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Abstract: The detection performance of power transmission towers in mountainous areas using
SAR amplitude images is obviously influenced by the strong layover background (mainly includ-
ing vegetation and soil) clutter interference around the towers. In this paper, power transmission
tower detection in a mountainous layover area, using single-baseline SAR interferometry coherence
images, which show better feature enhancement effectiveness compared to SAR amplitude images, is
presented. Moreover, a novel feature enhancement method, that of generating multi-baseline SAR
interferometry-correlated synthesis images for power transmission tower detection in a mountain
layover area, is proposed. It demonstrates better feature enhancement (layover background cluster
suppression) than that using single-baseline SAR interferometry coherence images. Theoretical analy-
sis illustrates that the mountainous layover background clutter interference can be suppressed in
the proposed single-baseline/multi-baseline SAR interferometry-correlated synthesis image. Experi-
ments including over 12 repeat-pass TerraSAR-X staring spotlight mode acquisitions were conducted,
and the results demonstrate that the detection performance with the use of multi-baseline SAR
interferometry-correlated synthesis images showed an improvement of more than 43.6%, compared
with the traditional method of using SAR amplitude images when benchmark deep learning-based
detectors are used, i.e., Faster RCNN and YOLOv7.

Keywords: synthetic aperture radar (SAR); InSAR; power transmission tower; object detection

1. Introduction

In China, many power transmission towers are located on mountainous soil or vege-
tated terrain, as shown in Figure 1. In summer, some natural disasters, such as landslides
and debris flow, caused by heavy storms, occur often. For a long time, these disasters
resulted in the inclination, or even collapse, of power transmission towers. Spaceborne
synthetic aperture radar (SAR) is a widely used technique in remote sensing and non-
destructive testing applications [1–5]. SAR is also a potential technique for monitoring
the safety status of power transmission towers. For the safety status monitoring of power
transmission towers, the inclination degree of a power transmission tower during one
period could be calculated using improved differential interferometry SAR (D-InSAR) [6].

For the improved D-InSAR technique, the first step is to detect the locations of all
power transmission towers in an entire SAR image. Then, the inclination degrees of every
power transmission tower can be obtained using the improved D-InSAR technique. Tower
detection is essentially a problem of geometric structure detection of the tower within the
detection box. The amplitude of the SAR image was always selected as the feature for power
transmission tower detection [7,8], which presented good detection performance in areas
without much layover influence, such as relatively flat land areas. Nevertheless, in steep
mountain areas, there is significant layover, resulting in strong scattering values in the SAR
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amplitude image. Such layover, presented as strong background cluster interference around
the power transmission towers, will influence the entire geometric structure detection of
towers in the detection box, thus influencing the detection performance of the power
transmission towers located in steep mountain areas.
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Figure 1. Real power transmission towers located on mountainous soil or vegetated terrain.

For the two repeat-pass spaceborne SAR acquisitions, the feature of SAR interferometry
coherence has already shown better effectiveness for land cover classification than the
feature of SAR amplitude [9]. For InSAR applications, the decorrelation process of the two
repeat-pass spaceborne SAR acquisitions mainly includes spatial baseline decorrelation
and temporal decorrelation. In general, the spatial baseline decorrelation is relatively slight
if the spatial baseline of the two repeat-pass spaceborne SAR acquisitions is not very long.
Most mountainous areas where power transmission towers are located include vegetation
or soil. Consequently, the SAR interferometry coherence value around the tower is very
low, due to the statistical temporal decorrelation from the vegetation and soil. In contrary,
for a relatively short spatial baseline, the SAR interferometry coherence value of the power
transmission tower itself is still high, because power transmission towers are made of
metal, and thus can remain stable/persistent along the temporal dimension. Based on
this, the feature enhancement method, using single-baseline SAR interferometry coherence
images for power transmission tower detection in mountainous layover areas, is presented
in this paper. Moreover, a novel feature enhancement method, using multi-baseline SAR
interferometry-correlated synthesis images for power transmission tower detection in
mountainous layover areas, which demonstrates better feature enhancement than that
using single-baseline SAR interferometry coherence images, is proposed.

