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Abstract: The climatic fluctuations in northern China exhibit remarkable variability, making it im-
perative to harness the power of MODIS data for conducting comprehensive investigations into the
influences of desertification, desert expansion, and snow and ice melting phenomena. Consequently,
the rigorous evaluation of MODIS land surface temperature (LST) and land surface emissivity (LSE)
products takes on a momentous role, as this provides an essential means to ensure data accuracy,
thereby instilling confidence in the robustness of scientific analyses. In this study, a high-resolution
hyperspectral imaging instrument was utilized to measure mid-wave hyperspectral images of grass-
lands and deserts in the northwest plateau region of Qinghai, China. The measured data were
processed in order to remove the effects of sensor noise, atmospheric radiation, transmission attenua-
tion, and scattering caused by sunlight and atmospheric radiation. Inversion of the temperature field
and spectral emissivity was performed on the measured data. The inverted data were compared and
validated against MODIS land surface temperature and emissivity products. The validation results
showed that the absolute errors of emissivity of grassland backgrounds provided by MCD11C1 in
the three mid-wave infrared bands (3.66–3.840 µm, 3.929–3.989 µm, and 4.010–4.080 µm) were 0.0376,
0.0191, and 0.0429, with relative errors of 3.9%, 2.1%, and 4.8%, respectively. For desert backgrounds,
the absolute errors of emissivity were 0.0057, 0.0458, and 0.0412, with relative errors of 0.4%, 4.9%,
and 3.9%, respectively. The relative errors for each channel were all within 5%. Regarding the temperature
data products, compared to the inverted temperatures of the deserts and grasslands, the remote sensing
temperatures provided by MOD11L2 had absolute errors of ±2.3 K and ±4.1 K, with relative errors of
1.4% and 0.7%, respectively. The relative errors for the temperature products were all within 2%.

Keywords: mid-wave infrared; hyperspectral imaging; MODIS; LST inversion; LSE inversion

1. Introduction

MODIS is a detector mounted on the Terra and Aqua satellites, part of the Earth
Observing System (EOS) developed by the National Aeronautics and Space Administration
(NASA) of the United States. It operates in a sun-synchronous orbit and offers high tempo-
ral and spectral resolution along with the advantage of global free access [1]. MODIS remote
sensing technology has become an important means of obtaining regional-scale, hourly land
surface temperature [2–4], and emissivity data [5,6]. It provides up to 41 products, among
which emissivity and land surface temperature products play a crucial role in ecological
environment monitoring [7], agricultural remote sensing, forest fire monitoring, climate
studies, weather forecasting, and land model assimilation. They are particularly important
for estimating sensible and latent heat fluxes and studying surface energy balance [8].
The climate in northern China varies significantly. Long-term remote sensing data can be
used to study the impacts of desertification, gain further understanding of desertification

Remote Sens. 2023, 15, 3893. https://doi.org/10.3390/rs15153893 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15153893
https://doi.org/10.3390/rs15153893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3240-5374
https://orcid.org/0000-0003-3354-7275
https://doi.org/10.3390/rs15153893
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15153893?type=check_update&version=1


Remote Sens. 2023, 15, 3893 2 of 19

prevention and control efforts, and examine climate change mechanisms [8]. However,
the issue of uncertainty in retrieving LST and emissivity from satellite measurements has
been a long-standing challenge [9]. In regions like the northwestern plateau of China,
which has vast territories and diverse climates, studying LST and emissivity products holds
special importance [10].

In their research on the validation of MODIS data, Erb et al. evaluated Landsat-8 albedo
products across polar regions by combining the BRDF kernel weights provided by MODIS.
The products were extensively validated under different land cover and conditions, demon-
strating their effectiveness in capturing transient, heterogeneous, and dynamic surface
conditions at the landscape scale in polar regions [11]. Glynn C. Hulley used the Tem-
perature Emissivity Separation (TES) algorithm to validate and assess the accuracy of the
MXD21/VNP21 products [12]. Karina H. Zikan validated MODIS LST (MOD/MYD2017
C17 strip-level products) using temperature data from 2014 sites of the Programme for
Monitoring of the Greenland Ice Sheet (PROMICE). The results showed significant differ-
ences between the LST products and the measured temperature data, especially at 0 ◦C,
with an RMSE of 3.2K [13]. H. Fréville compared MODIS temperature products in Antarc-
tica with hourly ground-measured surface temperature data collected at seven sites from
the Baseline Surface Radiation Network (BSRN) and automatic weather stations (AWSs)
throughout 2009. The temperature errors ranged from 2.2 K to 4.8 K in Antarctica [14]. GC
Hulley compared the fourth and fifth versions of MODIS long-wave infrared emissivity
products and validated them against experimental measurements of sand samples from
the Namib Desert, revealing average relative errors of 1.06%, 0.65%, and 1.93% at 8.55 µm,
11 µm, and 12 µm, respectively [15].

