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Abstract: Among many agricultural practices proposed to cut carbon emissions in the next 30 years
is the deposition of carbon in soils as plant matter. Adding rooting traits as part of a sequestration
strategy would result in significantly increased carbon sequestration. Integrating these traits into pro-
duction agriculture requires a belowground phenotyping method compatible with high-throughput
breeding (i.e., rapid, inexpensive, reliable, and non-destructive). However, methods that fulfill these
criteria currently do not exist. We hypothesized that ground-penetrating radar (GPR) could fill this
need as a phenotypic selection tool. In this study, we employed a prototype GPR antenna array to scan
and discriminate the root and rhizome mass of the perennial sorghum hybrid PSH09TX15. B-scan
level time/discrete frequency analyses using continuous wavelet transform were utilized to extract
features of interest that could be correlated to the biomass of the subsurface roots and rhizome. Time
frequency analysis yielded strong correlations between radar features and belowground biomass
(max R −0.91 for roots and −0.78 rhizomes, respectively) These results demonstrate that continued
refinement of GPR data analysis workflows should yield an applicable phenotyping tool for breeding
efforts in contexts where selection is otherwise impractical.

Keywords: ground-penetrating radar (GPR); continuous wavelet transform (CWT); wavelet pseudo-
frequency (WPF); wavelet pseudo-frequency density (WPFD)

1. Introduction

The global average temperature increased by 0.85 ◦C between 1880 and 2012. It
is expected to reach 1.5 ◦C above preindustrial temperatures by 2040 [1]. Atmospheric
concentrations of carbon dioxide are responsible for 20% of thermal energy absorbed by
Earth’s atmosphere [2], and the increase in atmospheric carbon and resulting warming due
to the greenhouse effect has severe negative ramifications for many important ecological
systems on a planet-wide scale. A viable strategy to achieve net-negative emissions is the
recapture and storage of atmospheric carbon as recalcitrant plant mass. Among proposed
plant materials, grass species have been suggested as efficient targets for sequestration
efforts through the restoration and establishment of natural grasslands or improvement
of the carbon sequestration potential of dominant cereal crops. Grasslands can sequester
up to ~3 Mg of C per hectare per year [3], and also serve as a carbon sink in agricultural
settings. Previous estimates predict that ~750 Mha are available globally for conversion
to bioenergy cultivation, with an estimated sequestration potential of ~1600 Tg C y−1 [4].
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Furthermore, the addition of perennially conferring traits, such as rhizomes, to current
grain crops, such as wheat, rice, barley, maize, sorghum, and millet, could increase their
carbon sequestration potential several-fold compared to the current low biomass found in
current fibrous root cereals.

A step toward optimizing carbon deposition via crop methods is the systematic study
and refinement of root and rhizome traits through breeding. The scale needed by breeding
strategies requires a fast and efficient means of phenotyping root traits; however, there is
currently no method that meets these requirements. Maximizing belowground biomass
necessitates developing high-throughput phenotyping methods for making rapid trait
selection decisions in field trials. The current methods of root phenotyping in a field
setting provide high-quality root information; however, some aspects of these methods are
unattractive for plant breeders: they tend to be labor intensive, challenging due to inherent
field variability, require a secondary cleaning of root samples, and are destructive [5].
Recent studies have shown that increasing the quantity of the acquired phenotypic data
collected may reduce error, making high-throughput phenotyping an attractive alternative
to manual phenotyping methods [6].

Ground-penetrating radar (GPR) is emerging as a potential high-throughput and
non-destructive root phenotyping method. GPR is a geophysical technique that uses
electromagnetic waves in the MHz–GHz frequency range to image subsurface structures.
It operates by first sending a pulse of energy into the ground and then recording the
resulting time-variations in the returned field amplitude caused by scattering, reflection,
and diffraction of the pulse due to subsurface discontinuities in electromagnetic wave
impedance. Beginning in the late 20th century, GPR has been used to monitor water flow
through soil horizons [7], map bedrock [8], estimate soil depth [9], and track movement of
agrochemicals [10].

Tree roots were among the first botanical targets studied, and given their large di-
ameter, they are readily detected by GPR [11]. As such, the majority of early root studies
using GPR are within the field of forestry. Beyond simple detection, forestry studies in-
dicate the possibility of predicting both tree root biomass and architecture based on GPR
signals [12,13]. Theoretically, the technology should also be able to detect the roots of
agronomic crops, and as such, GPR is attracting research interest in agriculture [14–17].
Within GPR studies, roots and the surrounding soil often compete for visibility on B-scans,
with soils that are heavy in clay negatively affecting resolution and visibility both of roots
and of other soil features [12]. As such, soils with low permittivity are preferred for root
studies, as high permittivity can interfere with the detection of roots. Roots that absorb
large amounts of water can affect the permittivity of the soil by drying it out, and thus
making the soil less responsive to electric fields [18]. Roots, even those fine in scale, can
affect overall soil permittivity due to their influence on overall soil moisture content. Even
so, it is difficult to determine the extent to which this can happen in field settings due to the
variety of other variables that influence electric permittivity, and conclusive results have
only been achieved in highly controlled settings [19].