Specifically, the geometric illustration of power transmission towers located on moun-
tainous layover areas is analyzed, and theoretical analysis is further conducted in order to
illustrate that the mountainous layover background (i.e., vegetation or soil) clutter interfer-
ence can be effectively suppressed in the proposed single-baseline coherence image/multi-
baseline SAR interferometry-correlated synthesis image. In recent years, deep learning
methods have been widely used in object detection applications. For object detection
applications, the current deep learning methods also include two-stage methods (such as
Region-based CNN (R-CNN), Fast R-CNN, and Faster R-CNN) and one-stage methods
(such as you only look once (YOLO) series and single-shot multibox detector (SSD)) [10–20].
Faster R-CNN and YOLOv7 are newer technologies among two-stage and one-stage ob-
ject detection methods, and they show better comprehensive performance than previous
versions. Consequently, in this paper, two benchmark object detectors, based on Faster
R-CNN [12] and YOLOv7 [14], were used to demonstrate the detection performance of the
proposed method.

The remainder of this paper is organized as follows. The principle of the proposed
method will be elaborated upon in Section 2. The experimental results will be analyzed in
Section 3 in detail. Section 4 presents the conclusion.



Remote Sens. 2023, 15, 3823 3 of 13

2. Methods
2.1. Power Transmission Tower Detection of Traditional Method Using SAR Amplitude Image

For one spaceborne SAR acquisition, let s denote the complex signal value of the space-
borne SAR acquisition. Figure 2a illustrates a geometric diagram of a power transmission
tower located on a mountainous layover area. The layover background (LB) around the
power transmission tower mainly includes vegetation and soil. Observed from Figure 2a,
we have

sLB = slb_1+lb_2+...+lb_n (1)

where lb_i(i = 1, 2, · · · , n) denotes the scattering points at different locations along the
same equal distance to the radar (i.e., layover line) of the mountainous layover background
around the power transmission tower. In traditional object detection applications based
on SAR acquisitions, the SAR amplitude was always used as the feature to be detected.
Generally, |sLB| (where “|·|” denotes the amplitude value), will be relatively large and will
seriously influence the entire geometric structure detection of the tower in the detection
box of the SAR amplitude image. We can define C|s| as

C|s| =
E(|sLB|)

E(|stower|)
> 0 (2)

where E(·) denotes the expectation value that can be estimated using one small spatial
region around the located pixels. C|s| can be quantitatively evaluated for the interference
degree of the mountainous layover background in power transmission tower detection
using a SAR amplitude image. The higher the value of C|s|, the stronger the interference
degree of the mountainous layover background in power transmission tower detection.
The specific values of C|s| can be estimated statistically from the real SAR images. As
analyzed statistically in Section 3.2, the typical value of C|s| is generally focused on the
region of 0.5~2. Figure 2b is the workflow of the traditional power transmission tower
detection method using a SAR amplitude image.
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amplitude image.

2.2. Feature Enhancement Using Single-Baseline SAR Interferometry Coherence Image for Power
Transmission Tower Detection in Mountain Layover Area

Persistent scatterers, like power transmission towers made of metal, can remain in a
stable phase along the temporal dimension. The persistent/stable tower can be modeled
as follows:

stower_x = ssignal_x + snoise_x (3)

where ssignal_x and snoise_x represent the stable signal and noise parts of the xth SAR
acquisition (where x = 1, 2 in this section), respectively. The noise variables are modeled as
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independent, and identically zero-mean complex Gaussian random distributed, with the
following relationships:

ssignal_x = σs_x (4)

E
(
snoise_xs∗noise_x

)
= E

(
|snoise_x|2

)
= σ2

n_x (5)

where “*” indicates complex conjugation. The signal-to-noise ratio (SNR) of the tower is
defined as follows:

SNRtower_x =

∣∣∣ssignal_x

∣∣∣
2

E
(
|snoise_x|2

) =
|σs_x|2
σ2

n_x
(6)

While the scattering values of vegetation and much of the soil surface change—with dif-
ferent soil moisture concentrations in different weather conditions, or due to the other
physical motions caused by a landslide or other event—in mountainous layover back-
ground areas around the power transmission tower, especially the phase, they will change
dramatically along the temporal dimension. The layover background cluster variable can
be modeled as follows:

sLB_x = axejδx (7)

where the amplitude a is Rayleigh distributed, and δ is uniformly distributed over
(−π,π) [21]. sLB_x is independently zero-mean complex Gaussian distributed, with the
following relationship:

E
(
sLB_xs∗LB_x

)
= E

(
|sLB_x|2

)
= σ2

l_x (8)

For two repeat-pass spaceborne SAR acquisitions, the single-baseline interferometry
coherence γ is defined as follows [22,23]:

