
<20% to be most common for informal settlements, while 18% indicated between 20% and
40% vegetation cover. The most common roof material used in the informal settlements
was concrete (suggested by 92% of respondents), while 8% indicated a mud-based material.
A summary defining the selected indicators is shown in Table 3. This also shows the results
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of the statistical analysis of the survey data. The tolerance numbers are generally between
60% and 70%. This is regarded as satisfactory.

Table 3. Survey results, including variance inflation factor (VIF).

Indicators Number of
Experts (n = 50) Tolerance VIF

Structure of the informal settlement (planned area) 11

Structure of the informal settlement (unplanned area) 39

Timeline—gradual over a long period 39 0.616 1.622

>20% vegetation 41 0.773 1.293

Roof material (concrete/mud) 46 0.523 1.913

Steep slope 4 0.378 2.646

Proximity to social services 32 0.726 1.377

Proximity to hazardous industries 14 0.480 2.082

Narrow road 24 0.622 1.607

Curved road 4 0.613 1.630

Straight road 6 0.684 1.463

Paved road 2 0.727 1.376

Short segments with abundant crossroads and paths 10 0.587 1.705

Building size ≤280 m2 48 0.521 1.918

3.2. AHP Assessment
3.2.1. Typical Site Conditions

The results of the AHP processing for typical site conditions are shown in Tables 4 and 5.
Table 4 displays the comparison matrix of indicators, while Table 5 shows the results of the
normalized matrix based on Table 4. The final row of Table 5 represents the priority vector
weight of each site condition across all responses. This indicates that proximity to social
services is the most important criterion for a site indicator, with a weighting of 64.34%. The
next most important criterion is proximity to hazardous industries, weighting 28.28%. The
least important criterion appears to be slope steepness, weighting 7.38%. The study area
does not have any hazardous industries located nearby, apart from some workshops and
stores. It is also located flat area with gentle slopes to the northwest. A consistency test of
the indicators produced satisfactory results. The lambda max was 3.097, the consistency
index CI was 4.85, and the consistency ratio CR was 8%. A good result for testing pairwise
matrix criteria numbers is the consistency ratio, which must be less than 10%. A CR of 5%
was achieved in this study.

Table 4. Pairwise matrix of indicators used for typical informal settlement site conditions.

Criteria Proximity to Hazardous
Industries

Proximity to
Social Services Steep Slope

Proximity to
hazardous industry 1.00 0.33 5.00

Proximity to social
services 3.00 1.00 7.00

Steep slope 0.20 0.14 1.00

Total 4.20 1.48 13.00
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Table 5. Normalized matrix of priority criteria of typical informal settlement site conditions.

Normalized Matrix Proximity to
Hazardous Industries

Proximity to
Social

Services

Steep
Slope Sum Priority

Criteria

Proximity to
hazardous industry 0.238 0.226 0.385 0.849 28.28%

Proximity to social
services 0.714 0.677 0.538 1.930 64.34%

Steep slope 0.048 0.097 0.077 0.221 7.38%

Total 1.000 1.000 1.000 3.000 100.0%

3.2.2. Road Conditions

A typical-road-conditions AHP is shown in Tables 6 and 7. Table 6 displays the
comparison matrix of indicators used for typical road conditions, while Table 7 shows the
results of the normalized matrix (based on Table 6). The last row represents the priority
criteria weight of each road network condition across all responses. This shows that the
narrowness of roads is the most important indicator of road conditions, with a weighting
of 50.93%. This means that the study sites have a network of narrow roads. Most roads
are less than 12 m wide, particularly between the buildings. The next most important
criterion indicates that the area also has a lot of crossings (a weighting of 22.03%). These
features would impact the ease of vehicle movement, particularly in emergencies. The
straight roads, curved roads and paved roads indicators came in as third, fourth, and fifth in
importance, with values of 13.69%, 8.90% and 4.46%, respectively. The lambda max = 5.23,
the consistency index CI = 5.84, and the consistency ratio CR = 5%.

Table 6. Comparison matrix of indicators used for typical road conditions.

Criteria Narrow Roads A Lot of Crossings
with Short Segments

Straight
Roads

Curved
Roads

Paved
Roads

Narrow roads 1.00 3.00 5.00 6.00 7.00

Crossings with
short segments 0.33 1.00 2.00 3.00 5.00

Straight roads 0.20 0.50 1.00 2.00 4.00

Curved roads 0.17 0.33 0.50 1.00 3.00

Paved roads 0.14 0.20 0.25 0.33 1.00

Total 1.84 5.03 8.75 12.33 20.00

Table 7. Normalized matrix of priority criteria of typical informal settlement road conditions.