The antenna used in this study operates over the frequency range 0.9 GHz to 2.7 GHz.
As a rule of thumb, a quarter of the electromagnetic wavelength (λ/4) in the subsurface
medium is required to determine the smallest separation necessary to distinguish between
two nearby objects [20]. The minimum separation, or so-called “detection threshold”, varies
depending on the velocity of the signal in the medium, and in an agricultural context, it
is largely determined by field moisture levels. Using a range of values typically found in
non-conducting materials of agricultural soil (commonly between two and ten), velocities
of 0.21 m/ns to 0.09 m/ns, respectively, can be calculated using the equation:

ν =
c√
εr

(1)

where c is the speed of light in a vacuum and εr is the relative dielectric (non-conductive)
permittivity, or dielectric constant, of the soil medium [21]. In practice, this means that



Remote Sens. 2023, 15, 3832 3 of 21

the lowest frequency of the prototype antenna (0.9 GHz) used in this study corresponds
to a detection threshold that ranges from 5.89 cm to 2.63 cm, while the highest frequency
(2.7 GHz) corresponds to a detection threshold that ranges between 1.96 cm and 0.88 cm.
As mentioned above, the images displayed in GPR scans represent reflection, diffraction,
and backscatter of electromagnetic energy from objects buried in the subsurface. Visual
representations of the reflected electromagnetic energy are typically viewed in one of two
forms: an ‘A-scan’ is a single return which is displayed as a time-varying function with
amplitude peaks and valleys on one axis and time on the other, and a ‘B-scan’, which is
a pseudo-2D cross section of the subsurface formed when a series of A-scans is acquired
along a survey path. In such a 2D radargram, the signal amplitude is often represented
by brightness on a gray-scale, time is given on the vertical axis, and survey position is
given on the horizontal axis. ‘C-scans’ further extend GPR data visualization by combining
data from multiple B-scans to create a 3D data-cube. These have proven useful in projects
attempting to map the subsurface in terms of depth as well as position relative to the visible
x–y plane of the surface.

The depth potential of a GPR antenna depends primarily upon both its frequency
and the quality of the soil on which it is being used. Frequency tends to be a trade-off
in terms of resolution and penetration power: higher-frequency antennas (900 MHz to
2 GHz) have high resolution but relatively low ground penetration, while lower-frequency
antennas (under 900 MHz) can penetrate several meters into the ground but provide low
resolution. In the case of this study, a high-frequency antenna (0.9 GHz to 2.7) was used as
the targets were close to the surface and required a higher resolution in order to distinguish
between roots and undesirable underground features (lower frequency is more common
for examining groundwater tables or piping).

Time analysis, as in many forms of remote sensing, is important in determining spatial
relations for objects of interest, especially as it relates to depth. The amount of time it takes
for the reflection of electromagnetic waves to travel from transmitter to target to receiver
can be used to calculate the depth of the target given the velocity of the signal in the soil
medium. This, combined with the dielectric properties of the targets and soil media, begins
to paint a picture of the structure of the subsurface, which can then be used to distinguish
the targets from their surroundings.

The application of GPR is an approach that is being successfully tested as a tool
for precision agriculture [17]. The present study assesses the feasibility of root biomass
quantification by exploring correlations between features extracted from GPR responses
and harvested belowground biomass. Root detection by GPR shows promise for further
development both in theory—since roots present a dielectric contrast to the host soil—
and based on previous studies documented in the literature [14–16,22]. Most of these
studies have adopted an image analysis approach to quantify the presence of belowground
biomass. For example, radargram pixel counts have been used to quantify the mass
of cassava tubers [14]. A similar pixel-level image analysis was used to predict peanut
yield [15]. An alternative to an image analysis approach is a frequency-based analysis where
the GPR signal is decomposed into its component frequencies, which are then evaluated
as features predictive of biomass. Observed root biomass of cassava and peanut has been
predicted using this method [16,23]. An additional alternative for GPR feature extraction
is the use of wavelet methodologies. Wavelet analysis in GPR has been largely applied as
a de-noising technique [24,25]; wavelets have also been applied in a diagnostic capacity
in civil engineering [26] as well as in evaluation of soil moisture [27]. The fibrous and
rhizomatous biomass assessed in this current study are characterized by a lack of a single
large, discrete target object and are distributed among three depth layers. The dispersed
nature of both the biomass and the signal makes a wavelet-based time/frequency analysis
more appropriate in this case.

The objective of this study is to determine the ability of the continuous wavelet trans-
form (CWT) technique to identify and quantify the belowground material of a perennial
sorghum hybrid based on GPR B-scans. We hypothesize that correlations between B-scan
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wavelet pseudo-frequencies (WPFs) features and dry biomass will produce an accurate
representation of subterranean sorghum that can be used as a proxy for belowground
mass measurements in the field. The relevance of this correlation is that greater biomass
in root structures is indicative of greater carbon sequestration, making GPR an appro-
priate tool to assess carbon sequestration potential in agricultural ecosystems defined by
perennial grasses.

