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Abstract: Forest fires pose significant hazards to ecological environments and economic society.
The detection of forest fire smoke can provide crucial information for the suppression of early fires.
Previous detection models based on deep learning have been limited in detecting small smoke and
smoke with smoke-like interference. In this paper, we propose a lightweight model for forest fire
smoke detection that is suitable for UAVs. Firstly, a smoke dataset is created from a combination
of forest smoke photos obtained through web crawling and enhanced photos generated by using
the method of synthesizing smoke. Secondly, the GSELAN and GSSPPFCSPC modules are built
based on Ghost Shuffle Convolution (GSConv), which efficiently reduces the number of parameters
in the model and accelerates its convergence speed. Next, to address the problem of indistinguishable
feature boundaries between clouds and smoke, we integrate coordinate attention (CA) into the
YOLO feature extraction network to strengthen the extraction of smoke features and attenuate the
background information. Additionally, we use Content-Aware Reassembly of FEatures (CARAFE)
upsampling to expand the receptive field in the feature fusion network and fully exploit the semantic
information. Finally, we adopt SCYLLA-Intersection over Union (SIoU) loss as a replacement for
the original loss function in the prediction phase. This substitution leads to improved convergence
efficiency and faster convergence. The experimental results demonstrate that the LMDFS model
proposed for smoke detection achieves an accuracy of 80.2% with a 5.9% improvement compared
to the baseline and a high number of Frames Per Second (FPS)—63.4. The model also reduces
the parameter count by 14% and Giga FLoating-point Operations Per second (GFLOPs) by 6%.
These results suggest that the proposed model can achieve a high accuracy while requiring fewer
computational resources, making it a promising approach for practical deployment in applications
for detecting smoke.

Keywords: deep learning; forest fire smoke detection; Ghost Shuffle Convolution; coordinate attention;
CARAFE; SIoU; Yolov7

1. Introduction

Forests, as one of the most valuable resources in nature, play a crucial role in ecological
functions, such as preventing wind erosion and conserving water and soil. On the other
hand, forests also have enormous economic value for humans. Forest fires often lead to
severe consequences such as soil erosion, air pollution, and threats to animal survival,
causing significant ecological and economic damage [1]. Therefore, the early detection
and control of forest fires are crucial. Smoke, as an important precursor to forest fires,
can be effectively monitored for their detection and control, which is significant for their
suppression [2].

The detection of forest smoke has gone through various developmental stages, in-
cluding manual inspections, instrument-based detection, and detection based on computer
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vision. Manual inspections require a high level of manpower and material resources
and have a low efficiency. Moreover, detection results often fail to meet expectations.
Instrument-based detection mainly depends on various detectors and sensors from the past
two decades. However, instruments are prone to interference from small particles, such
as dust in the environment [3]. Additionally, they only trigger an alarm when the concen-
tration of smoke reaches a threshold. Due to the complexity of outdoor air flow and other
environmental factors, a fire may become difficult to control by the time the alarm goes
off. Therefore, this method has gradually been abandoned. In the phase of detection based
on computer vision, pattern recognition is used for feature extraction and classification
to achieve the identification of forest smoke [4]. Gubbi et al. [5] used wavelets to extract
the features of smoke and then classified smoke using a support vector machine (SVM). H.
Cruz et al. [6] proposed a new color detection index for detecting the colors of flames and
smoke. This method enhances the color by normalizing the RGB channel color and mainly
combines the features of the motion and color of smoke to obtain the regions of flames and
smoke through thresholding. Prema et al. [7] used a comprehensive approach to detect
smoke, which included the YUV color space and wavelet energy, taking the relationship
and contrast of smoke into account. However, due to the limitations of human experience,
it is subject to various forest environments. In summary, although some progress has been
made compared to instrument-based detection, traditional image detection methods have
difficulty extracting the intrinsic features of smoke. The time required for detection is also
too long, and the rate of false alarms is high, with poor generalization ability.

In recent years, with the rapid development of artificial intelligence, drones with
deep learning have injected strong development momentum into detection via computer
vision [8]. Due to their high accuracy, real-time performance, strong robustness, and low
cost, deep-learning-based detection algorithms of smoke are widely applicable in various
complex scenarios and hold great research value. Convolutional neural networks (CNNs)
can achieve the high-precision recognition of the data of a two-dimensional image, and
researchers have attempted to apply CNNs in the detection of smoke. Salman Khan et al. [9]
comprehensively studied various detection algorithms and proved that the CNN has a
high accuracy in smoke detection tasks. Additionally, the detection of smoke is often prone
to errors due to the complexity of the background. In outdoor environments, such as
forests, interferences such as clouds in the sky, reflections in lakes, and changes in lighting
can easily cause false alarms [10]. Therefore, many scholars have proposed algorithms
for improvement. Xuehui Wu et al. [11] used algorithms of background subtraction and
achieved good results in the detection of dynamic smoke. The rate of false detection for
classifying clouds reflected from sunlight was reduced, but the rate of false detection for
newly formed objects remained high. Yin et al. [12] adjusted the parameters according
to changes in the actual environment and thus could accurately detect smoke in different
conditions. Zhang, Q. et al. [13] constructed a simulated smoke dataset and trained it
using the proposed deep convolutional generative adversarial network. They effectively
monitored smoke areas and reduced false alarms, but their method was demanding in terms
of hardware and difficult to widely deploy to meet real-time requirements. Lightweight
models are widely used in practical tasks by virtue of their lower energy consumption
and faster inference speeds. Guo, Y. et al. [14] used the constructed S-Mobilenet module
to realize the lightweight YOLO model for the problem of the real-time detection of ship
targets of a smaller size and evaluated its effectiveness on hardware devices. However,
there is still the problem of weak applicability in real tasks. Li, W. et al. [15] developed the
lightweight WearNet based on a novel convolutional block, which can be deployed with
embedded devices for the detection of scratches. Although all of the above achieved good
results, there are still problems in existing research on smoke detection. Sheng, D. et al. [16]
used a CNN network and linear iterative clustering (SLIC) for smoke image segmentation
and applied density-based spatial clustering of applications with noise (DBSCAN), which
can achieve faster detection. However, their proposed method has a low FPR rate, which
indicates high model sensitivity and needs further improvement.