However, most studies on MODIS remote sensing data are limited by experimental
measurement conditions [16]. State-of-the-art validation experiments are primarily con-
ducted using spectrometers and thermal imagers [10,17,18], which results in the separation
of the spatial and spectral information of the targets. In the context of hyperspectral imag-
ing data, due to the scarcity of instrument equipment, research efforts have mainly focused
on the visible/near-infrared [19–22] and long-wave infrared regions [23,24], with less em-
phasis being placed on the emissivity and temperature products in the mid-wave (3–5 µm)
range of MODIS. Furthermore, compared to non-imaging spectrometers, Mid-wave in-
frared hyperspectral images typically exhibit higher noise levels, and previous studies have
shown that measurement noise significantly affects the final emissivity inversion [25–27].
However, so far, few studies have considered the noise issue in the validation process of
mid-wave infrared hyperspectral imagers for MODIS emissivity and temperature products.
In the data processing stage, it was observed that the mid-wave infrared was more suscep-
tible to atmospheric system radiation and sunlight scattering compared to the long-wave
infrared [28], resulting in a decrease in the accuracy of the inversion. In terms of the valida-
tion of MODIS products for emissivity and temperature, only a few studies have taken into
account the anisotropic effect of the land surface in removing scattering components.

In this study, we conducted experimental measurements of typical land surface back-
grounds in the northwestern plateau region of China using the Hyper-Cam mid-wave
hyperspectral imaging instrument developed by TELOPS [28]. In terms of data preprocess-
ing, equivalent noise estimation and Gaussian filtering were applied to the experimental
data for denoising. Subsequently, in order to accurately interpret the data collected by the
sensors, it was important to consider the impact of the Earth’s atmosphere on the measured
electromagnetic waves. The atmosphere interacts with these waves through absorption,
scattering, and emission processes, thereby modifying the signals received by the sen-
sors. In order to account for these atmospheric effects, a process known as atmospheric
correction is necessary. In our study, we employed MODTRAN 4.0, which is widely recog-
nized for its accuracy in simulating atmospheric radiation and transmission attenuation.
We calculated the atmospheric transmission parameters specific to our measurement lo-
cation. By applying these parameters, we were able to perform an effective atmospheric
correction on the measured data. This correction process removed the influence of atmo-
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spheric factors and allowed for a more accurate analysis and interpretation of the collected
data. Finally, by combining the MCD43C1 product of MODIS with the solar radiance and
sky background radiation calculated by MODTRAN 4.0, the influence of target scattering
from the sun and atmospheric backgrounds was eliminated. Considering the scale effects
between satellite data and measured data, a point-to-area scaling conversion method was
employed to extract temperature and emissivity based on the measured data, which were
then compared with MODIS temperature and emissivity products’ for validation.

2. Materials and Methods
2.1. Study Area

The study area is situated in the northwestern plateau of Qinghai, China, with a lati-
tude range of 37.375◦ to 38.075◦N and a longitude range of 95.075◦ to 95.975◦E. This region
experiences a typical plateau continental climate, characterized by intense solar radiation,
long sunshine duration, and significant diurnal temperature variations. The elevation
in the study area spans approximately 2790 m to 5390 m. Contour maps play a crucial
role in providing information about the terrain’s elevation, aiding our understanding and
simulation of the vertical distribution of the atmosphere. In the context of atmospheric
correction, contour maps are valuable for estimating parameters like optical thickness,
aerosol content, and water vapor content. By incorporating these parameters, a more
precise calculation of the atmospheric transmission and scattering effects on measurement
data can be achieved. Topographic contour data of the study area were sourced from the
National Standard Database of the National Geomatics Center of China. Figure 1 presents
an illustration of the contour map depicting the study area’s topography and elevation.

A land cover distribution map of the study area was obtained using the MCD12
product data from MODIS remote sensing, as shown in Figure 2. According to the classifi-
cation system of the International Geosphere-Biosphere Programme (IGBP) for land cover
types [29] (see Table 1), the land cover in the region is primarily composed of 94.76% barren
land (desert), 2.06% grassland, 1.14% permanent snow and ice, 1.38% cropland, and other
types of land cover. For this study, we selected two representative natural land cover types
in the northwestern region: grassland and desert (barren land).
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Figure 1. Study area plane contour diagram.

Table 1. IGBP land cover classification table.

Corresponding Numbers Types

1 Evergreen Needleleaf Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest
6 Closed Shrubland
7 Open Shrubland
8 Woody Savanna
9 Savanna
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Table 1. Cont.

Corresponding Numbers Types

10 Grassland
11 Permanent Wetland
12 Cropland
13 Urban and Built-Up Area
14 Mosaic of Cropland and Natural Vegetation
15 Snow and Ice
16 Barren Land (Desert)
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Figure 2. Distribution of species covered by the surface cover in the study area.

2.2. Scene Layout for Mid-Wave Infrared Hyperspectral Imaging Experiment

The experiment was conducted from the 4th of August to the 7th of August 2020. The
measurement targets were distributed in different areas, so the experiment was conducted
in two different scenes, as shown in Figure 3a,b.
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Figure 3. Actual shooting of experimental measurement site; target site 1 (a), target site 2 (b),
equipment site (c).