2. Materials and Methods

To test the working hypothesis that belowground root and rhizome biomass is de-
tectable via GPR using a time-frequency analysis hypothesis, a sorghum hybrid selected
for high belowground biomass was grown as a monoculture in a pure sand environment.
The root and rhizome systems were scanned using a prototype GPR antenna, and then har-
vested biomass information was regressed against features extracted from the radargrams.
Signal features were derived using time-frequency analysis on B-scans via the continuous
wavelet transform (CWT). A high-level process overview is given in Figure 1.
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Figure 1. High-level flowchart of study design.

The sorghum hybrid Sorghum bicolor L. Moench × Sorghum halepense L. Pers (i.e.,
PSH09TX15) used for this study was kindly provided by Dr. Russell Jessup (Texas A&M,
College Station, TX, USA) [28]. This hybrid is generally sterile and grows to a height of ~2 m.
It was chosen due to its dense rooting growth characteristic and method of propagation
via rhizomes, which are produced with a diameter of ~1 cm and serve as the emanation
point of the plant’s fibrous root system [28]. Rhizomes comprise modified stem tissue that
grows laterally beneath the soil’s surface to produce new clone shoots from their nodes.
They can persist from season to season, and have been shown to accumulate mass over
multiple growing seasons [29]. Additionally, rhizomes have the capability of growing with
a smaller energy investment in each subsequent growing season. This capability results in
a crop that can sequester carbon more effectively than an annual crop.

The aboveground planted PSH09TX1 material was mowed to the soil media surface,
and the troughs scanned with a prototype air-launched GPR antenna array developed by
IDS GeoRadar (Golden, CO, USA). The latter utilizes a unique air-launched resistively
loaded vee dipole antenna design, which had been developed as a means to detect buried
objects without the necessity of ground contact [30–32]. The antenna array unit has been
used in other published research [15,16,23,33] and is pictured in Figure 2. An air-launched
antenna was used because of its greater suitability for scanning uneven agricultural surfaces
with the accepted trade-offs of a strong ground return and less energy being transmitted
into the soil subsurface than with a ground-coupled unit [34]. The antenna array used was
mounted onto a cart at a height of approximately 50 cm from the soil’s surface (Figure 2).
This height was chosen to prevent the overlap of the direct wave and the surface return [34].
The antenna was oriented in a direction normal to the soil’s surface to minimize the amount
of energy reflected away from the subsurface. Plants were scanned only in the long-
direction with respect to the trough due to the narrow trough width. An encoder wheel
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was mounted to the base of the cart and was used to gather one A-scan every centimeter
traveled, as seen in Figure 2. While an exact GPR footprint is difficult to determine,
communications with the manufacturer of the antenna estimated that the expected “view”
of the antenna was approximately elliptical, with a 60◦ swath in the front-to-back look
direction and a 120◦ swath in the left–right direction, corresponding to an ellipsoid with a
short-axis of approximately 114 cm and a long-axis of approximately 200 cm at a height of
50 cm. A-scan returns were gathered along the path of travel at a regular interval of 1 return
per centimeter using an attached encoder wheel. In the context of this study, A-scans were
averaged into observations based on which plot they were collected within; the smallest of
which was 117 cm long, which corresponded to 117 returns.
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Figure 2. Photograph of data collection using IDS antenna array. Antenna was mounted on an
aluminum cart and moved from one end of the trough to the other during data collection.

Experimental plots of PSH09TX15 were established from rhizome propagules. The
plots were located at the Texas A&M University Farm (30.530, −96.426) and consisted of an
aboveground trough constructed with a post-and=rope structure supporting an enclosed
growth matrix lined within a weed cloth barrier (Figure 3b). The trough was filled with
100% silica sand. The artificial environment pictured, referred herein as a ‘trough’, was
divided into individual plots with boundaries defined by the posts making up the wall.
The target plots and buffer plots on each end had an average length of 2.6 m, width of 2.1 m,
and depth of 1.1 m. Prior to filling the troughs with the sand, nylon nets were installed
at three different depths. The nets were used during harvest to separate belowground
biomass into different layers following the removal of growth substrate. A top view and a
side view of the trough setup is shown in Figure 3a. Plants were irrigated via a drip tape
and fertigated as needed via liquid fertilizer injector.