Remote Sens. 2023, 15, 3790 3 of 23

In summary, the deep-learning-based detection algorithms of smoke mentioned above
have achieved considerable success, but there are three problems when it comes to actually
using edge equipment for detection. Firstly, models of a large network have a huge number
of parameters and high hardware requirements, making it difficult to deploy them for
practical tasks and meet real-time requirements for the detection of smoke. Secondly,
existing lightweight models can detect smoke more quickly under the same conditions,
but their accuracy of detection is often far lower than that of models with a large network.
For detecting things with thin features, such as smoke, the fusion of the features is often
incomplete, which leads to a lower accuracy of detection. Therefore, there is the problem
of a performance imbalance between the accuracy and speed of detection. Thirdly, so-
called small smoke is a type of smoke produced in the early stages of a forest fire and is
characterized by a small volume and thinness. Thin and small smoke cannot effectively
extract information due to the small number of features it can extract. It is more difficult to
detect than typical smoke that has already taken shape and is susceptible to disturbances,
such as lens impurities. This leads to the problem of UAVs obtaining noisy images during
detection missions, which can cause missed detections [17] as well as false detections
caused by interfering objects, such as cloud cover [18]. These make the detection of forest
smoke a major challenge.

In order to solve the problems above, a lightweight model for detecting forest fire
smoke based on YOLOv7 [19] is proposed in this paper. (1) To address the problem of
the original model being large in size and difficult to deploy in real edge devices, we
use GSConv to replace the standard convolution in the neck layer and construct fast
pyramid pooling modules by using GSELAN and GSSPPFCSPC, based on GSConv. This
can speed up the model convergence and fuse the features of smoke at a faster rate with
less computation when dealing with images of smoke. (2) Considering the blurred feature
boundaries of smoke-like objects and smoke, it is very easy to confuse the detection of
clouds and that of smoke from forest fires in a forest environment. There is the problem of
low interclass heterogeneity, and the foreground and background of images of smoke are
difficult to effectively distinguish, which can cause false detection. In response, we embed
multilayer coordinate attention in the backbone network, which improves its ability to
distinguish between the smoke and background by effectively fusing the channel relations
and location information, focusing on the location of interest to the network, suppressing
useless information, and improving the separation of clouds and smoke. (3) Thin and fine
smoke cannot carry sufficient information due to its inconspicuous features, which also
weakens the accuracy of smoke detection. Moreover, the use of the CARAFE upsampling
operator allows us to extract information more fully from the image by expanding the
sensory fields in order to effectively improve the detection accuracy of small targets.
The SIoU loss function is used to improve the speed and accuracy of inference during
model training.

2. Materials and Methods for Experiments
2.1. YOLOv7

YOLOv7 is the latest version of the series of YOLO [20–23]. Compared to the previous
YOLOv5, it surpasses all known detectors in terms of both speed and accuracy. This is
because it uses faster convolution operations and a smaller model, which allows it to
achieve higher accuracy and faster speed at the same computational cost when detecting.

The model of YOLOv7 mainly consists of four main parts: input, backbone, neck, and
head. The backbone is mainly composed of multiple modules, including CBS, ELAN [24],
and MPConv, and is used for feature extraction in image analyses. ELAN enhances feature
aggregation by connecting the outputs of multiple layers of convolutions. For neck, the
traditional FPN + PAN [25,26] structure is still used to achieve the integration of high-
resolution information and high-level semantic information through the fusion of high-level
features and underlying features. The head utilizes a reparameterization structure, Rep,



Remote Sens. 2023, 15, 3790 4 of 23

which enhances the representational capability when training and facilitates faster inference
when testing.

The official network framework based on YOLOv7 contains YOLOv7, YOLOv7-d6, and
YOLOv7-e6, etc., which are different from each other. We choose the original framework of
YOLOv7. The structure of the network model of YOLOv7 is shown in Figure 1. Considering
the problem of huge number of parameters in YOLOv7, we modified the depth multiple of
YOLOv7 to 0.33 and the width multiple to 0.5, following the practice of YOLOv5, in order
to maintain the original inference effect as much as possible while reducing the number of
parameters in the model.
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2.2. Improvements to Lightweighting
2.2.1. Ghost Shuffle Convolution

Standard convolution (SConv) applies different convolutional kernels to multiple
channels simultaneously, leading to an increase in the number of parameters required
and a decrease in the speed of network as the network tries to extract more features.
Conversely, depth-wise separable convolution (DWConv) stitches the outputs of separate
depth-wise convolutions by using a 1 × 1 convolution kernel after convolution of the
channels, allowing it to save a significant number of parameters as the features to be
extracted increase, resulting in faster inference. However, as a trade-off, DWConv also
leads to the loss of some semantic information during operation, which reduces accuracy
of the model.