γ =
|E(s1s∗2)|√

E
(
s1s∗1

)
E
(
s2s∗2

) ,0 ≤ γ ≤ 1 (9)

where γ represents the statistical stability degree along the spatial and time dimensions for
the two SAR acquisitions. s1 and s2, respectively, denote the complex signal values of the
two spaceborne SAR acquisitions. Substituting (3), (4), (5), and (6) into (9), we obtain:

γtower =

∣∣∣E
(
(ssignal_1+snoise_1)

(
s∗signal_2+s∗noise_2

))∣∣∣
√

E
(
(ssignal_1+snoise_1)

(
s∗signal_1+s∗noise_1

))√
E
(
(ssignal_2+snoise_2)

(
s∗signal_2+s∗noise_2

))

=
|σs_1σ∗s_2|√

(|σs_1|2+σ2
n_1)(|σs_2|2+σ2

n_2)
= 1√

(1+1/SNRtower_1)(1+1/SNRtower_2)

(10)

From (10), we can see, the higher SNRtower_1 and SNRtower_2, the higher γtower. Gener-
ally, for a power transmission tower made of metal, which has a strong scattering value,
SNRtower is very high. From the statistical analysis of the real SAR interferometry coherence
image shown in Section 3, we can estimate:

γtower ≈ 1 (11)

Substituting (7) and (8) into (9), considering sLB_1 and sLB_2 are independent of each other,
according to the statistical theory, we have:

γLB =

∣∣E
(
sLB_1s∗LB_2

)∣∣
√

E
(

sLB_1s∗LB_1

)
E
(

sLB_2s∗LB_2

) =
0√

σ2
l_1σ2

l_2

= 0 (12)
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We can define Cγ as follows:

Cγ =
E(γLB)

E(γtower)
= 0 (13)

From (2) and (13), we can theoretically conclude:

Cγ < C|s| (14)

In practical images, γLB is estimated using one small spatial region around the located
pixels. Consequently, E(γLB) and Cγ are approximately, but not strictly, equal to 0. Cγ

can be quantitatively evaluated for the interference degree of the mountainous layover
background in power transmission tower detection using single-baseline SAR interferom-
etry coherence images. Similarly to C|s|, elaborated upon in Section 2.1, and as analyzed
statistically in Section 3.2, from the real SAR images, the typical values of Cγ are generally
focused in the region of 0.15~0.25.

From (14) and the above statistical analysis, compared with the use of SAR amplitude
images, we can see the mean contrast between the mountainous layover background cluster
around a power transmission tower and the power transmission tower itself would be obvi-
ously suppressed by using a single-baseline SAR interferometry coherence image for power
transmission tower detection. Detecting the power transmission towers located at the steep
mountain areas using single-baseline SAR interferometry coherence images demonstrates
better detecting performance than that of detection using SAR amplitude images.

2.3. Feature Enhancement Using Multi-Baseline SAR Interferometry-Correlated Synthesis Image
for Power Transmission Tower Detection in Mountainous Layover Area

For multiple repeat-pass spaceborne SAR acquisitions, the multi-baseline interferometry-
correlated function γF(angle13, angle14, ..., angle1n), with variables angle13, angle14, . . .,
angle1n can be defined as follows:

γF(angle13, angle14, ..., angle1n) =

∣∣∣E(s1s∗2) + E(s1s∗3)e
j∗angle13 + ... + E(s1s∗n)ej∗angle1n

∣∣∣
√

E
(
s1s∗1

)
E
(
s2s∗2

)
+
√

E
(
s1s∗1

)
E
(
s3s∗3

)
+ ... +

√
E
(
s1s∗1

)
E(sns∗n)

(15)

For the power transmission towers, (15) can be rewritten as follows:

γFtower(angle13, angle14, ..., angle1n)

=
|σs_1σ∗s_2+σs_1σ∗s_3ej∗angle13+...+σs_1σ∗s_nej∗angle1n |√

(|σs_1|2+σ2
n_1)(|σs_2|2+σ2

n_2)+
√
(|σs_1|2+σ2

n_1)(|σs_3|2+σ2
n_3)+...+

√
(|σs_1|2+σ2

n_1)(|σs_n |2+σ2
n_n)

(16)

In order to obtain the highest multi-baseline interferometry-correlated function value of the power
transmission tower, we need to optimize the function γFtower(angle13, angle14, ..., angle1n).
Then, we obtain:

(angle13_m, angle14_m, ..., angle1n_m) = argmaxangle13,angle14,...,angle1n(γFtower) (17)

From Figure 3a, we can see that the equation
∣∣σs_1σ∗s_2 + σs_1σ∗s_3ej∗angle13 + ...+ σs_1σ∗s_nej∗angle1n

∣∣
can be at its highest if and only if all of the vector lines (σs_1σ∗s_3, . . ., σs_1σ∗s_n) coincide with
the vector line σs_1σ∗s_2 via rotating the angles (angle13_m, . . ., angle1n_m). As previously
mentioned, γ and γF are estimated using a small spatial region around the located pixels,
such as a 5 × 5-pixel window. Due to the phase stability of the power transmission
tower along the temporal dimension, the SAR interferometry complex values (i.e., s1s∗x,
where x = 2, 3, ..., n) are highly correlated between each other in the k × k (such as 5 × 5)-
pixel window for estimating γ and γF. Thus, angle1n_m can be estimated using the phase
deviation of any pixel between s1s∗2 and s1s∗n in the k × k-pixel window (the other angles,
such as angle13_m, can be estimated similarly). In practical SAR images, considering the
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noise influence in the k × k-pixel window, the pixel which has the highest single-baseline
interferometry coherence value (i.e., γ) is used to estimate angle1n_m, i.e.,

(imax, jmax) = argmaxi,j(γ) (18)

where i and j denote the line number and column number in a k × k-pixel window in the
single-baseline interferometry coherence image. Then, angle1n_m can be estimated with:

ˆangle1n_m = phase( ˆγ12(imax, jmax))− phase( ˆγ1n(imax, jmax)) (19)

where “phase()” indicates the phase of a complex value. “̂” denotes the estimation value.
ˆγ1n(imax, jmax) represents the estimated single-baseline interferometry coherence value of

line imax and column jmax in one k × k-pixel window between the 1st SAR acquisition and
nth SAR acquisition. Finally, when we substitute the estimated ( ˆangle13_m, . . ., ˆangle1n_m)
into (16), we obtain:

γFtower

(
ˆangle13_m, ˆangle14_m, ..., ˆangle1n_m

)

=

∣∣∣σs_1σ∗s_2+σs_1σ∗s_3ej∗ ˆangle13_m+...+σs_1σ∗s_nej∗ ˆangle1n_m
∣∣∣

√
(|σs_1|2+σ2

n_1)(|σs_2|2+σ2
n_2)+

√
(|σs_1|2+σ2

n_1)(|σs_3|2+σ2
n_3)+...+

√
(|σs_1|2+σ2

n_1)(|σs_n |2+σ2
n_n)

≈ |σs_1σ∗s_2|+|σs_1σ∗s_3|+...+|σs_1σ∗s_n|√
(|σs_1|2+σ2

n_1)(|σs_2|2+σ2
n_2)+

√
(|σs_1|2+σ2

n_1)(|σs_3|2+σ2
n_3)+...+

√
(|σs_1|2+σ2

n_1)(|σs_n |2+σ2
n_n)

(20)
As previously mentioned, SNRtower is very high, i.e.,

σ2
n_i � |σs_i|2 (21)

where “�” denotes “much smaller than”. Substituting (21) into (20), we obtain:

γFtower

(
ˆangle13_m, ˆangle14_m, ..., ˆangle1n_m

)
≈ 1 (22)

For layover background cluster, (16) can be rewritten as follows:

γFLB(angle13, angle14, ..., angle1n) =

∣∣∣E(s1s∗2) + E(s1s∗3)e
j∗angle13 + ... + E(s1s∗n)ej∗angle1n

∣∣∣
√

σ2
l_1σ2

l_2 +
√

σ2
l_1σ2

l_3 + .. +
√

σ2
l_1σ2

l_n

(23)

Different from power transmission towers, due to the phase randomness of the layover
background, along the temporal dimension, the SAR interferometry complex values (i.e.,
s1s∗x) are decorrelated between each other in the k × k (such as 5 × 5)-pixel window for
estimating γ and γF. Consequently, when we substitute the ( ˆangle1n_m, . . ., ˆangle1n_m), esti-
mated using (18) and (19), into (23), the vector lines (E(s1s∗3), . . ., E(s1s∗n)) cannot basically
coincide with the vector line E(s1s∗2) via rotating the angles ( ˆangle1n_m, . . ., ˆangle1n_m), thus
obtaining a good coherent superstition result. For different repeat-pass spaceborne SAR
acquisitions,