Scene 1:

– Geographic coordinates: (95.35◦E, 37.85◦N)
– Altitude: 3748 m
– Main measurement target: Grassland
– Distance from the measurement point to the surface: 116.7 m (slant distance)
– Measurement azimuth: Southwest (209◦)
– Measurement elevation angle: 11◦

– Measurement height difference: Approximately 15 m

Scene 2:

– Geographic coordinates: (95.33◦E, 37.88◦N)
– Altitude: 3762 m
– Main measurement target: Gobi Desert
– Distance from the measurement point to the desert: 158.1 m (slant distance)
– Measurement azimuth: Northwest (298◦)
– Measurement elevation angle: 11◦

– Measurement height difference: Approximately 16 m
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The setup of the measurement equipment site is illustrated in Figure 3c, and the
schematic diagrams of the measured scenes are shown in Figure 4a,b.
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2.3. Main Measured Instrument Specifications

The main measurement instruments used in this experiment are as follows: the Hyper-
Cam (extended mid-wave hyperspectral imaging instrument), as shown in Figure 5a; the
SSN-61 thermocouple temperature acquisition instrument, as shown in Figure 5b; and the
IBS-F60 combined weather station [30], as shown in Figure 5c.
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Figure 5. The main instruments used in the experiment: Hyper-Cam extended medium-wave
spectroscopy imager (a); SSN-61 thermocouple temperature acquisition instrument (b); IBS-F60
combined weather station (c).

The main instrument parameters used in this experiment are shown in Tables 2–4.

Table 2. Main technical parameters of the Hyper-Cam (extended medium-wave spectroscopy imager).

Parameters Technical Indicators

Spectral Range 1.5–5 µm
Spectral Resolution 0.25–150 cm−1

Spatial Resolution 320 × 256 pix
Detector MCT Stirling cooled

Instantaneous Field of View 0.35 mrad
Equivalent Noise <7 nw/(cm2·sr·µm)

Measurement Accuracy ±0.95 K

Table 3. Technical parameters of the SSN-61 thermocouple temperature acquisition instrument.

Parameters Technical Indicators

Measurement Range −180~1250 ◦C
Measurement Accuracy ±0.5%

Resolution 0.1 ◦C
Number of Recordable Datasets 31,998

Operating Temperature −35~80 ◦C
Battery Operating Temperature −35~80 ◦C
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Table 4. Technical parameters of the IBS-F60 combined weather station.

Parameters Technical Indicators

Wind Speed Measurement Range 0~70 m/s
Wind Speed Measurement Accuracy ±0.3 m/s
Wind Direction Measurement Range 0~360◦

Wind Direction Measurement Accuracy ±0.1◦

Air Pressure Measurement Range 10~1100 hPa
Air Pressure Measurement Accuracy ±0.3 hPa
Air Temperature Measurement Range −50~60 ◦C

Air Temperature Measurement Accuracy ±0.3 ◦C
Humidity Measurement Range 0~100% RH

Humidity Measurement Accuracy ±0.3% RH

2.4. Experiment Measurement Plan

In addition to the hyperspectral imaging measurement in the mid-wave infrared range,
several auxiliary parameters were measured, including meteorological parameters and
surface temperature of the targets.

(1) Meteorological Parameter Measurement:

The IBS-F60 combined weather station was used to measure meteorological parameters
such as temperature, humidity, atmospheric pressure, and visibility in the measured field.

(2) Measurement of Target Surface Temperature:

The surface temperature of the targets is essential for the retrieval and validation
of satellite remote sensing parameters such as land surface temperature (LST) and land
surface emissivity (LSE). The surface temperatures of the grassland and Gobi Desert were
measured using a thermocouple temperature acquisition instrument.

(3) Ground Target Mid-Wave Infrared Hyperspectral Imaging Measurement

Measurement was conducted using the Hyper-Cam mid-wave hyperspectral imaging
instrument developed by Telops. After calibrating the measuring equipment, the ground
targets were subjected to hyperspectral imaging measures in the mid-wave infrared range.
A dataset was collected every half hour.

2.5. Verification of Spectral LSE and LST Inversion
2.5.1. Theoretical Framework for Spectral LSE and LST Inversion

The calculation scheme used for the verification of temperature and emissivity inver-
sion for different land surface types is shown in Figure 6.

The overall calculation process, as shown in Figure 6, is as follows: First, the mea-
surement data undergoes noise removal using a Gaussian filter, and the atmospheric
transmission characteristics parameters are calculated using Modtran4.0 to perform at-
mospheric correction on the surface medium-wave high-spectral imaging data. Then,
Modtran4.0 is utilized to calculate the solar irradiance and atmospheric background radia-
tion. The surface bidirectional reflectance distribution function (BRDF) model is applied
to mitigate the scattering effects of sunlight and atmospheric background radiation on
the surface.

Considering the rectangular area of the experimental observations, it can be approxi-
mated as a point in relation to the 5.56 km spatial resolution of MODIS imagery. In order
to address the spatial resolution disparity between ground and satellite scales, this experi-
ment selects sampling sites with high homogeneity and good spatial representativeness.
The point-to-area upscaling method is employed [31], where the values of ground sam-
pling points are directly averaged in order to match the spatial resolution of the ground
observation data.
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Subsequently, a comparison and a validation are conducted by comparing the redis-
tributed satellite data with the ground observation data. Finally, the processed data is used
for spectral land surface emissivity (LSE) and land surface temperature (LST) inversion,
and the results are compared and validated using MODIS products.