Normalized
Matrix

Narrow
Roads

A Lot of
Crossings
with Short
Segments

Straight
Roads

Curved
Roads

Paved
Roads Sum Priority

Criteria

Narrow roads 0.543 0.596 0.571 0.486 0.350 2.547 50.93%

A lot of
crossings with
short segments

0.181 0.199 0.229 0.243 0.250 1.101 22.03%

Straight roads 0.109 0.099 0.114 0.162 0.200 0.684 13.69%

Curved roads 0.090 0.066 0.057 0.081 0.150 0.445 8.90%

Paved roads 0.078 0.040 0.029 0.027 0.050 0.223 4.46%

Total 1.000 1.000 1.000 1.000 1.000 5.000 100.0%
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The AHP results indicate that using of slope as a criterion (mentioned by some local
experts) is not an effective indicator. The result of the site proximity analysis indicates that
the slope has a low percentage weighting (7.38%). The study area is on the elevated Najd
Plateau, with a gently sloping land surface.

3.3. Local Ontology

An ontological framework (LOIS) was developed using the local expert knowledge
survey results, descriptive analysis and the AHP. This was used to investigate the relation-
ships between all identified indicators. Three levels were recognized: object, settlement,
and environment. The final indicators are summarized in Table 8.

Table 8. OBIA ruleset used for local ontology (LOIS).

Level LOIS Indicators Local Expert Index for Riyadh OBIA

Object Level

Accessibility

Shape Irregular Varies according to the straightness
of the road

Type Paved/unpaved roads >6 m—many paths with short
segmentswidth Narrow road

Buildings
Building size >280 m2 Geometry—asymmetry

Material type Roof material concrete Spectral mean value

Settlements

Shape Pattern Irregular shape, elongated shape
along linear features Geometry—buffer around the roads

Density Texture

Roof coverage Texture—entropy

Amount of vegetation ≥20% Texture—contrast, homogeneity,
correlation, mean of built-up areaVacant

Environs
Neighbourhood

Pattern
Proximity to social services

Geometry—buffer around roads
Location Proximity to hazardous industries,

steep slopes

3.4. Segmentation

The multi-resolution and spectral difference segmentation process could satisfactorily
identify formal and informal settlements and non-built-up areas. Vacant blocks, such as
graveyards, were differentiated from other features within the built-up areas (Figure 6).
There were locations where both formal and informal settlements formed part of a road
network; this was observed mainly at the settlement boundaries. The shadow class was
also clearly recognisable in the image. Areas affected by shadows were seen primarily in
built-up areas, near road networks and with objects associated with small buildings. The
shadows made these features difficult to distinguish in the imagery.

3.5. OBIA-Extracted Indicators

The results of edge detection filtering are shown in Figure 7. A Sobel filter derive the
buildings border index from the WorldView-3 imagery. This was then converted into a
vector format to extract the building borders. Three edge detection filters, namely Sobel,
Canny, and Gaussian, were assessed to determine efficiency in detecting the border index.
The assessment identified the Sobel filter (Figure 7b) as providing the best border definition.
Figure 8 shows the results of using Sobel filtering on the WorldView-3 imagery. Band 5
spectral reflectance in WorldView-3 imagery appears best for extracting the border index.
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Five textural measurement results are shown in Figure 9. The GLCM processing clearly
defines the built-up areas. It also distinguishes between the formal and informal settlements
based on roof type, lacunarity and building size. However, vehicle roofs may also be
mistaken for the roofs of buildings (Figure 9a,d). These incorrectly identified features
were manually removed where required. The GLCM contrast and GLCM correlation
produced the lowest class separation distance of informal and formal settlements. GLCM
homogeneity, GCLM entropy and GCLM correlation provided the best separation distance
of the two classes, with values of <0.05, <7.9 and >0.81, respectively. The GLCM entropy,
with a threshold value <7.9, appears to be the optimum separation distance for classifying
buildings and roofs. These results indicate that the selected GLCM entropy and GCLM
homogeneity measures effectively distinguishing informal from formal settlements. GLCM
contrast, GLCM correlation and GLCM mean were the best measures for detecting the
lacunarity of housing structures and enhancing the texture of the built-up areas. The
separation distance value of accessibility extracted by housing orientation was <0.99, as
shown in Table 9. Roof surfaces in the study area were not homogeneous. This was due to
differing roofing materials, pervasive shadows within the image, and image illumination
effects. An additional issue was that most of the roofs comprised mixed pixels, which
automatically caused problems in extracting these roof surface objects. Some manual
editing was required to improve the classification [18].