∣∣Ê
(
sLB_1s∗LB_x

)∣∣ (where x 6= 1) and E
(
sLB_xs∗LB_x

)
basically do not change in

the same layover background area, i.e.,

E
(
sLB_1s∗LB_1

)
= σ2

l_1 ≈ E
(
sLB_xs∗LB_x

)
= σ2

l_x (24)

∣∣Ê
(
sLB_1s∗LB_2

)∣∣ ≈
∣∣Ê
(
sLB_1s∗LB_x

)∣∣ (25)

Substituting (24) and (25) into (23), we obtain:

γF̂LB

(
ˆangle13_m, ˆangle14_m, ..., ˆangle1n_m

)

=

∣∣∣Ê(sLB_1s∗LB_2)+Ê(sLB_1s∗LB_3)ej∗ ˆangle13_m+...+Ê(sLB_1s∗LB_n)ej∗ ˆangle1n_m
∣∣∣

nσ2
l_1

<
n|Ê(sLB_1s∗LB_2)|

nσ2
l_1

= γ̂LB

(26)
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The mean contrast of γF̂ between the mountainous layover background cluster around
a power transmission tower and the power transmission tower itself in a multi-baseline
interferometry-correlated synthesis image is defined as follows:

ĈγF =
E
(
γF̂LB

)

E(γFtower)
<

E(γ̂LB)

E(γtower)
= Ĉγ (27)

The specific values of ĈγF can be estimated statistically from the real SAR images. As
analyzed statistically in Section 3.2 and Figure 4, shown later, the typical values of ĈγF are
generally focused in the range of 0.05~0.08.
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mated using (18) and (19), into (23), the vector lines (E(s1s∗3), . . ., E(s1s∗n)) cannot basically
coincide with the vector line E(s1s∗2) via rotating the angles ( ˆangle1n_m, . . ., ˆangle1n_m), thus
obtaining a good coherent superstition result. For different repeat-pass spaceborne SAR
acquisitions,

∣∣Ê
(
sLB_1s∗LB_x

)∣∣ (where x 6= 1) and E
(
sLB_xs∗LB_x

)
basically do not change in

the same layover background area, i.e.,

E
(
sLB_1s∗LB_1

)
= σ2

l_1 ≈ E
(
sLB_xs∗LB_x

)
= σ2

l_x (24)

∣∣Ê
(
sLB_1s∗LB_2

)∣∣ ≈
∣∣Ê
(
sLB_1s∗LB_x

)∣∣ (25)

Figure 3. (a) The geometric diagram of angle deviation of the signal part between different baseline
SAR interferometry phase; (b) the workflow of the feature enhancement method using multi-baseline
SAR interferometry-correlated synthesis images for power transmission tower detection in a moun-
tainous layover area; and (c) the qualitative effectiveness comparison between the different detected
images after feature enhancement.
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Figure 4. The degree of suppression of mountainous layover background in (a) a SAR am-
plitude image; (b) a single-baseline SAR interferometry coherence image; (c) a multi-baseline
interferometry-correlated synthesis image based on the master image approach; and (d) a multi-
baseline interferometry-correlated synthesis image based on the SB approach.

From (27) and the above statistical analysis, compared with single-baseline SAR
interferometry coherence images, we can see that the mean contrast between mountain-
ous layover background clustering around power transmission towers and the power
transmission tower itself is further suppressed by using multi-baseline SAR interferometry-
correlated synthesis images for power transmission tower detection. Thus, multi-baseline
SAR interferometry-correlated synthesis images can be used to better distinguish the
power transmission tower from the layover background. Namely, detecting the power
transmission towers located in the steep mountainous areas using multi-baseline SAR
interferometry-correlated synthesis images demonstrates better detection performance
than that from using single-baseline SAR interferometry coherence images. As a re-
sult, the workflow of the feature enhancement method and the corresponding qualita-
tive effectiveness of using multi-baseline SAR interferometry-correlated synthesis im-
ages for power transmission tower detection in mountainous layover areas are shown in
Figures 3b and 3c, respectively.