(1) Noise Estimation and Removal

(a) Sensor Noise Estimation

The noise level performance was evaluated in the laboratory using the noise equivalent
spectral radiance (NESR) metric to assess the noise level of the Hyper-Cam MW sensor.
Based on the imaging principle of the Hyper-Cam MW sensor with a specific optical system,
the NESR is related to the spectral resolution and integration time of the Hyper-Cam MW
sensor. In the noise level estimation, NESR is calculated as the pixel-wise standard deviation
of the radiance from multiple consecutive data cubes of the same target [24]. The noise
calculation results are shown in Figure 7.
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Figure 7 showed that after performing the average spectral NESR calculation, within
the range of 3 to 3.5 µm, the NESR increases with increasing wavelength, and there is
a relatively high level in this range. Near 4.2 µm, there is a peak, which is caused by
a significant increase in path radiance due to the presence of a carbon dioxide atmospheric
absorption band in the vicinity of that wavelength.

(b) Sensor Noise Removal Based on Gaussian Filtering

Both the entire mid-wave infrared hyperspectral image and the noise within random
windows approximate a Gaussian distribution. Therefore, Gaussian convolution is applied
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as a spatial denoising method in order to improve the noise quality in each spectral band.
This approach takes into account that the noise type in small windows also approximates
a Gaussian distribution. It calculates a weighted template using the Gaussian kernel
model and then convolves the weighted template with the entire moving window of the
hyperspectral image. The window size of the Gaussian template is 3 × 3 pixels. Gaussian
filtering for spatial denoising can effectively remove noise from the experimental image
while preserving the atmospheric features present in the captured data [24]. The denoising
results are shown in Figures 8 and 9.
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Figures 8 and 9 showed that after applying Gaussian spatial convolution filtering, the
regions with correlated noise in the original measured image are significantly removed,
and the NESR shows a noticeable decrease. This process enhances the image quality of the
hyperspectral data, resulting in improved clarity and reduced noise interference.

(2) Atmospheric correction:

During the experiment, the radiation detected by the sensor includes three compo-
nents: atmospheric path radiance, scattering of the target’s own radiation by sunlight and
atmospheric background radiation, and the target’s own thermal radiation. The spectral
radiance received by the detector is expressed in Equation (1).

L(λ) = τatm(λ) · [Lsel f (λ) + Lre f lect_bg(λ)] + Lpath(λ) (1)

In order to remove the influence of atmospheric transmission, atmospheric correction
is applied to the measured data so as to eliminate the effects of atmospheric path radiance
and transmission attenuation, thereby obtaining the apparent radiance of the target. The
processing method is shown in Equation (2).

L′(λ) = Lsel f (λ, T, ελ) + Lre f lect_bg(λ) =
L(λ)− Lpath(λ)

τatm(λ)
(2)

According to Equation (2), the atmospherically corrected data include the target’s
thermal radiation and the scattering of the target’s radiation by sunlight and atmospheric
background radiation. In order to accurately invert the emissivity, it is necessary to remove
the scattering of the target by sunlight and atmospheric background radiation, thereby
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obtaining the target’s own thermal radiation. The calculation expression for the target’s
self-radiation characteristics is shown in Equation (3).

Lsel f (T, ε, λ) =
L(λ)−Lpath(λ)

τ − [ fr(Ir, φr; Is, φs, λ) · Esun(λ) · cos Ir
+ρ(2π; Is, φs, λ)Lsky(λ)]

(3)

In Equation (3), L(λ) represents the measured surface spectral radiance, Ir represents
the solar zenith angle under actual terrain conditions, fr(Ir, φr; Is, φs, λ) represents the sur-
face anisotropic reflectance, ρ(2π; Is, φs, λ) represents the surface hemispherical-directional
reflectance, Esun represents the solar irradiance, Lsky represents the sky background radi-
ance, τ(λ) represents the transmittance of the detection path, and Lpath(λ) represents the
radiance of the detection path.

All atmospheric transmission parameters, such as atmospheric path radiance, at-
mospheric transmittance, solar radiation irradiance, and sky background radiance, are
calculated using Modtran4.0. The surface anisotropic reflectance and surface hemispherical–
directional reflectance can be obtained through inversion using MOD43C1 products.

(3) Spectral Land Surface Emissivity (LSE) Inversion:

The spectral LSE is inverted using the Planck blackbody radiation formula. The
inversion equation for spectral LSE is shown in Equation (4).

ε(T, λ) =
[exp(c2/(λT))− 1] · π · λ5 · Lsel f (T, λ)

c1
(4)

c1 = 2πhc2 = 3.7415× 108 W · µm4 ·m−2; c2 = ch/k = 1.43879× 104 µm · k;

In Equation (4), Lsel f (T, λ) represent the thermal radiation spectrum of the surface
background, T represent the temperature (in Kelvin), and λ represent the wavelength (in
µm), respectively.

(4) Land Surface Temperature (LST) Inversion:

The equation for LST inversion is shown in Equation (5).

Lsel f (T) =
∫ 5µm

3µm
ε· c1

λ5 ·
1

exp
c2
λT −1

dλ (5)

In Equation (5), ε represent the surface emissivity, Lsel f (T, λ) represent the thermal
radiation spectrum of the surface background (in W/(m2·sr)), T represent the temperature
(in Kelvin), and λ represent the wavelength (in µm), respectively.