The process of GSConv [27] is shown in Figure 2, which combines the advantages
of standard convolution and depth-separable convolution. It uses SConv and DWConv
together when handling the input images of forest fire smoke, and it does not completely
cut off the links between channels as DWConv does, but tries to preserve the links as much
as possible in order to ensure the high accuracy of the model. The results are combined and
shuffled to enhance the nonlinear representation. For smoke targets that change with fire
and environmental conditions, these nonlinear features can better represent the processes
of deformation and expansion of smoke, providing more information for model to learn
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and thus enhancing its generalization ability and robustness. The mathematical expression
is calculated as follows:

Xc = σ(bn(Conv2d(Xinput))) (1)

Xout = δ(Xc ⊕ DWConv(Xc)) (2)

where Conv2d represents the two-dimensional convolution of the input image Xinput, bn
represents the normalization operation, σ represents the activation function, ⊕ represents
the concating of the two kinds of convolution, and the final δ represents shuffle, aiming to
obtain the final output Xout by shuffling this result.
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However, if GSConv is used in all phases of the model, the number of layers of the
model will increase significantly, which will increase the inference time for fast detection of
smoke targets. Therefore, it would be better to use GSConv only in a single stage. In the
network framework of YOLOv7, for the backbone layer, which requires a large amount
of convolution to extract enough smoke features, a great degree of correlation between
the channels that the standard convolution has is necessary. Therefore, we only perform
convolutional operation replacement in the neck layer. This will reduce the redundant and
repetitive information, thus reducing the computational cost and achieving a lightweight
model. In this paper, to further exploit the role of GSConv, we make a further improvement
in ELAN by using GSELAN module to replace the W-ELAN block in the neck layer. The
constructed GSELAN structure is shown in Figure 3.
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By replacing the standard convolution with GSConv, which aims to reduce the compu-
tational complexity and the number of parameters, a larger speedup can be obtained during
the actual run. The input smoke image is convolved by successive GSConv convolutions,
and each shuffle operation is able to effectively fuse the smoke feature maps of different
channels with a reduced number of parameters, thus approximating the result of the stan-
dard convolution. This allows the final output smoke image to take advantage of DSC
while mitigating the negative impact of DSC deficiencies on the model. In addition, we
add identity mapping [28] to the module, which can effectively avoid information loss of
smoke features during transmission and enhance the robustness of the model by mapping
the input directly to the output.

In addition, in the original YOLOv7, we note that it uses the SPPCSPC module to
expand the perceptual field of the model by combining a Maxpool branch and a convolution
branch, which has a better feature fusion effect compared with that of SPPF when dealing
with targets of different scales, but introduces a large number of parameters and a large
amount of computation. In this paper, we borrow the idea of SPPF and improve the SPP [29]
branch in SPPFCSPC to be similar to the SPPF method by replacing the original parallel
pooling with successive max-pooling operations, which can eliminate more redundant
information and noise in the smoke image and make the obtained feature maps of the
smoke image have better coherence. Its computational speed is further optimized while
preventing overfitting. In addition, after the feature extraction of backbone layer, the
attribute information and multidimensional channel information of the target image are
obtained. We replace the convolution of SPPFCSPC with GSConv, which not only can
reduce the cost of computation, but also can preserve the connection between each channel
as much as possible. The improved GSSPPFCSPC module is shown in Figure 4.
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2.2.2. Improvements in the Activation Function

In YOLOv7, the activation function SiLU is still used. We aim to obtain a lightweight
model for detection of smoke that can maintain high accuracy, and activation functions are
crucial for the computational accuracy and speed of the model. The Hardswish function is
defined as shown in Equation (2), and it has the characteristics of having no upper bound,
having a lower bound, smoothness, and non-monotonicity, which makes the processing of
the detection for activation layer more diverse. The advantages of the Hardswish function
are two-fold: firstly, it uses linear interpolation and has good numerical stability and fast
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calculation speed, which help to make the expression of the model for smoke detection
more diverse. Secondly, the Hardswish function has a simple derivation and can effectively
prevent the phenomenon of neurons being difficult to activate by any data due to gradients
approaching zero during the training of the model for smoke detection.

Hardswish(x) =


0, if x ≤ −3,
x(x+3)

6 , if − 3 < x < 3,
x, if x ≥ 3.

(3)

2.3. Improvements in Accuracy
2.3.1. Coordinate Attention

The use of attention mechanism in the field of image recognition can effectively help
the network to better address the attention preference of the network and focus on the
region of its interest. In this paper, we try to embed the coordinate attention (CA) [30]
mechanism, which is able to obtain a better description of the smoke target by re-modeling
both channel and spatial dimensions to capture both orientation perception and location
information simultaneously. The flowchart is shown below (Figure 5).
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When the feature matrix X is input, the overall flow is shown below:

(1) Firstly, shift adaptive averaging pooling is performed simultaneously along the horizon-
tal and vertical directions, respectively, and its mathematical expression is as follows:

zh
c (h) =

1
W ∑

0≤i<≤W
xc(h, i) (4)

zw
c (w) =

1
H ∑

0≤j<≤H
xc(j, w) (5)

The above expression represents two averaging pooling operations using two one-
dimensional global pooling kernels (h, 1) and (1, w) for the image xc(h, w) of the cth channel
of the input along the vertical and horizontal directions, respectively, to obtain the pooling
results zh

c (h) and zw
c (w) in both directions.