After the GPR scanning, the weed cloth barrier supporting the sides of the berm
(shown in Figure 3c) was removed, exposing the bare sand matrix. The troughs were
washed with a high-pressure water hose over the course of one week, resulting in the
gradual exposure of root material (see Figure 3b). The fibrous root systems and rhizomes
were captured by the nylon nets in the three different accessible layers. Measured from
the soil’s surface, the thicknesses of each of the layers were 15, 45, and 45 cm (see side
view in Figure 3a). The fibrous roots and rhizomes were then harvested by hand. Plant
crowns were included in the collected tissue of the top zone, and were separated into
tissue groupings of either fibrous roots or rhizomes depending on morphology. Roots
were severed where they crossed the nylon nets that separated adjacent layers. Roots were
collected within each plot (see top view in Figure 3a) at each of the three layers. Harvesting
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took place immediately after the washing process had concluded, and the root material was
dried in a greenhouse in order to preserve mass against microbial degradation. The root
samples were then re-washed in large plastic containers to remove excess sand. During
the entirety of the washing process, care was taken to retain rhizome tissue and the fibrous
root system (i.e., roots with an approximate diameter of ~1 to 4 mm). However, the fibrous
system was not further separated into size-based subcategories due to the lack of resources
to process the amount of material. All plant material examined in this study, therefore,
is either the rhizome tissue, the fibrous root tissue, or the sum of these two groupings.
Samples were hand-separated into two main tissue sub-groups: rhizomatous and fibrous
root biomass. Each sample was then dried in an oven at 60 ◦C until its weight stabilized to
remove variability in measured mass due to water content.
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Figure 3. Descriptive images of trough system. (a) From left to right, plots are numbered 1–8 (see
top view). The space labeled ‘B’ was intended as a blank area and no associated mass was harvested.
The different layers are demarcated with different shades of gray. (b) Artificial trough environment
during growing season. (c) Belowground biomass following trough washing process. Pictured are
the three depth layers separated by the green nylon netting.

The GPR workflow (Figure 4) comprises a small number of key steps. The processing
and analysis was performed using GPR-Studio version 1.0.1 (Crop Phenomics, College
Station, TX, USA, (cropphenomics.com, accessed on 14 June 2023)), an in-house software
combination of graphical user interface and Python library that provides GPR processing,
analysis, and visualization services. A notable difference between the data in this analysis
and that from other surveys is the lack of distinct visual features in the raw radargrams. In
many other contexts, GPR data produces characteristic hyperbola features present prior
to any preprocessing steps that are taken. The data examined in this study had no similar
obvious features that could be directly attributed to plant mass. As such, part of our
working hypothesis is that any detection is of bulk material as opposed to individual roots
or rhizomes. This is not to say that the current method is not applicable to the detection of
individual fine roots, however, but that specific application is not explored in the current
study. While performing the exploratory analysis of B-scans, it was found that GPR

cropphenomics.com
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processing workflows involving certain widely applied signal-processing techniques (e.g.,
bandpass filters, gain correction) produced inconsistent results. With regards to bandpass
filters, at this stage in the field’s development, it is uncertain which frequency ranges
correspond to noise and which ranges indicate the presence of target biomass. The net
result of any filtering operation is always the removal, or at least the alteration, of potentially
informative features. Generally, it is wise to proceed only with the simplest processing
steps with the intention of addressing a particular aspect of the data [35]. With this in mind,
the final preprocessing workflow used was a minimal pipeline, illustrated below.
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Figure 4. Processing flowchart and visual result. Chart shows the pre-processing steps used to
prepare GPR data for CWT analysis. Pictured above is the ‘before’ and ‘after’ representation of the
GPR data used in this study. The ‘after’ depiction is the appearance of the data after ‘Cropping’ and
‘Background Correction’ steps prior to the use of the CWT.

The initial GPR processing step is the cropping of the B-scan to remove regions known
to contain unwanted non-informative signals. The raw B-scan is cropped to exclude the
direct wave and associated ground clutter (normally indicated by the high-amplitude
bands at the top of the section), as well as any samples recorded after 32 ns two-way travel
time. The latter region appears to contain mostly deeper soil horizons beneath the trough
system and/or multiple reflections of a shallower structure. Multiples may be generated
as a direct result of the engineering of the prototype antenna hardware (verbal comm., A.
Delgado, IDS GeoRadar, 2018, Pisa, Italy). The appearance of strong multiples in the GPR
data was not anticipated prior to acquisition.

After cropping the radargram, background correction was performed. The background
correction algorithm used in this analysis first computes the mean signal amplitude across
each row of a given B-scan. The row-wise means are then subtracted from the B-scan. The
expected result of this operation is the reduction of noise in the form of sub-horizontal
bands of enhanced signal amplitude. These high-amplitude horizontal bands distort the
desired information that is directly related to the compact three-dimensional root system.

The continuous wavelet transform (CWT) is a technique that localizes the individual
frequency components contained within a time-varying signal. In GPR research, wavelets
are often applied to analyze the response of topography [36] to detect objects such as
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landmines [37] and to filter signals [38]. Wavelet application in agricultural root detection
is based on the supposition that, similarly to spectrophotometry performed in a wet lab,
distinct root sizes or structures will preferentially respond to specific frequencies in the
electromagnetic wave. While similar to Fourier analysis, wavelet analysis has the key
difference of identifying the signal frequency of interest in time, in addition to reporting
the relative amplitude of each frequency. The recording of such frequencies of interest
is performed by collecting scaled and translated versions of a ‘mother’ wavelet function
across the extent of a mapped signal. The collection of the signal with the variously scaled
and translated ‘daughter’ wavelets records the relative amplitude of a specific ‘pseudo-
frequency’ (hereinafter referred to as a ‘wavelet pseudo-frequency’, WPF) at each instant of
time within the signal. It is hypothesized that the presence of root mass can be predicted
by analyzing the cohesiveness of all WPF components extracted from GPR B-scans of
agricultural fields.