2.5.2. Acquisition of Surface Background BRDF

In order to remove the scattering component of the target by sunlight and atmospheric
background radiation, the anisotropic scattering of the surface needs to be considered.
A linear kernel-driven BRDF model is used to solve this problem. For the two natural land
surface types (grassland and desert), BRDF parameter data of the surface can be obtained
from the MCD43C1 product. The MCD43C1 product provides global surface reflectance,
bidirectional reflectance distribution function (BRDF) parameters. These parameters are
derived from data collected by the Terra and Aqua satellites of the MODIS (moderate
resolution imaging spectroradiometer) system. The spatial resolution of each pixel is
0.05 degrees. The MCD43C1 data product is generated through processing and analysis of
the radiance measurements in different spectral bands. This product provides the linear
weighting coefficients of the RossThick-LiSpare-Reciprocal BRDF model for bands 3 to
5 µm [32]. The surface reflectance is a linear combination of isotropic scattering, volumetric
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scattering, and geometric optical surface scattering [33,34], as shown in Equation (6). Using
this equation, the bidirectional reflectance at any incident and viewing angles can be obtained.

ρ(θr, θs, ϕ) = fisoKiso + fvolKvol(θr, θs, ϕ) + fgeoKgeo(θr, θs, ϕ) (6)

In Equation (6), θr represent the incident zenith angle, θs represent the viewing zenith
angle, and ϕ represent the relative azimuth angle between the viewing direction and the ra-
diation incident direction, respectively. Additionally, fiso, fvol , fgeo represent the proportion
coefficients of isotropic scattering kernel, volumetric scattering kernel, and surface scatter-
ing kernel in the linear combination, which can be obtained from the MCD43C1 product.

In MODIS products, the isotropic scattering kernel is defined as Kiso = 1. For the
volume scattering kernel, the volumetric scattering kernel model proposed by Roujean is
used [33]. This model mainly describes densely vegetated layers with similar distribution
of leaves, implying that their reflectance can be considered somewhat equivalent. The
expression for the volume scattering kernel is as follows [35]:

Kvol =
(π

2 − ξ) cos ξ + sin ξ

cos θr + cos θs
− π

4
(7)

ξ represents the phase angle, which is related to the solar zenith angle, the viewing
zenith angle, and their relative azimuth angle:

cos ξ = cos θi cos θv + sin θi sin θv cos ϕ (8)

For the geometric optical surface scattering kernel Kgeo, considering the mutual occlu-
sion between vegetation canopies, the modified LiSparse [34] model proposed by Lucht is
used. The specific expression is as follows:

Kgeo = H(θ′r, θ′s, ϕ)− sec θ′r − sec θ′s +
1
2
(1 + cos ξ ′) sec θ′r sec θ′s (9)

H(θ′r, θ′s, ϕ) represents the overlap region between the observation and the solar
shadow, and the specific formula is:

H(θ′r, θ′s, ϕ) =
1
π
(t− sin t cos t)(sec θ′r + sec θ′s) (10)

The expressions for other parameters are as follows:

θ′r = arctan( b
r tan θr)

θ′s = arctan( b
r tan θs)

(11)

cos t =
h
b
·
√

D2 + (tan θ′r tan θ′s sin ϕ)

sec θ′r + sec θ′s
(12)

D =
√

tan2 θ′r + tan2 θ′s − 2 tan θ′r tan θ′s cos ϕ (13)

cos ξ ′ = cos θ′r cos θ′s + sin θ′r sin θ′s cos ϕ (14)

In MODIS products, the parameter h/b = 2, b/r = 1 is defined as a dimensionless
parameter representing the relative height and shape of the canopy top. Combining
Equations (6) to (14), the linear weighting coefficients of the BRDF for different land surface
backgrounds in 2020, obtained from the MCD43C1 product, are shown in Figure 10.

Figure 10 showed that the isotropic scattering kernel weight ( fiso) contributes the
most to both land surface types, and it exhibits significant fluctuations throughout the four
seasons. This can be attributed to the relatively uniform biological and physical structure
of the land surface vegetation, allowing the weight coefficient to effectively capture the
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temporal variations of the actual land surface biophysical properties. The contribution
of the volume scattering kernel ( fvol) shows slightly smaller fluctuations compared to the
isotropic scattering contribution ( fiso), which can be attributed to the inherent differences
in biological properties and structural characteristics of barren land and grassland. The
Fvol values remain relatively low throughout the year. The contribution of the geometric
scattering kernel ( fgeo) is the lowest for both land surface types, representing the correction
for mutual occlusion. It is noteworthy that the fgeo values for grassland and barren land
tend to approach zero, validating this conclusion.
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By utilizing the geometric positions of the sun and the detector, as shown in Table 5,
and combining them with Equation (6), the anisotropic reflectance of the land surface can
be calculated. The calculated BRDF values for the grassland and the Gobi Desert are 0.043
and 0.075, respectively.

Table 5. Detailed data of geometric position in experimental environment.