(2) The two outputs obtained above are then stitched together and 1 × 1 convolved, and
the flow is shown below:

f = δ(C1[zh; zw]) (6)

where C1 represents the 1 × 1 convolution, δ represents the nonlinear activation
function, and f represents the result of aggregated coding from the two directions of
feature vector.
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(3) Next, f is expanded along two dimensions, h and w, to obtain the feature attention
maps f h and f w in two directions, and convolution operations are performed to obtain
gh and gw, respectively.

gh = σ(Ch( f h)) (7)

gw = σ(Cw( f w)) (8)

where Ch and Cw represent different convolution operations in two directions, respec-
tively, and σ is activation function’s sigmoid. Thus, the attention weights of the two
directions are obtained.

(4) Finally, the attention weights and the original feature maps are multiplied and
weighted to obtain the final output as follows:

yout = x× gh × gw (9)

where x is the graph of the original special diagnosis, gh represents the attentional
weight along the direction h, and gw represents the attentional weight along the
direction w.

For the thin and small smoke images, it is difficult to effectively extract information,
so we add a multi-layer CA mechanism to the backbone network. For each input image,
the feature weight of the h direction and the feature weight of the w direction are compared
with the original. The weighted fusion of images strengthens the focus on the region of
interest, and an output image is obtained focused on the smoke target to enhance the
model’s ability to capture and identify smoke. Meanwhile, if the model’s attention is
limited to some local areas, it will miss the grasp of the overall features of the smoke, thus
increasing the rate of false alarms. The introduction of CA can focus the model’s attention
on the key feature areas, so that the network can grasp the overall features of the smoke
from a global perspective, thus improving the recognition accuracy of the model.

2.3.2. Content-Aware Reassembly of Features

In YOLOv7, nearest-neighbor interpolation upsampling is used, which is widely
applied due to its simplicity and low computational cost. However, nearest-neighbor
interpolation only considers adjacent pixels, resulting in the failure to fully utilize the
semantic information of the feature map. CARAFE [31], on the other hand, effectively
extracts semantic information from the feature map and expands the receptive field under
the premise of lightweight operation. CARAFE consists of the upsampling prediction
module and the feature recombination module, as shown in Figure 6. For the upsampling
prediction module, the first step is to process the input image with size H ×W × C. When
the upsampling factor is set to σ, a 1× 1 convolutional layer is applied to compress the
image channel. Then, convolutional kernels of size kup × kup are applied for convolutional
operations, expanding the number of channels to σ2 × k2

up for content encoding. Finally,
the output is normalized to reduce the number of parameters. In the feature recombination
module, point-wise multiplication is performed on corresponding positions of the output
feature map obtained through the above process and the feature map obtained through
traditional upsampling, resulting in the final output value.

Smoke images have characteristics such as thinness and limited information. The up-
sampling mechanism of CARAFE can be utilized to interpolate low-resolution feature maps
using learnable interpolation weights, reducing information loss, and restoring details.
Additionally, CARAFE introduces a context-adaptive information fusion mechanism that
dynamically adjusts interpolation weights based on local contextual information, enabling
it to better capture fine features of smoke and reduce errors. In this paper, we replace the
original upsampling method with lightweight CARAFE to obtain a better feature map
of smoke.
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2.4. SCYLLA-Intersection over Union

In YOLOv7, CIoU loss [32] is still used to compute the localization loss function, which
was also utilized in YOLOv5, but the inherent properties of smoke require issue of mis-
matched angles between the predicted and ground-truth bounding boxes to be considered,
which was not addressed in CIoU. SIoU [29] addresses this problem by introducing the
vector angle between the predicted and ground-truth bounding boxes, fully taking into
account the direction between them in the process of smoke detection, thereby speeding up
the convergence rate of the model. The redefined loss function consists of four parts: the
angle cost (which measures the difference in angles between two objects or shapes), distance
cost (which evaluates the spatial separation or distance between two objects), shape cost
(which assesses the dissimilarity in shape characteristics between two objects), and IoU cost
(which calculates the intersection over union (IoU) value, representing the overlapping area
between two objects divided by their combined area). The specific formulas are as follows.

(1) Angle cost:

Λ = 1− 2× sin2(arcsin(
ch
σ
)− π

4
) (10)

where ch
σ

= sin(α) (11)

σ =
√
(bgt

cx − bcx)
2+(bgt

cy − bcy)
2 (12)

where α is the angle between side σ and side cw; cw, ch, and σ are the three sides of the
right triangle in Figure 7; (bgt

cx , bgt
cy) are the center point coordinates of the ground-truth

box; and (bcx , bcy) are the center point coordinates of the predicted box.

(2) Distance cost:
∆ = ∑

t=x,y
(1− e−(2−Λ) × ρt) (13)

where

ρx= (
bgt

cx − bcx

cw
)2, ρy= (

bgt
cy − bcx

cw
)2 (14)
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The incorporation of angle cost and distance cost results in larger loss values when
there is a greater difference between the angles of the two boxes, promoting a faster
convergence rate.