The specific steps to this method are summarized as follows:

Step 1: Compute the single-baseline SAR interferometry coherence value (i.e., γ) using (9);
Step 2: In the single-baseline SAR interferometry coherence image, for every k × k-pixel
window, calculate the pixel line and column number which has the highest single-baseline
interferometry coherence value using (18);
Step 3: For every k × k-pixel window, estimate the corresponding ( ˆangle13_m, . . ., ˆangle1n_m)
using (19);
Step 4: Substitute the estimated ( ˆangle13_m, . . ., ˆangle1n_m) into (15), obtain the final es-

timated γF̂
(

ˆangle13_m, ˆangle14_m, ..., ˆangle1n_m

)
, i.e., multi-baseline SAR interferometry-

correlated synthesis image generated using the proposed method;
Step 5: Use the benchmark object detectors, e.g., Faster R-CNN and YOLO, in order to
detect the power transmission tower in the generated image.

Actually, in (15), γF is defined when s1 is used as the master SAR acquisition for
interferometry correlation with all the other SAR acquisitions (i.e., sx, when x 6= 1). We can
name the generated image using this approach as “multi-baseline interferometry-correlated
synthesis image based on master image approach”. In order to investigate the influence
of the baseline lengths of the SAR acquisitions further, we can redefine the multi-baseline
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interferometry-correlated function γF by selecting different baseline interferometry pair
combinations, as follows:

γF
(

angle23, angle34, ..., angle(n−1)n

)
=

∣∣∣E(s1s∗2) + E(s2s∗3)e
j∗angle23 + ... + E(sn−1s∗n)e

j∗angle(n−1)n
∣∣∣

√
E
(
s1s∗1

)
E
(
s2s∗2

)
+
√

E
(
s2s∗2

)
E
(
s3s∗3

)
+ ... +

√
E
(
sn−1s∗n−1

)
E(sns∗n)

(28)

The shorter the baseline of two repeat-pass spaceborne SAR acquisitions, the lower the
decorrelation of SAR interferometry [3]. Consequently, in (28), we can define γF by selecting
small baseline (SB) subsets as interferometry pair combinations. We name this approach
“multi-baseline interferometry-correlated synthesis image based on SB approach”. Similar
to the generation method of multi-baseline interferometry-correlated synthesis images
based on the master image approach, the multi-baseline interferometry-correlated synthesis
image based on the SB approach can also be obtained.

3. Results and Discussions
3.1. Datasets

In order to verify the detection performance of the method proposed in this paper,
12 repeat-pass TerraSAR-X staring spotlight mode acquisitions, taken from 23 April 2016 to
2 September 2016 in Mao County, Sichuan province, China, were used in this experiment.
The baselines of different repeat-pass SAR acquisitions relative to the master image acquired
on 23 April 2016 are presented in Table 1. The symbol “− “ on the baseline in Table 1 means
that the SAR acquisition of the corresponding date is on the left side of the master image
acquired on 23 April 2016. Otherwise, it is on the right side of the master image acquired
on 23 April 2016. The SAR interferometry pair combinations of the SB case, and the
corresponding baselines, are shown in Table 2. The resolution of these SAR data is 0.4547 m
(Range direction) × 0.1685 m (Azimuth direction). The look angle of satellite is 40◦. The
pass/track direction is along the ascending path. In order to filter the noise effectively,
multi-look preprocessing was used for the SAR data. The look was set to 5.

Table 1. The baselines of different repeat-pass SAR acquisitions relative to the master image acquired
on 23 April 2016.

SAR Acquisition
Date

(Year/Month/Day)

23
April
2016

4 May
2016

15 May
2016

26 May
2016

6 June
2016

17 June
2016

28 June
2016

9 July
2016

20 July
2016

31 July
2016

22
August

2016

2
September

2016

Baseline (meters) 0 −6.12 −139.86 −113.11 163.77 56.74 −40.74 −23.10 153.81 144.40 −81.12 50.64

Table 2. The SAR interferometry pair combinations of the SB case.