A building size of ≤280 m2 was regarded as the best areal extent for use in identifying
informal and formal settlements. Building areas of <8 m2 and buildings obscured by
shadow were also difficult to recognize. This may be due to variations in building density
and other factors such as the reflectance characteristics of small rooms within concrete
structures covered by tin roofs. This may also be due to technical issues associated with the
OBIA method. It was also noted that using of an optimised segmentation parameter on a
small area is not effective when applied to relatively large urban areas, which results from
pixel diversity.
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The results of the OBIA classification are shown in Figure 10. The classification of
shadow areas was completed using the blue band information. Threshold values ranged
from 57 to 76. The DSM was used as an ancillary data source to obtain the height of
buildings, especially the smaller buildings impacted by shadows (Figure 10f). A low
percentage of vegetation cover was observed in the high-density informal settlements. Most
of the vegetation cover is found in the formal settlement areas, where the government and
trading entities use many of the buildings. These areas are also used for telecommunication
purposes (Figure 10e).

Vacant areas vary in size, with four of the five vacant areas being graveyards. There
were also some small vacant areas in the informal settlements used as car parking spaces
by the residents (Figure 10d). Vacant areas in the formal settlements were distinguished by
shape, although most were generally located in the informal settlements. The results show
that graveyards were classified as vacant areas with no vegetation. Graveyards in Islamic
countries typically do not contain headstones, so the spectral brightness signature is like
vacant land.
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Figure 9. Five textural measures: (a) GLCMcontrast; (b) GLCMcorrelation; (c) GLCMentropy;
(d) GLCMhomogeneity; and (e) GLCMmean from the WorldView-3 imagery.

Table 9. OBIA parameter values and indicators used for segmentation.

Indices Description Min Max Average with
Mean

NDVI Normalized difference
vegetation index 0.01 1 0.05

VB Visible brightness 0 1250 328

SD (B) Standard Deviation (Blue) Band 32 60 46

DSM Roof 568 613 590

GCLM
texture

Entropy 0 7.9 4

Contrast 1230 6790 4000

Homogeneity 0 0.05 0.025

Correlation 0 0.81 0.4

Mean 40 126 83

BI Border index 8 3 11

MDS (B) Mean and standard deviation
of the blue band 37 49 58
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Table 9. Cont.

Indices Description Min Max Average with
Mean

Dwelling size Pixel size (area) >70 pixel 8 1027

Dwelling shape Shape index 0 2 1

Building density Density 0.9 1.3 1.1

Housing orientation Accessibility 0.48 0.99 0.73

Proximity to hazardous
locations (e.g., possible

floods, landslides)
DEM 0 200 m

3.6. Accuracy Assessment

Accuracy assessments of the sampling segmentation process and the random point
reference data are shown in Figure 11. The accuracy of the sampling segmentation was
calculated for all classes (Table 10). The overall accuracy of the classification using EK is 94%,
and the corresponding kappa coefficient is 89%. This indicates that settlement identification
is satisfactory. The accuracy of the random point reference data of the imagery classified
without using EK is shown in Table 11. The overall accuracy is 68%, and the corresponding
kappa coefficient is 61%, indicating that settlement identification is subpar. User accuracy
was 53% and 59% for informal and formal classes, respectively, while the highest accuracy
was 97% for the vegetation class.

The results of the image classification implemented without using EK are shown in
Figure 12 and indicate that all classes are interbanded. Most of the area is covered by
formal and shadow classes. The results of the image classification implemented using EK
are shown in Figure 13 and indicate that the road network in the informal settlements is
characterized by narrow, unpaved roads of irregular shape. Most of the roads are <6 m
wide. The shadows cast by tall buildings also impact roads in adjacent areas, categorised
as shadowed areas. Paved roads potentially have areas covered by sand, which can appear
as vacant land. The classified image process also interprets the graveyards as vacant areas
containing no vegetation.
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Figure 10. Results of image classification: (a) informal settlements; (b) formal settlements; (c) road
network; (d) vegetation; (e) vacant; and (f) shadow.
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Table 10. Accuracy assessment of image classification with EK included.