(3) Shape cost:

Ω = ∑
t=w,h

(1− e−wt)
θ
= (1 − e−ww)θ+(1− e−wh)θ (15)

where

ww =
|w−wgt|

max(w,wgt)
, hh =

∣∣h−hgt∣∣
max(h, hgt)

(16)

θ controls the degree of attention paid to the shape cost, where wgt and hgt are the
width and height of the ground-truth box, and w and h are the width and height of the
predicted box. In this paper, following the recommendation of our original paper, θ is set
to 4, in order to have a more reasonable focus on the shape cost.

(4) IoU cost:

IoU =

∣∣∣B∩ BGT
∣∣∣∣∣∣B∪ BGT
∣∣∣ (17)

where B ∩ BGT represents the intersection between the predicted and ground-truth
boxes, and B∪ BGT represents their union.

The final loss function is as follows:

SIoU_Loss = 1− IoU+
∆ + Ω

2
(18)

2.5. A Lightweight Model for Detecting Forest Fire Smoke Based on YOLOv7

In summary, the overall structure of the modified YOLOv7 used in this paper is shown
in Figure 8, and the changes are framed by the solid green line.
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3. Methods for Evaluation
3.1. The Dataset

It is well known that in the field of deep learning, the quality of the training set is
directly related to the performance of the detection results. After extensive information
search and inquiry, we learned that there are no standardized and reasonable datasets of
smoke in forest environment on the web. Therefore, a unique dataset is essential. In this
thesis, firstly, we browsed photos of forest fire smoke from drones on the internet with
a high point of view. Since the oblique view is the angle at which forest smoke drones
usually perform detection and identify it faster, our dataset consists mainly of forest fire
smoke images in oblique view, supplemented by a blend of some nadir images. These
images comprise typical forest fire smoke in a forest background, thin and small smoke
photographed from a distance, and smoke with disturbances such as clouds. In addition,
we note that the use of synthetic smoke in [33] can increase the diversity of training data
and improve the robustness of the model. Therefore, we used the method of synthesizing
smoke to construct the dataset by adding some synthetic images. By copying smoke layers
into different background environments or moving smoke layers to different locations in
the same image, we can make full use of the limited background environment and smoke
image resources to create more scenarios of forest fire smoke and thus effectively improve
the generalization ability of the model.

Eventually more than 4019 images were grabbed from the web and some of them were
synthesized using synthetic smoke. A total of 5311 images were integrated as the dataset
for this study. Some of the images from the dataset are shown in Figure 9 below. It contains
a variety of smoke images from the viewpoint of UAVs, such as typical forest fire smoke,
small smoke, smoke with distractors, and synthetic smoke, which is mentioned above. The
classification of various types of images with different viewpoints is shown in Table 1.
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Table 1. Details of the dataset.

Taken From an
Overhead Perspective Taken at an Oblique Angle

Normal smoke Normal smoke Small smoke Smoke with smoke-like interference Synthetic smoke
377 1017 968 1657 1292

In the experiments of this paper, the dataset of forest fire smoke was randomly split
into training, validation, and test sets in the ratio of 8:1:1. The specific number of images in
each set is shown in Table 2.

Table 2. Number of images in each set.

Dataset Train Validation Test Summary

Number 4249 531 531 5311

3.2. Evaluation of the Model

This study evaluates the quality of the model from two aspects: accuracy of recogni-
tion and lightweight degree of the model. Therefore, AP@.5 and AP@.5:.95 are selected
as two indicators to evaluate prediction accuracy of the model. Gigabit floating point
operations per second (GFLOPs), frames per second (FPS), and parameters are chosen as
three indicators to evaluate lightweight degree of the model.

(1) AP indicators: In the confusion matrix, TP refers to the number of smoke samples
that are correctly predicted as smoke, FN refers to the number of smoke samples that are
incorrectly predicted as non-smoke, FP refers to the number of non-smoke samples that
are incorrectly predicted as smoke, and TN refers to the number of non-smoke samples
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that are correctly predicted as non-smoke. Based on these, precision rate (P) and recall rate
(R) can be defined, where P reflects the accuracy of the smoke detection and R reflects the
completeness of the smoke detection. The formulas for calculating P and R are shown in
Equations (19) and (20), respectively.

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

AP is the area under the PR curve and is used to describe the average accuracy of
forest smoke detection. Its formula is shown in Equation (21).

AP =
1
r

r

∑
i=1

Pi (21)

(2) GFLOPs: GFLOPs is used to describe the time complexity of the model, which
is positively correlated with the performance of the hardware required. The formula for
calculating GFLOPs is shown in Equation (22).

GFLOPs =
(

2CiK2 − 1
)

HWC0 (22)

where Ci and C0 represent the number of input and output channels, K represents the size
of the kernel, and H and W are used to describe the size of the feature map.

(3) FPS: FPS stands for the number of images that can be processed per second.
Time refers to the amount of time required to process each image frame, including image
preprocessing, inference, and non-maximum suppression. The formula for calculating FPS
is shown in Equation (23).

Time = Pre− process + Inference + NMS (23)

Therefore, FPS can be used to describe the speed of model detection. Its value is equal
to the number of images the model processes per second. The formula for calculating FPS
is as follows:

FPS =
1

Time
(24)

(4) Parameters: Parameters represents the number of parameters the model uses,
measured in millions. It affects the final size of the output model after training.

3.3. Comparison with Other Models

It is essential to compare the detection effects of our model with those of various
other mainstream networks, so as to further verify the effectiveness of the network model
we proposed. We chose the networks Faster R-CNN [34], EfficientNet [35], SSD [36],
Retinanet [37], and YOLOv5, and a brief description of these models is shown below.