A novel application of CWT was used herein, similar to the one used in a prior analysis
of electromagnetic induction survey data [39]. The observed biomass from the harvest was
correlated with sums of the wavelet coefficients at a given WPF. The mother wavelet chosen
for analysis was the complex Morlet wavelet [39–41]. The result of combining the complex
Morlet wavelet with the GPR trace is a complex signal. We took into consideration only
the size of the resulting wavelet coefficients, which is obtained by computing the vector
length of a given sample. These size values are then summed within an agricultural plot to
produce a GPR feature that corresponds to a given biomass measurement. The complex
Morlet wavelet was chosen because it resembles the emitted GPR pulse, with the idea
that reflected pulses, though distorted and attenuated by the propagation through the soil
medium, would retain the basic frequency content of the emitted pulse. Each sum was
divided by the length of its respective plot. The feature investigated here is thus coined a
‘wavelet pseudo frequency density’ (WPFD) measure. The biomass measurements were also
divided by the length of their respective plots. This division was performed to standardize
both WPF feature and biomass values because the sizes of the trough plots varied (the
smallest plot was 1.17 m in length, while the longest was 3.11 m). The standardization was
performed to make the data values between each of the differently sized plots comparable.

Biomass values collected for each layer were compared using an ANOVA test to
demonstrate existing variability at different depths (N = 27). Following this ANOVA,
a Tukey’s HSD post hoc test was performed to determine which layers differed from
each other. The results of both tests can be found in the Appendix A. These tests were
both performed in R studio. For each tissue grouping at each depth layer, an experiment
was conducted wherein the Pearson correlation coefficients (R statistics) were calculated
at each WPF using the open source ‘scipy’ Python library (n = 8 for each layer) [42].
These correlations were evaluated based on their corresponding two-tailed p-value. After
calculating the correlations, each WPF was evaluated for the strength of its relationship with
belowground mass. The strongest of these correlations for each experiment was reported,
and the strongest of this subset were further analyzed by generating a simple linear
regression equation describing the line of best fit between the WPFs and the standardized
mass values. These correlations were further analyzed using a bootstrapping analysis with
1000 iterations implemented with the open source ‘numpy’ Python library to comment on
the robustness of each statistic and the associated regression equation.

3. Results
3.1. Belowground Biomass Analysis

It is evident that the variance in the rhizome mass was much higher than that of the
fibrous roots within each of the three layers (Figure 5). Notably, about 85% of the total
collected material was composed of the comparatively persistent rhizome tissue.

The results of the ANOVA test (Table 1) demonstrate that significant differences in
belowground biomass variability exist between the layers and between belowground tissue
types (fibrous roots and rhizomes). The results of the Tukey’s HSD post hoc test (Table A1)
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show that belowground tissue type differences are significant (p < 0.0001). Significant
differences were also found between the top and middle (p < 0.01) and the top and bottom
(p < 0.05) depth layers. No significant difference (p > 0.05) in mean root-mass was found
between the middle and bottom depth layers. These results for the Tukey’s HSD can
be found in Appendix A. The greatest rhizome mass was found at layers 2 and 3 (See
Figure 6). A similar trend is followed by the fibrous roots, though to a lesser extent.
Likewise reflected in the harvested biomasses is the lower mass values of the first and last
plots caused by variable planting density used in this study to derive the GPR root and
rhizome mensuration algorithm.
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Table 1. Summary of ANOVA evaluating variability between layer and biomass tissue type. Differ-
ences were detected within both variables to a significant degree.

DF SS MSE F Pr > F

Layer 2 2,127,394 1,063,697 6.387 0.00367 **
Tissue 1 8,074,213 8,074,213 48.48 1.30 × 10−8 **
Residuals 44 7,328,131 166,548

** p < 0.01.
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3.2. Time Frequency Analysis

The result of the CWT analysis on a given B-scan is a cube wherein each ‘slice’ of
the cube’s third dimension is visualized as an image whose pixels represent the fit of a
daughter wavelet of a given scale to the original signal at that location. Each of these
images corresponds to a different WPF (this concept is illustrated in Figure 7a). To obtain
the Pearson correlation statistic, r, the real part of the pixel values within each WPF image
were first summed. This sum, as well as the biomass measurement, was then divided
by the length of its respective plot to obtain a normalized WPFD measure and biomass
measurement. These two features were then correlated with each other to determine the
connection between belowground biomass and the GPR feature. Each mass type and depth
range evaluated can essentially be thought of as its own experiment (for example, the
correlation of radar features and fibrous root mass at the top depth herein is viewed as
a separate experiment from rhizomes at the top depth). Each of these experiments had
a sample size of n = 8, where each observation is the summary of signals within a given
agricultural plot, as seen in Figure 3. The results of the CWT analysis are herein presented
as line graphs of the R statistic as a function of WPF. The strongest correlations are shown
both in Table 2 and in Figure 8.
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Table 2. Highest WPF correlations. All results shown are the strongest correlation between biomass
and WPFD at each depth (layer) for each experiment. Experiments are designated by the layer(s) and
tissue columns (note: “Combined” refers to summed fibrous and rhizome mass).