Ground Cover Grassland Desert

Time 6th August, 15:00 7th August, 15:00
Solar geometry Solar zenith angle: 45.07◦, Solar azimuth angle: 106.01◦

Detector geometry Detector zenith angle: 79◦ Detector azimuth angle: 78◦

Azimuth angle 188◦ 326◦

Location 95.35◦E; 37.85◦N 95.33◦E; 37.88◦N
Size of the measure area 131.4 m2 246.4 m2

2.5.3. Typical Surface Emissivity and MODIS Reflectance Data Product Retrieval

(1) Surface Emissivity Retrieval

Emissivity data for the desert and grassland in the northwest plateau region of China in
2020 were obtained from the MOD11 product. These data are used for comparative valida-
tion of the spectrally emissivity inversion obtained from the mid-wave hyperspectral imag-
ing measurements. The MODIS product provides three narrow-band reflectance data in the
mid-wave infrared region, namely Band20 (3.66~3.840 µm), Band22 (3.929~3.989 µm), and
Band23 (4.010~4.080 µm). The temporal variation of emissivity for grassland and desert in
these three bands in 2020 is shown in Figure 11.

According to the analysis from Figure 11, the emissivity of grassland surface varies
between 0.934 and 0.985 throughout the year, showing consistency across the three mid-
infrared bands. In March, it reaches the lowest value of 0.934, while it reaches the maximum
value in July. From July to December, the emissivity values gradually decrease. In August,
he mid-infrared emissivity values for grassland are 0.968, 0.96, and 0.956. On the other
hand, the emissivity of barren land surface fluctuates between 0.806 and 0.970, showing
larger variations throughout the year. In September, the mid-infrared emissivity values for
barren land are 0.9545, 0.93, and 0.886.
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Figure 11. The variations of typical surface emissivity over time series in the mid-wave infrared 
band. (a) Band20; (b) Band22: (c) Band23. 
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between 0.934 and 0.985 throughout the year, showing consistency across the three mid-
infrared bands. In March, it reaches the lowest value of 0.934, while it reaches the maxi-
mum value in July. From July to December, the emissivity values gradually decrease. In 
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(2) Retrieval of Hemispherical-Directional Reflectance for Natural Surfaces

According to the directional Kirchhoff law [36], for opaque objects, the relationship
between the directional emissivity and the hemispherical–directional emissivity can be
expressed as:

ε(λ, θ, φ) = 1− r(λ, θ, φ) = 1−
∫ 2π

0

∫ π
2

0
f (θr, φr, θs, φs, λ) cos θr sin θrdθrdφr (15)

By combining Equation (6), the mid-wave infrared hemispherical-directional emissiv-
ity can be obtained as:

ε(θ) = 1− fisoKiso − fvol IKvol(θ)− fgeo IKgeo(θ) (16)

IKa(θ) =
1
π

∫ 2π

0

∫ π
2

0
fa(θr, θs, ϕ) sin θr cos θrdθrdφ, a = vol/geo (17)

From Equation (8), it can be observed that, based on the weights
(

fiso, fvol , fgeo
)
, the

hemispherical-directional emissivity of the surface can be obtained at different angles. The
variation trends of the hemispherical–directional emissivity for grassland and desert in the
infrared wavelength range during different seasons are shown in Figure 12, considering
the weighting coefficients provided in Figure 10.
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Figure 12. Hemispherical–directional emissivity in different seasons in typical surface infrared 
bands. (a) Grassland; (b) Gobi Desert. 
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(a) Grassland; (b) Gobi Desert.

Figure 12 showed that the mid-wave hemispherical emissivity of grassland and barren
land surfaces shows a similar trend. It remains relatively stable for observation zenith angles
between 0◦ and 40◦ and starts to decrease from 40◦ to 80◦. From a temporal perspective,
there is a distinct difference in the grassland environment during winter compared to other
seasons. The hemispherical emissivity of grassland is the lowest in winter, ranging from
0.48 to 0.53, while in the other three seasons, it ranges from 0.72 to 0.78. On the other
hand, the hemispherical emissivity of barren land fluctuates between 0.5 and 0.7, with the
highest values being observed in summer, followed by autumn, winter, and spring. This
phenomenon is mainly related to vegetation characteristics and properties.
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3. Research Results and Discussion
3.1. Calculation Results of Atmospheric Transmission Parameters

During the high-spectral imaging measurement of the target, simultaneous measure-
ments of the environmental parameters in the measurement area were conducted using the
IBS-F60 thermocouple temperature acquisition instrument and the SSN-61 comprehensive
meteorological station, and the results are shown in Table 6. Based on these environmental
parameters, atmospheric profile data corresponding to the study area, time, and location
were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF),
as shown in Figure 13, The original data are divided into four seasons: spring, summer, au-
tumn, and winter. The mean values of temperature, humidity, and pressure are calculated
for each season over a period of 36 months. Additionally, the original data are interpolated
based on different altitude ranges. Specifically, interpolation is performed every 0.5 km
from 0 km to 10 km in height, every 1 km from 11 km to 20 km, every 3 km from 21 km
to 30 km, and specific data points are selected at 33 km, 35 km, and 40 km for the range
of 31 km to 40 km. In total, there are 38 layers, with the highest altitude reaching approx-
imately 40 km. Finally, using the MODTRAN software, custom inputs for temperature,
humidity, pressure, and the environmental parameters from Table 4 were provided in order
to calculate the atmospheric transmission parameters. The input conditions for Modtran
4.0 calculations were as follows: a custom study area model, 7 August 2020 (day 220), clear
sky conditions without clouds or rain, an observation height of 3.7 km, solar zenith angle
of 45.07◦, and solar azimuth angle of 106.01◦. The calculated results of the atmospheric
transmission characteristics from the target to the sensor are shown in Figure 14.