(1) Faster R-CNN: Faster R-CNN is a popular object detection model that combines region
proposal network (RPN) and Fast R-CNN. It achieves high accuracy but has a slower
inference speed compared to that of other models.

(2) EfficientDet: EfficientDet is a state-of-the-art object detection model that achieves high
accuracy while being efficient in terms of computation. It uses a compound scaling
method to balance accuracy and efficiency.

(3) SSD: SSD (Single Shot MultiBox Detector) is a fast object detection model that achieves
real-time performance. It uses multiple layers for predicting bounding boxes and class
probabilities but may have lower accuracy compared to that of some other models.
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(4) RetinaNet: RetinaNet is an object detection model that addresses the problem of class
imbalance during training by introducing a focal loss. It provides a good balance
between accuracy and speed but may not achieve the highest accuracy compared to
that of some other models.

(5) YOLOv5: YOLOv5 is part of the You Only Look Once (YOLO) series, known for its
real-time object detection capabilities. YOLOv5 is lightweight and achieves a good
balance between accuracy and speed. It has a smaller model size and is suitable for
various applications.

4. Results
4.1. The Environment for Training and Hyper-Parameters

The runtime environment used in this article is shown in Table 3. The parameters
related to training the model for detecting forest smoke are shown in Table 4.

Table 3. Experimental conditions.

Experimental Environment Details

Programming language Python 3.8
Operating system Windows 10

Deep learning framework PyTorch 1.10.0
GPU NVIDIA GeForce GTX 3080

GPU acceleration tool CUDA:11.0

Table 4. Training parameters of the forest fire detection model.

Training Parameters Details

epochs 300
batch-size 16

img-size (pixels) 640 × 640
initial learning rate 0.01

optimization algorithm SGD

4.2. Analysis of Module Effectiveness

To verify whether the introduction of individual modules in our model outperforms
the baseline, we performed an analysis of the modules’ effectiveness.

4.2.1. Effectiveness of Hardswish

Activation functions play a critical role in neural networks, but they can also lead to
the well-known problem of vanishing or exploding gradients, which can have a significant
impact on model training and accuracy. Therefore, a thorough analysis of the sensitivity
of activation functions is necessary to evaluate their suitability in deep learning models.
This can be achieved by examining the performance of the model under various activation
functions and comparing the results to identify which function is the most effective. In order
to verify whether the HardSwish activation function we selected has better advantages
compared to other activation functions, we compared the results of different activation
functions for the first 250 rounds of training. Figure 10 shows the experimental results.

As indicated by the above figure, the HardSwish activation function exhibits a faster
convergence speed, which can improve the efficiency and stability of gradient propagation,
thereby accelerating the training of the network and leading to greater stability. Therefore,
selecting HardSwish for the research of this paper is a wise choice.
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4.2.2. Effectiveness of CA

In this section, to verify the effectiveness of the CA attention mechanism we selected,
we compared it with the Squeeze-and-Excitation (SE) block [34] and the Convolutional
Block Attention Module (CBAM) [35] by incorporating them into YOLOv7, and the results
are shown in Table 5.

Table 5. Comparison of different attention mechanisms.

MODEL P/% R/% AP@.5/%

YOLOv7 69.8 68.1 74.3
YOLOv7-CBAM 67.9 65.1 71.5

YOLOv7-SE 76.5 65.1 75.6
YOLOv7-CA 75.3 68.9 76.9

We can judge the quality of the attention mechanism by evaluating its AP@.5, P, and
R for our own dataset. It can be seen that when CA is added to the model, the AP@.5
increases by 2.6%, P increases by 5.5%, and R increases by 0.8%, with good performance
in all indicators. Therefore, we selected CA to enhance the feature extraction ability
of YOLOv7.

4.2.3. Effectiveness of SIoU

In our experiments, we use four loss functions, GioU [36], DIoU, CIoU, and SIoU,
respectively, on the basis of the baseline and observe their performance in identifying our
dataset, respectively, and the results are shown in Figure 11. Observing the experimental
results, we find that the use of SIoU can make the model converge faster than other loss func-
tions, and the final stable loss value achieved is the lowest among the four loss functions,
which fully illustrates that our choice of SIoU as the loss function is quite reasonable.
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4.3. Ablation Experiments

The ablation experiment is essential to verifying the necessity of introducing each
module in the final model and to exploring the impact of each module on the model. The
effects of the model after introducing different modules were tested on the same test set,
and the experimental results are shown in Table 6, where GSI represents the integration of
GSELAN and GSConv.

Table 6. Results of ablation experiment.