Frequency (GHz) p R Tissue Layer(s)

14.4 0.002 −0.91 Fibrous 1
0.4 0.021 −0.78 Rhizome 1
0.4 0.027 −0.76 Combined 1
3.9 0.014 −0.82 Fibrous 2
1.3 0.048 −0.71 Rhizome 2
0.2 0.055 0.70 Combined 2
2.8 0.138 −0.57 Fibrous 3
0.1 0.131 0.58 Rhizome 3
0.1 0.148 0.56 Combined 3
4.3 0.003 −0.89 Fibrous 1 and 2
3.1 0.060 −0.68 Rhizome 1 and 2
3.2 0.048 −0.71 Combined 1 and 2
3.9 0.016 −0.80 Fibrous All
2.8 0.090 −0.63 Rhizome All
2.9 0.080 −0.65 Combined All

Each of the line graphs was produced by correlating the biomass measurements within
a given set of layers with the WPFD calculated from the same layers. For example, the
graph shown in Figure 7b was generated by correlating the sum of fibrous root biomass
across all three layers against WPFD values derived from each of the WPF images, as per
Figure 7a. These graphs were created to explore how well different WPF ranges corre-
lated to belowground biomass. Figures A1 and A2 show these plots for all experimental
combinations tested.

All of the WPFD correlations were filtered by their p-value using a threshold of p < 0.05.
The resulting peak WPF ranges are denoted on these line graphs by a red highlight (e.g.,
Figure 7b). Interestingly, all significant correlations generated from this analysis were
negative; this is to say, a high WPFD corresponded to an absence of belowground biomass
(Table 2, Figure 7b at WPF ~5 GHz, Figures 8 and 9). None of the biomass groups (fibrous
root, rhizome, or total biomass) correlated well with any WPF at layer 3. This suggests that
signal fading may have resulted in a loss of necessary information to detect roots beyond an
approximate 60 cm depth. Conversely, all biomass groups produced significant correlations
to WPFs evaluated from the top 15 cm of data.

The fibrous root system and rhizomes correlated significantly to layer 2; however, the
combined biomass did not. Because the first two layers correlated significantly to both
fibrous roots and rhizomes, the masses of these two layers were pooled and correlated
with the WPFDs for this new region of interest. From this, only the total mass correlated
significantly. Finally, all biomass groups were tested for correlation to WPFDs calculated
for all three layers. From this, only the fibrous root system correlated significantly to any
of the WPFs for total biomass in layer 3. When examining the line graphs in Appendix A,
rhizomes appear to correlate well at WPF ranges lower than 2 GHz, whereas fibrous roots
peak close to 4.9 GHz at both layer 1 and layer 2. The chart depicting the total biomass
evaluated at layer 1 appears to peak in ranges similar to both rhizomes and fibrous roots;
however, evaluation at layers 2 and 3 shows a peak similar only to the fibrous root system.

The further analysis of the highest-performing WPF features yielded simple linear
regression equations that differed in both their slope and intercept. Both the intercepts and
slopes appear to generally become steeper when considering increasing depth layers, which
is likely related to a larger variation in the amount of biomass harvested (see Figure 5).
The amount of variation explained by the dependent variable in all cases was greater than
R2 = 0.50, indicating that the chosen GPR WPFD explains greater than half of the variation
seen in the standardized biomass and thus appears to have predictive capability.
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fit. Neither fibrous roots nor rhizomes correlated significantly with any WPFD feature at layer 3. All
correlations shown are significant to p < 0.05 (n = 8).

To test the hypothesis that the variation between the different regression equations was
mainly due to mass, the standardized biomass measurement shown in Figure 8 was further
transformed via normalization, such that the maximum and minimum measurements
for each experiment were 1 and 0, respectively. After this transformation (Figure 9), the
differences in slope and intercept are much less apparent between depth layers and tissue
type. The main differences at this point are simply the strengths of each relationship, as
indicated by R2.

The validity of the R-values were further evaluated by utilizing bootstrapping wherein
each tissue group x depth layer combination was resampled with replacement over the
course of 1000 iterations, and the correlation statistic recalculated. Histograms representing
the results of this analysis are shown in Figure 10. Mean R-values obtained from this
process are shown in Table 3, along with the observed R values from Table 2. All mean R
values were close to the observed values. Further, four of the seven reported correlations
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have 95% confidence intervals with bounds well away from 0, suggesting that even if the
actual correlation is different from the mean, it is highly likely that there is at least some
correlation between selected GPR features and biomass.

Table 3. Mean R and confidence intervals for bootstrapping of selected correlations.

Tissue Layer (s) Observed R Mean Bootstrapped R 95% Confidence Interval

Fibrous 1 −0.91 −0.87 [−0.99, −0.52]
Rhizome 1 −0.78 −0.71 [−0.96, 0.19]
Combined 1 −0.76 −0.69 [−0.97, 0.01]
Fibrous 2 −0.82 −0.76 [−0.97, −0.26]
Rhizome 2 −0.71 −0.74 [−0.99, −0.38]
Combined 1 and 2 −0.71 −0.71 [−0.94, −0.37]
Fibrous All −0.80 −0.70 [−0.97, −0.04]
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4. Discussion

The wavelet analysis produced significant correlations at several distinct WPFs, de-
pending on the layer and tissue type of the biomass. Most interestingly, all significant
correlations found in this work indicate a negative relationship between biomass and the
wavelet feature.