Table 6. Environmental parameters of the experimental site.

Measurement Information Environment Values

Location 95.35◦E; 37.85◦N
Measure time 7 August 2020, 15:00 local time
Humidity 49.6%
Weather cinditions Clear sky, no clouds
Height difference between target and measured point 16 m
Straight-line distance between target and measured point 116.7 m
Experimental measured temperature of grassland 292.6 K
Experimental measured temperature of desert 325.93 K
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Figure 13. Atmospheric profile distribution curves in different seasons in the study area. (a) Tem-
perature; (b) humidity; (c) pressure. 

Figure 13 showed that in the altitude range of 0 to 18 km, the temperature decreases 
with increasing altitude, which is due to the presence of the troposphere. Within this 
range, as the altitude increases, the atmospheric pressure and density gradually decrease, 

Figure 13. Atmospheric profile distribution curves in different seasons in the study area. (a) Temper-
ature; (b) humidity; (c) pressure.
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Figure 13 showed that in the altitude range of 0 to 18 km, the temperature decreases
with increasing altitude, which is due to the presence of the troposphere. Within this range,
as the altitude increases, the atmospheric pressure and density gradually decrease, and
the vertical movement of air also leads to temperature decrease. However, in the altitude
range above 18 km, as the altitude further increases, the temperature begins to rise again,
which is due to the presence of the stratosphere. The stratosphere is the upper part of the
atmosphere, where the temperature gradually increases with altitude. This is because the
stratosphere contains an ozone layer, and ozone molecules absorb ultraviolet radiation from
the sun and convert it into heat energy, resulting in an increase in stratospheric temperature.
Regarding humidity, it remains relatively stable in the altitude range of 0 to 5 km, with
higher values observed in summer compared to autumn, spring, and winter. Above 5 km,
there is a trend of initially increasing and then decreasing humidity, with almost negligible
humidity levels beyond 25 km. On the other hand, the atmospheric pressure shows minimal
variations among the four seasons, decreasing with increasing altitude.

Figure 14 showed that the atmospheric transmittance is almost zero around 4.3 µm,
and the atmospheric path radiance continues to increase in this spectral band. As a result,
the detector cannot accurately measure the true spectral radiance of the surface in this
band. The calculated results of sky background radiance and solar irradiance are shown in
Figure 15. It can be seen from Figure 15 that the solar irradiance received by the target surface
decreases with decreasing wavelength. In the range of 4.2 to 4.5 µm, the solar irradiance is
almost zero, while the sky background radiance exhibits a peak in this band. Therefore, the
radiance received by the detector in this band is mostly generated by the atmosphere.
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3.2. Inversion of Mid-Wave Infrared Spectral Emissivity and Validation with MOD11C1
Emissivity Product

After eliminating the influence of scattering from solar and sky background radiance,
the spectral emissivity was calculated using the experimental temperature values and
Equation (4). In order to validate the results, the obtained spectral emissivity was compared



Remote Sens. 2023, 15, 3893 15 of 19

with the spectral reflectance of Band20, Band21, and Band22 channels in the MOD11C1
emissivity product. However, considering that the experimental observation area was
a rectangular region of 13 m × 0 m (14 m × 17 m), which can be considered as a point
relative to the spatial resolution of 5.56 km in MODIS imagery, the spatial resolution differ-
ence between ground and satellite scales needed to be addressed. In this experiment, the
sampled ground points demonstrated a high level of uniformity, and the sampling sites had
good spatial representativeness. Therefore, a point-to-area upscaling conversion method
was used, where the ground sample point values were directly averaged arithmetically to
match the spatial resolution of the ground observation data. Finally, a comparison and vali-
dation were conducted between the redistributed satellite data and the ground observation
data. Spectral emissivity based on hyperspectral imaging data inversion and the emissivity
values in the three discrete channels of MOD11C1 in the mid-wave infrared spectrum (the
center wavelengths of narrow spectral bands are used to represent the wavelength) are
shown in Figure 16.
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Figure 16 showed that, in the experimental measurements of the mid-wave infrared
spectrum, the emissivity of the grassland remains around 0.95, symmetrically distributed on
both sides of the atmospheric absorption band. On the other hand, the emissivity of the Gobi
Desert shows a decreasing trend with increasing wavelength. Since MOD11C1 provides
emissivity values in three narrow bands, for the purpose of visualization, the wavelengths
of the three channels in MOD11C1 were chosen as the medians of their respective narrow
bands. Therefore, there is a spectral scale issue in the validation of MOD11C1 emissivity
products, and the inversion of surface emissivity needs to be obtained in the narrow
bands consistent with the three satellite channels. Table 7 shows the absolute and relative
errors between the emissivity values of the three channels provided by MOD11C1 and
the inversion data. It can be seen from the table that, compared to the Gobi Desert,
the grassland has larger errors in Band20 and Band23. In the emissivity data of the
grassland from MOD11C1, the emissivity in Band20 is overestimated, while in the other
two bands, it is underestimated. Conversely, for the Gobi Desert, the emissivity in Band20
is underestimated, while in the other bands, it is overestimated. However, overall, the
absolute errors of the three narrow-band emissivity values provided by MOD11C1 in the
3–5 micron wavelength range are all within 5%, indicating that MOD11C1 still maintains
a high level of accuracy in its emissivity products in the mid-wave infrared spectrum.