Class Objects Formal Informal Road Shadow Vacant Vegetation Total User Accuracy

Formal 36,283 894 9 5 1 4 2 915 0.98
Informal 25,551 23 352 3 1 0.00 0.00 379 0.93
Road 12,207 10 5 86 2 0.00 1 104 0.83
Shadow 9368 6 2 0.00 17 0.00 0.00 25 0.68
Vacant 15,710 8 1 0.00 1 10 0.00 20 0.50
Vegetation 1114 3 0.00 0.00 0.00 0.00 54 57 0.95
Total 100,233 944 369 94.00 22 14 57 1500 0.00
Producer accuracy 0.95 0.95 0.91 0.77 0.71 0.95 0.00 0.94

Overall accuracy = 94%; kappa coefficient = 89%.

Table 11. Accuracy assessment of image classification without EK included.

Class Object Formal Informal Road Shadow Vacant Vegetation Total User Accuracy

Formal 22,491 195 55 28 27 22 6 333 0.59
Informal 17,825 53 102 9 16 9 2 191 0.53
Road 9258 14 14 137 22 12 5 204 0.67
Shadow 11,817 22 16 11 301 2 15 367 0.82
Vacant 12,647 25 27 33 20 204 9 318 0.64
Vegetation 783 0 0 0 2 0 85 87 0.97
Total 74,821 309 214 218 388 249 122 1500 0
Producer accuracy 0.63 0.47 0.92 0.77 0.81 0.69 0 0.68

Overall accuracy = 68%; kappa coefficient = 61%.
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Figure 13. OBIA-based classified image of informal and formal settlements (with EK).

Table 12 displays the areal extent of the differing land cover classes produced by the
OBIA classification using EK and without using EK. This indicates that the total formal
settlement area using EK was 0.83 km2, which made up 24% of the total study sites. For
informal settlements, the respective values were 0.72 km2 and 21%. The total formal
settlement area without using EK was 0.8 km2, which made up 24% of the total study sites.
For informal settlements, the respective values were 0.26 km2 and 7%.

Table 12. Area of different land cover classes by OBIA classification.

With EK Without EK

Class Area (km2) Percentage (%) Area (km2) Percentage (%)

Formal 0.83 0.24 0.8 0.24
Informal 0.72 0.21 0.26 0.07
Roads 0.51 0.15 0.53 0.15
Shadow 0.68 0.19 1.11 0.32
Vacant 0.59 0.17 0.57 0.16
Vegetation 0.15 0.04 0.22 0.06

4. Discussion

This study aimed to integrate remotely sensed (WorldView-3) imagery and local
knowledge to develop an ontology of informal settlements. Using satellite imagery and
geospatial techniques is considered very effective in identifying differences between set-
tlement types. Duque et al. [45] noted that it is difficult to recognize informal settlements
using just one method, and Schmitt et al. [46] showed that class accuracy is greatly influ-
enced by the particular city structure. In the current project, the information provided by
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professionals with a detailed knowledge of the study area characteristics proved very useful
for extracting unique urban indicators which can be integrated into the OBIA segmentation
and classification process (Tables 8 and 9). A comparison of three edge detection techniques
indicated that the Sobel filter produced the best result. The choice of filter for segmenting an
image is crucial for optimum object detection [53]. The observed efficiency of the Sobel filter
in extracting border index data for delineating informal from formal settlements agrees
with a study conducted by [54]. The use of AHP-based local knowledge (Tables 5 and 7)
and OBIA successfully detected the characteristics of the informal settlement areas and
provided a helpful structure for further classification work. The majority of the informal
settlements were clearly visible. They are typically residential, are often seen in older areas
and are primarily located in the middle and to the south of the city. They are also confined
to areas considered suitable for urban redevelopment, as they commonly adjoin urban
and commercial areas with a high land value. They can be identified by building density
variation and low vegetation cover, have easily accessible social services and often have
road networks which are difficult to traverse easily due to the narrowness and irregularity
of the streets. In the survey conducted for the project, 82% of the local experts indicated
that vegetation coverage in an informal settlement normally makes up less than 20% of
the total area (Table 3). This agrees with findings from a study conducted by [6]. It was
noted that the characteristics of informal settlements can differ markedly from place to
place, even within one city. Other studies have found that such settlements were normally
located close to hazardous areas, tended to lack access to basic services, and were close
to hills, rivers, and valleys [55,56]. These observations were not confirmed in the current
work. The study area is classified as semi-arid flat-lying and is not normally exposed to
flood events.