The bootstrapping analysis showed that after 1000 iterations, the derived mean cor-
relation statistics were close to what was observed in the original experiments. The 95%
confidence intervals further confirmed the existence of relationships for the fibrous root
system at layers 1, 2, and all layers combined; rhizomes at layer 2; and the combined
biomass in the combined top two layers. The results of this analysis are encouraging, as
they further validate the observed statistics shown in Table 2. However, it is also worth
noting that the histograms shown in Figure 10 demonstrate that while it is likely that the
correlations exist, they may be substantially weaker than what is observed.
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The regression equations defining the lines of best fit for the observed relationships
differed in their y-intercept values and slopes. This was shown to be due to the differences
in the amount of mass being considered for each separate experiment. As greater depths
contain more variation in biomass and the x-axis will always be between 0 and 1, an increase
in slope and intercept are to be expected. It should also be noted that this observation
regarding these equations can only be inferred from the experiments examining the fibrous
root system and the experiments examining rhizomes at the top two layers, as the other
experiments detailed here investigated various combinations of mass and depth layers.

Negative relationships between belowground biomass and GPR signal features have
been reported in the previous literature [43], and correlations have been shown to switch
from negative to positive at progressive depths [15]. A possible explanation for negative
relationships is that the presence of a root zone may result in less soil compaction, thus caus-
ing a weaker reflection at the surface. Another possibility is that PSH12TX09′s complicated
root architecture results in an attenuation of certain frequencies resulting in a detection
method analogous to absorbance techniques used in wet labs. An important takeaway
from the plots of correlation vs. WPF (Figures 7b, A1 and A2) is that there are ranges within
which biomass correlates well to the GPR signal. This could potentially be leveraged in
future studies by effectively using CWT analysis as a filter to remove information outside
of a given WPF range.

Belowground plant structures in this study were sub-classified as fibrous root or
rhizomatous tissue, a helpful distinction in the exploration of detectability with ground-
penetrating radar. A majority of the PSH12TX09 hybrid’s belowground biomass is con-
tained in the rhizome tissue. This finding has positive implications for the use of rhizoma-
tous plants as carbon sequestration targets, as perennial rhizomatous crops can survive
between seasons. This, in turn, encourages no-till agricultural practices and provides a
system that can continually deposit root exudates without requiring the re-investment of
energy for a new growth cycle. Contrary to expectations, the fibrous root system, despite
making up a minority of the total biomass, had stronger correlations and wider significant
WPF ranges than the rhizome root system. This may be due to different interactions of
the GPR signal and growth environment to the fibrous root system as compared to their
interaction with the system of rhizome tissue. A second possible explanation is that the
correlation at low frequencies is the result of a strong association between the vascularly
connected belowground fibrous root biomass and the near-surface crown structures. Dur-
ing the harvesting and classification of biomass, no effort was made to determine whether
fibrous roots originated from the crown or from rhizome tissue. Given the presence of
crown material during scanning (see Figure 3c for visual reference of crown size), returns as-
sociated with the belowground fibrous root system crown structure could be co-correlated
with crown mass.

As the frequency of a GPR signal return corresponding to a large object would typically
be low, the expectation is that belowground tissue with a larger radius would be correlated
with lower wavelet frequency. In general, this was consistent with this study’s results;
however, the fibrous root system exhibited significant correlations at lower frequencies
in addition to higher frequencies (see Appendix A). This was unexpected. However, a
possible explanation warranting further study is that individual fibrous roots do not solely
interact with EM radiation in the expected higher frequency ranges but are also detected as
an ‘aggregate root zone’. This hypothesis is partially supported by the results shown in
Appendix A, as fibrous roots correlate with multiple WPF ranges. Moreover, the resolution
limit for detection using radar can be estimated using the λ/4 rule of thumb [20]. With
the current instrument’s frequency range of 0.9–2.7 GHz, this limit prevents resolution of
objects less than ~0.88 cm in length. This is much larger than a typical diameter of fine roots
or root hairs but potentially of the same scale as rhizomes and the spatial changes in root
architecture and/or the root system’s zone of influence (i.e., the area within which water
interacts with the root system). Alternatively, the correlation to the lower frequencies may
be due to these frequencies responding to the near-surface crown structure that derives
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the plant stems and large network of vascularly connected fibrous roots. This fraction
of the fibrous root system was quite large, yet not segregated from the lower biomass of
fibrous roots originating from the rhizome nodes. Collectively, the relatively large size of
the entire root system and its zone of influence is a positive indicator for detectability and
belowground mass quantification.

There is limited consistency with which WPFs correlate strongly with biomass as
burial depth increases. The lack of a clear relationship between WPF and biomass at each
burial depth suggests that morphological structures may respond differently at varying
burial depths. The lack of a consistent radar signature using this approach could present
a challenge moving forward, as the eventual goal for this technology is its application in
realistic settings where soil conditions and root mass are not known beforehand.