Table 7. MOD11C1 mid-wave infrared emissivity product and emissivity comparison error table
based on hyperspectral imaging data inversion.

Wavelength Range LandSurface Type Absolute Error Relative Error

Band20 (3.66~3.840 µm) Grassland 0.0376 3.9%
Band22 (3.929~3.989 µm) Grassland 0.0191 2.1%
Band23 (4.010~4.080 µm) Grassland 0.0429 4.8%
Band20 (3.66~3.840 µm) Desert Gobi 0.0057 0.4%
Band22 (3.929~3.989 µm) Desert Gobi 0.0458 4.9%
Band23 (4.010~4.080 µm) Desert Gobi 0.0412 3.9%
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3.3. Comparison and Validation of MOD11L2 Temperature Product with Temperature Field
Inversion Based on Mid-Wave Infrared Hyperspectral Measured Data

The temperature fields of the grassland and Gobi desert land surfaces were inverted
using Equation (5) based on the mid-wave infrared hyperspectral imaging measurements
acquired at 15:00 in the afternoon. The inversion results are shown in Figure 17. In order
to match the spatial resolution of the ground observation data and maintain consistency
with MODIS data, a point-to-area upscaling conversion method was employed, where the
values of ground sample points were arithmetically averaged. The inverted temperature
fields were then compared and validated against the extracted MOD11L2 remote sensing
temperature data. The comparison and validation results are presented in Table 8.
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Table 8. Comparison of verification data and errors.

Land Surface Type Grassland Gobi Desert

RemoteSensingTemperature (K) 293.7 323.9
Inverted Temperature (K) 289.5 321.6
Absolute Error (K) ±4.2 ±2.3
Relative Error 1.4% 0.7%

According to Table 8, it can be seen that both the remote sensing temperature and the
inverted temperature of the desert and Gobi are higher than that of the grassland at the
same time, which is due to the difference in their specific heat capacities. Furthermore, the
remote sensing temperatures obtained from MOD11L2 for both the grassland and the desert
and Gobi are underestimated. The absolute errors of the MOD11L2 grassland temperature
product and the desert and Gobi temperature product are ±4.2 K and ±2.3 K, respectively.
The relative error of the temperature product in the desert and Gobi is smaller than that
in the grassland, with a relative error within 2%. Through the comparative verification, it
can be concluded that both datasets are effective means for studying the infrared radiation
characteristics of typical land cover types.

4. Conclusions

This study is based on a middle-wave infrared hyperspectral imaging measured
dataset of typical ground backgrounds in the northwest region of China, covering the
period from the 4th of August to the 7th of August 2020. The main focus is to validate
the accuracy of the MOD11C1 and MOD11L2 products in terms of land surface emissivity
(LSE) and land surface temperature (LST). After evaluating and removing noise from
the measured dataset, performing atmospheric correction, and eliminating the scattering
components from solar and sky background radiation, the spectral emissivity and temper-
ature field of the measured area were inverted. The inverted data were then compared
and validated against the MODIS land surface temperature (LST) and emissivity (LSE)
products. The validation results demonstrate that the absolute errors of the three middle-
wave infrared narrow bands (Band20: 3.66–3.840 µm, Band22: 3.929–3.989 µm, Band23:
4.010–4.080 µm) for grassland emissivity in the MOD11C1 product are 0.0376, 0.0191, and
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0.0429, respectively. The corresponding relative errors are 3.9%, 2.1%, and 4.8%, respec-
tively. For the three middle-wave infrared narrow bands (Band20: 3.66–3.840 µm, Band22:
3.929–3.989 µm, Band23: 4.010–4.080 µm) related to desert emissivity in the MOD11C1
product, the absolute errors are 0.0057, 0.0458, and 0.0412, respectively, with relative errors
of 0.4%, 4.9%, and 3.9%, respectively. The relative errors for each channel are all within
5%. In the MOD11L2 temperature product, the absolute errors of the remotely sensed
temperature for the desert and grassland are ±2.3 K and ±4.1 K, respectively, with relative
errors of 0.7% and 1.4%. The relative errors of the temperature product are all within 2%.

The climate variation in the northwest region of China is profound. Utilizing of MODIS
data can significantly assist government agencies and research institutions in devising more
effective desertification control measures and climate adaptation strategies. Simultaneously,
the acquisition of land surface temperature and land surface emissivity data holds immense
value for forestry and agricultural management as it aids in monitoring the growth status
of farmland and forests. Additionally, it enables timely monitoring and early warning
during natural disasters such as droughts and floods. Hence, the evaluation of MODIS LST
and LSE products is of utmost importance. In this study, a precise assessment of MODIS
temperature and emissivity products was conducted, providing users with data accuracy
while further contributing to advancements in LST detection methodologies. Evaluating the
accuracy of the latest MODIS LST and LSE products will drive their expanded utilization
across diverse application domains.
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