MODEL P/% R/% AP@.5/% AP@.5:.95/% Parameters/M GFLOPs FPS

YOLOv7 69.8 65.0 74.3 47.4 9.32 26.7 62.89
YOLOv7-CA 70.3 71.9 76.9 49.8 9.38 26.8 64.1

YOLOv7-SIoU 72.3 73.1 77.7 51.1 9.32 26.7 65.3
YOLOv7-GSELAN 69.8 73.2 75.5 48.8 8.67 25.4 67.3

YOLOv7-GSSPPFCSPC 73.1 67.7 74.8 48.1 8.45 26.0 64.1
YOLOv7-CARAFE 71.7 71.6 76.8 49.8 9.36 26.8 60.25
YOLOv7-CA-SIoU 74.0 71.2 78.2 51.2 9.38 26.8 64.5

YOLOv7-CA-SIoU-GSI 73.8 71.5 79.2 51.0 7.93 25.0 67.34
Ours 77.1 71.8 80.2 52.8 7.96 25.1 63.39

From the data in the table, it can be seen that the introduction of attention mecha-
nisms, the improvement in loss functions, and the use of CARAFE upsampling mainly
improve the indicators of AP@.5 and AP@.5:.95, while the other metrics used to measure
the degree of lightness change little. This improves the accuracy of the model’s prediction
without increasing the cost of the model’s calculation. On the other hand, the introduction
of GSELAN and GSSPPFCSPC reduces the parameters by 0.65 M and 0.87 M, whereas
the GFLOPs reduced them by 0.65 M and 0.92 M, and the FPS increased them by 4.41
and 1.21, respectively. The AP@.5 and AP@.5:.95 do not change significantly, indicating
that the introduction of these two modules reduces the computational cost of the model
without changing the accuracy, speeds up the convergence speed, and makes the model
more lightweight.

As mentioned above, the introduction of the CA, SIoU, and CARAFE modules sepa-
rately successfully improves the accuracy of the model’s recognition, while the introduction
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of the GSConv and Hardswish modules makes the model more lightweight. In the fol-
lowing experiments, other modules are continuously introduced based on the model
embedding CA. In experiment 7, the replacement of the CIoU loss function with SIoU
allows for the model to better learn the location and size information of smoke, increasing
the accuracy of smoke detection from 76.9% (experiment 2) to 78.2%. Then, after intro-
ducing the lightweight convolution GSConv, the parameters are reduced by 1.45 M, and
there is a 1.8 reduction in the GFLOPs and a 2.84 increase in the number of FPS, because
GSConv can help reduce the size and computational complexity of the model, making the
system of smoke detection more rapid and efficient in processing data. Finally, adding
CARAFE upsampling improved the model’s accuracy by 2% without noticeable changes
in the computational speed, indicating that CARAFE upsampling can adaptively increase
the resolution of smoke images for different sizes and resolutions, helping the network
better perceive smoke information in complex scenes, thus improving the generalization
and accuracy of the model. The final model proposed in this paper achieves an AP@.5 of
80.2% and a number of FPS of 63.39, while the GFLOPs are only 25.1. Compared to the
baseline, the indicators P and R are improved by 7.3 and 6.8, respectively, demonstrating
the higher accuracy of the prediction. On the other hand, the AP@.5 is improved by 5.9%
and the GFLOPs are reduced by 1.6, enabling better detection results to be achieved while
using fewer computational resources.

To demonstrate the significant improvements of the enhanced model compared to
the baseline in terms of its prediction accuracy and lightweight design, significance tests
can be performed for several metrics, including the AP@.5, parameters, GFLOPs, and FPS.
Assuming no significant differences exist between our model and the baseline, the corrected
paired Student’s t-test was chosen as the statistical test. The results of the significance tests
are presented below (Table 7).

Table 7. Results of the significance tests.

Indicators AP@.5 Parameters GFLOPs FPS

Null Hypothesis There is no significant difference between our model and the baseline.
Statistical Test Method Corrected paired Student’s t-test.

p-value/% 2.21 0.93 0.55 0.86

According to the aforementioned test results, at a significance level of 5%, we reject
the null hypothesis, indicating that our model shows a statistically significant difference
compared to the baseline in terms of the specified metrics. Therefore, the improved
model exhibits significant enhancements in both its prediction accuracy and lightweight
performance compared to those of the baseline.

4.4. Comparison Experiments

In order to further verify the effectiveness of the network model proposed, we com-
pared the detection effects of various mainstream networks, including Faster R-CNN [37],
EfficientNet [38], SSD [39], Retinanet [40], and YOLOv5, etc., for the same dataset. The
performance results are shown in Table 8.

Table 8. Results of comparison experiments.

MODEL AP@.5/% GFLOPs Parameters/M FPS

Faster R-CNN 81.1 206.66 41.12 38.8
EfficientDet 71.9 116.73 18.34 27.8

SSD 68.2 342.75 23.75 94
Retinanet 73.5 153.79 19.61 50.1

YOLOv5m 75.1 48.2 20.8 80.2
Ours 80.2 25.1 7.96 63.39
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From the above table, it can be seen that Faster R-CNN, as a two-stage network, has
an advantage of about 1% over the proposed network, but its number of parameters and
amount of computation are much more than those of the algorithm proposed in this paper.
Our model has the best results in terms of its accuracy and detection speed compared to
other one-stage detection algorithms. Compared to the two-stage target detection network
Faster R-CNN, there is a slight difference in accuracy, but there is a difference of about
seven times in terms of the parameters. Our proposed improved algorithm has a broader
application scenario with fewer parameters, a faster speed, and better detection accuracy,
and can play a greater role in detecting forest fire smoke.

4.5. Testing in Different Scenarios

We tested the performance of the unimproved YOLOv7 model and our improved
model in detecting forest fire smoke in different scenarios, and some test results are shown
in Figure 12. Observing the test results, in the test of group (a), the original YOLOv7 model
was unable to detect the smoke in the image, even for very obvious smoke with a large
volume, while our model performed quite well in terms of detection; in the test of group (b),
the original YOLOv7 model was unable to detect the complete smoke target and could only
detect a part of the smoke, indicating its insufficient ability to extract and fuse the features
of smoke. In contrast, our model was able to accurately identify the complete smoke target
and could distinguish smoke and fog very well, even in cases in which smoke and fog were
stuck together. This demonstrates the effectiveness of our proposed improvements.