SAR Interferometry Pair
Combinations of SB Case

(Year/Month/Day)
15 May 2016 and

26 May 2016
26 May 2016 and
22 August 2016

22 August 2016
and

28 June 2016
28 June 2016 and

9 July 2016
9 July 2016 and

4 May 2016
4 May 2016 and

23 April 2016

Baseline (meters) 26.75 31.99 40.38 17.64 16.98 6.12

SAR Interferometry Pair
Combinations of SB Case

(Year/Month/Day)
23 April 2016 and
2 September 2016

2 September 2016
and 17 June 2016

17 June 2016 and
31 July 2016

31 July 2016 and
20 July 2016

20 July 2016 and
6 June 2016

Baseline (meters) 50.64 6.10 87.66 9.39 9.96

Considering that the inner geometric structure of power transmission towers could
be clearly seen in the very high-resolution SAR image, such as in the TerraSAR-X staring
spotlight mode data used in this paper, two benchmark object detectors, i.e., Faster R-
CNN and YOLOv7, were adopted for learning the inner geometric structure of the tower.
Particularly, the DL toolbox in Matlab version 2021a was used to implement these two
algorithms using a PC with Intel single Core i7 CPU, NVIDIA RTX-3090 GPU (24 GB video
memory), and 128 GB RAM. Specifically, the Faster R-CNN object detector was trained
using the Matlab toolbox function, ‘trainFasterRCNNObjectDetector’, in which the input
size, the number of anchor boxes, and the feature extraction network were 400 × 400, 3,
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and ResNet50 [24], respectively. For the YOLOv7 network architecture setting, the input
size and the number of anchor boxes were 400 × 400 and 9, respectively. For both of these
detectors, the initial learning rate of the network, the momentum, the minimum batch size,
and the maximum epochs were set to 1 × 10−3, 0.9, 2, and 100, respectively.

The power transmission tower and background training samples were cropped manu-
ally from part of the SAR interferometric coherence image/multi-baseline interferometry-
correlated synthesis image or amplitude image. Then, the cropped samples were syn-
thesized together to generate patches with sizes of 400 × 400 pixels per patch. In patch
generation, for the same tower target, the background samples around the tower could
be changed and increased via geometric transformation, such as translation motion. Fi-
nally, after data augmentation based on the geometric transformation of the background
samples, the training data, with 350 patches, were generated and fed into the training
network. After obtaining the object detector, the entire large SAR single-baseline/multi-
baseline interferometric coherence image or SAR amplitude image, with dimensions of
3674 × 7890 pixels (which could be approximately regarded as 9 × 20 = 180 patches, with
a size of 400 × 400 pixels per patch), was used for testing.

3.2. Expermental Results and Analysis

From Figure 4, we can statistically analyze the degree of quantitative suppression of
the mountainous layover background in SAR amplitude images and single-baseline/multi-
baseline SAR interferometry coherence images. The typical values of C|s|, Cγ and ĈγF are
generally focused in the regions of 0.5~2, 0.15~0.25 and 0.05~0.08, respectively. The detec-
tion results of power transmission towers in the entire SAR single-baseline interferometric
coherence image, multi-baseline interferometry-correlated synthesis image, and the SAR
amplitude image are shown in Figure 5, in which the yellow boxes, red boxes, and green
boxes denote the true detections, the false detections, and the missing detections, respec-
tively. In order to quantitatively evaluate the detection performance of the obtained power
transmission tower detector, the target detection probability, false detection probability,
and F1 score [20] are adopted as follows:

Pd =
Ntd

Nground_truth
, Pf =

N f d

Ntotal_target
, F1 = 2×

Pd ×
(

1− Pf

)

Pd +
(

1− Pf

) (29)

where Ntd, Nground_truth, N f d, and Ntotal_target denote the number of true detections, the
total number of ground truths, the number of false detections, and the total number of
detections, respectively. Considering the tradeoff between Pd (target detection probability)
and Pf (false alarm probability), F1 can be used to evaluate the comprehensive performance
of the object detector. The quantitative detection performance of Figure 5 is presented
in Table 3.

Table 3. Quantitative detection performance.

Benchmark Detector Input Image Pd Pf F1 Score

Faster R-CNN

SAR amplitude image [7] 33.3% 41.7% 42.4%
Single-baseline SAR interferometry coherence image 52.4% 0% 68.8% (↑26.4%)
Multi-baseline interferometry-correlated synthesis
Image based on master image approach 81% 5.6% 87.2% (↑44.8%)

Multi-baseline interferometry-correlated synthesis
Image based on SB approach 81% 5.6% 87.2% (↑44.8%)

YOLOv7

SAR amplitude image [7] 23.8% 37.5% 34.5%
Single-baseline SAR interferometry coherence image 57.1% 25% 64.8% (↑30.3%)
Multi-baseline interferometry-correlated synthesis
Image based on master image approach 76.2% 20% 78.1% (↑43.6%)