The use of wavelet transforms in GPR biogeoscience research is relatively new. Wavelets
were discussed in a review by Liu [38], who noted their use in various engineering applica-
tions, primarily as a de-noising and feature extraction technique. The analyses presented
herein have adapted wavelets for B-scan feature extraction, thus building on the earlier
work [39]. An encouraging feature of these results is that the correlations for layers 1 and
2 were significant for both the rhizomes and fibrous roots. This result indicates that even
though signal attenuation occurred, it was still possible to detect the biomass to a depth of
60 cm, a result that is highly encouraging for further applications of this technology in a
field setting.

Despite these results, there are several additional factors that either affect the reliability
of the results or the ability to apply GPR and CWT in other environments. The biomass of
the root system may have been influenced by the soil quality used in the experiment. Sand
was used for this study as it would have provided the purest soil medium and also would
allow for cleaner root samples after washing. However, it is not typically grown in 100%
pure sand, and as such, the vegetation material used in this study was subject to higher
draining and less water content than usual. It was also uncharacteristically dependent
upon fertilizers, which may have affected how much biomass accumulated in different
soil layers. In this way, the GPR may have been biased toward the layers most affected
by fertilization. There were also many opportunities for fibrous root material to be lost
between scanning time and harvest. The roots were washed away over a period of a week,
allowing ample opportunity to lose finer root mass due to the washing process.

The degree to which the soil medium composition and its moisture content affect
the results was not explored in the present study; however, these variables are crucial to
consider in GPR applications. The main strategy undertaken by using pure sand was to
eliminate potential variation caused by more naturalistic soil media in order to maximize
the chances for root detection. The expected behavior of repeated measurements in a more
water-saturated and clay-like soil setting would be a more rapid attenuation of signal
strength as it travels further into the subsurface [12]. Furthermore, the drying of soil media
due to drainage would likely cause scans of the same area to appear substantially different,
and some form of compensation would need to be used to control this effect. From another
perspective, the strategic use of soil moisture may, in fact, be a tool that can be used to
increase the efficacy of this detection technique at shallower depths in a manner similar
to Liu et al. [43]. This being the case, this analysis methodology cannot be deployed in a
practical sense without further research into its stability in other environments.

Although sorghum has previously been investigated using GPR [44], it differs from
other crops with successful correlations due to its absence of tubers and relatively small
root structures. While the presence of such structures may be more easily determined
in a controlled environment (such as in a manicured sand trough), it will certainly be
more difficult to differentiate between rhizomes and irrelevant materials (such as rocks or
solidified soil) in a standard agricultural setting.

The sand troughs themselves may have presented some uncertainties for the data
collected. Based upon their construction, it was nearly impossible to break the sample
down into sub-samples without introducing measurement error to the harvest process. The
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requirement to examine the roots in bulk thus limited the sample size and inhibited the
ability to determine individual rhizomes.

While encouraging, it should be noted that the regression equations derived for each
of the reported features cannot be directly applied to other settings. Foremost is the fact
that each regression equation describes a standardized mass measure as a function of
a standardized GPR feature. This standardization is itself specific to the dimensions of
the experimental trough environment, which immediately makes applying the regression
equations impossible for prediction in other settings. Second, the relationships found are
based upon a small sample size which was demonstrated to influence the robustness of
the results per the bootstrapping analysis. Third, these results are limited by the fact that
they were obtained from a single experimental environment and a single plant model.
It can be hypothesized that similar approaches may yield success when varying species
and environmental factors given the essential physical principles the technique is based
upon; however, this must be experimentally confirmed and validated. Regarding the
application to other conditions, the current study serves as a starting point for this method
by providing a set of relationships to be further explored, improved, and integrated into
predictive algorithms.

5. Conclusions

The results show that GPR-based proximal sensing of belowground biomass of the
target sorghum grasses is feasible using CWT-based time-frequency analysis. Belowground
biomass correlated significantly up to R = −0.91, with GPR features extracted from wavelet
analysis, thereby demonstrating potential predictive capability. Optimal results from the
wavelet analysis are derived from the WPFs that maximally correlate with belowground
biomass measures. However, there is a wider range of WPFs at which correlations with
belowground biomass are statistically significant. Future work should focus on exploring
how the information spanning a wide WPF range, which may represent the detection of
rhizomes and roots in unique orientations, can be used to predict belowground biomass.
Additionally, future studies should introduce soil conditions and different plant species
as covariates to determine the degree to which this technique can be generalized as a
measurement technique.
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correlations are reported in Table 2.

Table A1. Tukey’s HSD comparing biomass values between layers and between tissue types. ‘R’
and ‘F’ refer to rhizomes and fibrous root masses, respectively. Note, layers are numbered from top
to bottom.

Tukey Multiple Comparisons of Means
95% Family-Wise Confidence
Fit: AOV (Formula = Mass ~ Layer + Tissue)

Layer
p Adj Upper Lower Difference

0.004 839.74 139.81 489.78 2-1
0.028 734.61 34.69 384.65 3-1
0.748 244.84 −455.09 −105.13 3-2

Tissue
p Adj Upper Lower Difference

0 1057.7 582.85 820.28 R–F
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