The process of informal settlement characterisation used in this research relied heav-
ily on local knowledge to define indicators considered useful for inclusion in the image
classification process (see Table 2). A similar work conducted by Silva et al. [57] noted
that the segmentation of an image is influenced by several internal factors such as regional
demographics, local experience and skills, and external factors, such as image quality. All
these inputs need to be optimized to perform OBIA segmentation successfully. Conversely,
some studies have indicated that using of local knowledge and experience is not a signifi-
cant factor regarding the final classification accuracy [36,58]. The work of Han et al. [59]
and Kohli et al. [23] utilised images of differing resolutions and no local expert knowledge
input. This affected the ability to extract parameters such as GLCM and the classification
process. The current work clearly shows that local expert knowledge is an essential factor
in the success of any mapping, and that using of a local ontology enables the integration of
this factor during the classification process. The results indicate that using expert knowl-
edge substantially improved the segmentation and classification process and increased the
accuracy of informal settlement mapping. In this respect, the current study agrees with the
findings of [14,16,60].

The OBIA segmentation process does have several limitations [61]. One issue is that
classification accuracy can be limited by the shadowing effect of tall buildings, which causes
difficulties in identifying buildings with irregular shapes or patterns. This shading can
also affect vehicles and small structures (see Figure 8). The reflectance characteristics of
small tin-roofed concrete buildings also returned inconsistent GLCM values. Some studies
have noted issues with the reflective surfaces of objects made up of mixed pixels [20,61,62].
The current research shows that this can be overcome by developing a ruleset for OBIA
processing allowing for the extraction of parameter values using the relevant indicators.
Some manual intervention was required to rectify misclassification issues. Merging adjacent
pixels with similar features during the segmentation process minimized pixel-based mixing
during classification. The near-infrared (NIR) band in the WorldView-3 imagery also
assisted in the identification of mixed pixels within the informal settlement areas.

Textural differences help identify informal area patterns, the roof material type and
nominal building size [14], tops of buildings, vacant land and roads (see Table 9). Textural
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similarity issues, however, may still occur [63]. The delineation of building size, orientation,
and pattern variation (regular or irregular) is essential in the identification process [64].
This work indicated that GLCM entropy (extracted from band 5 of the WorldView-3 image)
is best for detecting high-density dwellings and the roofs of buildings. GLCM homogeneity
and the visible brightness of the image are best for detecting road networks. Previous
studies have shown that using of a texture index is ideal in cases that show a clear distinction
between roofing type and other classes, particularly vacant land [24]. Informal settlement
dwellings tend to be built with materials that produce significant spectral noise. This is
a known issue in OBIA processing. Unpaved roads, for example, appeared brighter than
roofs, making it difficult to distinguish individual dwellings. Other informal settlement
mapping studies have indicated varying levels of accuracy using the OBIA process [65,66].
In this work, the classification accuracy of most classes was high, particularly for formal and
informal settlements and vegetation (see Table 10). In contrast, the classification accuracy
of vacant and shaded areas was average (see Table 10). Some external factors may have
influenced the final mapping quality. The production of mixed pixels by shaded areas
in locations containing both high- and low-rise buildings is usually due to the density of
buildings in those areas. Some paved road pixels also appeared as vacant areas, a feature
most likely related to sand encroaching onto the paved areas from the surrounding desert.

5. Conclusions

This study has used a combination of remotely sensed data and expert knowledge
to develop an ontology for informal settlements in Riyadh City. An object-based image
classification process was used to detect informal settlements. The classification method
produced a map containing six classes: formal and informal settlements, road networks,
vacant areas, areas of shadow and vegetated areas. An assessment of conducted on the final
product indicated an overall accuracy of 94% and a kappa coefficient of 89%. The results
demonstrate the importance of incorporating expert knowledge into informal settlement
mapping process when using high-resolution satellite imagery. Some limitations were
found during the OBIA processing. This included an inability to access comprehensive
demographic data; issues caused by ground shadows; various building size; density issues;
and vehicles producing noise in the image.

Further work should focus on the ruleset generated for mapping settlements and look
at selecting more significant number of urban indicators unique to the study area. The
results could also be improved by using Lidar data to adjust the satellite image resolution
and optimize rooftop information extraction. The current research has shown that OBIA,
in combination with expert local knowledge regarding the optimal indicators to use, is a
useful method for mapping informal settlements in a Middle Eastern city. This method can
be easily adapted for use in other areas of the world.
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