Multi-baseline interferometry-correlated synthesis
Image based on SB approach 81% 19.1% 81% (↑46.5%)
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ing YOLOv7 technique; (c) power transmission tower detection in single-baseline SAR interferom-
etry coherence image using Faster R-CNN technique; (d) power transmission tower detection in 
single-baseline SAR interferometry coherence image using YOLOv7 technique; (e) power transmis-
sion tower detection in multi-baseline interferometry-correlated synthesis image based on the mas-
ter image approach using Faster R-CNN technique; (f) power transmission tower detection in multi-
baseline interferometry-correlated synthesis image based on the master image approach using 
YOLOv7 technique; (g) power transmission tower detection in multi-baseline interferometry-corre-
lated synthesis image based on the SB approach using Faster R-CNN technique; and (h) power 
transmission tower detection in multi-baseline interferometry-correlated synthesis image based on 
the SB approach using YOLOv7 technique. The yellow boxes, red boxes, and green boxes denote the 
true detections, the false detections, and the missing detections, respectively. 

As can be observed from Figure 5 and Table 3, for power transmission tower detec-
tion, compared with the traditional method using the SAR amplitude image, the detection 
performance has been improved by using the single-baseline interferometric coherence 
image/multi-baseline interferometry-correlated synthesis image, no matter which detec-
tor is used. Also, multi-baseline interferometry-correlated synthesis images (including 
both those based on the master image-based approach and those based on the SB-based 

Figure 5. Detection/testing results of power transmission towers in the entire SAR image.
(a) Traditional power transmission tower detection method in SAR amplitude image using Faster
R-CNN technique; (b) traditional power transmission tower detection method in SAR amplitude
image using YOLOv7 technique; (c) power transmission tower detection in single-baseline SAR
interferometry coherence image using Faster R-CNN technique; (d) power transmission tower de-
tection in single-baseline SAR interferometry coherence image using YOLOv7 technique; (e) power
transmission tower detection in multi-baseline interferometry-correlated synthesis image based on
the master image approach using Faster R-CNN technique; (f) power transmission tower detection
in multi-baseline interferometry-correlated synthesis image based on the master image approach
using YOLOv7 technique; (g) power transmission tower detection in multi-baseline interferometry-
correlated synthesis image based on the SB approach using Faster R-CNN technique; and (h) power
transmission tower detection in multi-baseline interferometry-correlated synthesis image based on
the SB approach using YOLOv7 technique. The yellow boxes, red boxes, and green boxes denote the
true detections, the false detections, and the missing detections, respectively.

As can be observed from Figure 5 and Table 3, for power transmission tower detection,
compared with the traditional method using the SAR amplitude image, the detection
performance has been improved by using the single-baseline interferometric coherence
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image/multi-baseline interferometry-correlated synthesis image, no matter which detector
is used. Also, multi-baseline interferometry-correlated synthesis images (including both
those based on the master image-based approach and those based on the SB-based ap-
proach) demonstrate better detection performance than single-baseline SAR interferometry
coherence images. The detection performance of multi-baseline interferometry-correlated
synthesis image based on the master image approach and the SB-based approach are ba-
sically the same. When Faster R-CNN is adopted as the object detector, compared with
the traditional method using the SAR amplitude image, the target detection probability
when using the multi-baseline interferometry-correlated synthesis image increases by more
than 47.7%, while false detection probability decreases by more than 36.1%. In terms of
the F1 score, the performance improvement is at least 44.8%. Similarly, when YOLOv7
is adopted, compared with the SAR amplitude image, the target detection probability
when using the multi-baseline interferometry-correlated synthesis image increases by more
than 52.4%, while false detection probability decreases by more than 17.5%. The final
F1 score increases by at least 43.6%. The SAR amplitude images are contaminated by
strong layover background cluster interference in mountainous areas, which significantly
influences the detection performance of power transmission towers. However, by using
the multi-baseline interferometry-correlated synthesis image, generated as proposed in this
paper, such layover background cluster interference can be greatly suppressed; a more than
43.6% of improvement can be achieved, as shown in Table 3.

4. Conclusions

In the application of power transmission tower detection in mountainous areas, single-
baseline SAR interferometry coherence images have the effectiveness of feature enhance-
ment compared to SAR amplitude images. Moreover, the proposed multi-baseline SAR
interferometry-correlated synthesis images (including both those based on the master
image-based approach and those based on the SB-based approach) demonstrate better fea-
ture enhancement than that of using single-baseline SAR interferometry coherence images
for power transmission tower detection in a mountainous layover area. Consequently,
for power transmission tower detection in mountainous layover areas, the method of
using multi-baseline SAR interferometry-correlated synthesis images demonstrates better
detection performance than the traditional method of using SAR amplitude images.
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