In addition, the model proposed in this article can recognize small smoke well, as
shown in the (a) group of pictures in Figure 13. The model can detect the presence of small
smoke early, so that forest fires can be detected and extinguished in a timely manner. At
the same time, in the case of the existence of similar smoke, the model can eliminate the
interference containing whatever is similar to the smoke in the images and achieve the
high-precision detection of forest smoke in outdoor multi-environmental backgrounds, as
shown in the (b) group of pictures in Figure 13.
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5. Discussion and Conclusions

Predicting and preventing forest fires is crucial to protecting forests. On one hand,
when comparing the development histories of the means of detecting forest fire smoke,
manual detection is less effective and too costly, while detection by using instruments is
easily disturbed by fine particles such as dust in the environment. Compared with these
two methods, our method is based on computer vision, uses pattern recognition for feature
extraction and classification, is able to detect smoke well, has low deployment costs, and
is a good strategy for detecting forest fire smoke. On the other hand, in smoke detection
based on deep learning, many scholars have proposed network structures, such as R-CNN
or other algorithms [41], which do improve the accuracy of smoke detection to some extent,
but they are more demanding in terms of hardware than the LMDFS proposed in this paper,
making them difficult to deploy to meet real-time requirements. Moreover, they cannot
provide an effective solution for detecting small smoke and smoke containing disturbances.
Although FfireNet [42] provides a faster detection method, there is still a possibility to
improve its accuracy. Our model takes both high accuracy and low computational costs into
account and improves the detection accuracy of small smoke by aggregating larger sensory
fields. Furthermore, our model can also more effectively separate the essential difference
between forest fire smoke and smoke-like smoke, which solves this painful problem in the
field of detecting forest fire smoke and provides a new idea for preventing and controlling
forest fires.

YOLOv7, as the latest target detection model, has a high capability to extract and
aggregate the features of images, thus achieving a high accuracy in target recognition.
However, better detection results require a large computational expenditure, which is
inconvenient for the model’s deployment in edge devices. For this reason, we built the
GS-ELAN module by using GSConv. GSConv is able to improve the effectiveness of
convolution while enhancing the calculation efficiency through the effective combination of
DWConv and SConv. So, it is an efficient means to lighten the model. Taking the GS-ELAN
module constructed in this paper as an example, the problem of a possible lack of links for
GSConv due to the replacement of convolution can be eliminated, and it is helpful for the
transfer and flow of information in the model in that it introduces identity mapping. In
addition, we borrow the structure of the SPPF to improve the SPPCSPC, which can have a
higher computational efficiency and training efficiency with fewer parameters. Then, we
add a multi-layer CA mechanism to the feature extraction network, because under a forest
environment, there exist a large number of smoke-like disturbances, such as floating clouds,
atmospheric fog, etc. Due to their similar characteristics to those of forest fire smoke, the
traditional feature extraction network cannot accurately extract the features of forest smoke.
The addition of CA significantly enhances the model’s ability to extract smoke features and
can more effectively separate the essential differences between forest fire smoke and other
clouds, thus reducing the false detection rate of non-smoke. In addition, in regards to the
characteristics of the thinness and fineness of small smoke produced in the early stages of a
forest fire, especially for images of forest smoke taken at long distances with long views, its
shape is even smaller. It is more difficult for feature fusion to detect this than the typical
smoke that is already formed, i.e., there is a possibility of smoke being filtered out. For this
reason, we add CARAFE upsampling, which can help the network perceive a wider range
of contextual information by expanding the perceptual field of the model, and improve
the capability of feature representation by contextual fusion judgments in order to extract
and fuse these fine features. Finally, we use the loss function SIoU to replace the original
localization overlap loss function by judging the angular difference between judgement
boxes, which not only allows for fast convergence during training to improve the model’s
accuracy, but also allows for the fast screening of NMS during detection to locate smoke
locations more quickly and accurately, which is also essential for the fast detection of forest
fire smoke. The final experimental results for the constructed dataset demonstrate that
the model proposed achieves an AP@.5 of 80.2%, a number of FPS of 63.39, and a total
number of parameters of 7.96 M. Compared to the baseline, the proposed model shows
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comprehensive improvements. Furthermore, when compared to other detectors of the
same class, it achieves the best performance for all indicators. Its lighter weight and better
detection performance make it more deployable in the practical tasks of detecting forest
fire smoke. In addition, we note the important role of sensors in fire detection tasks. Abeer
D. Algarni et al. [43] compare multiple sensors in wildfires. The advantages and limitations
of detection have inspired us to consider using sensors, such as thermal infrared remote
sensors, to improve the detection of forest fire smoke from a multidimensional direction in
our later studies.

6. Future Work

Our experimental results demonstrate that the model proposed in this paper has a
wide range of applications. On one hand, it can be installed on drones and watchtowers
equipped with video surveillance, which can be used for the real-time prediction of incipient
fires or fires that have not yet occurred; on the other hand, it can also be installed on fire
cameras for observing and describing the development of fires that have already occurred,
providing reference for the rescue work of firefighters. In future research, we will further
explore its coherence with other monitoring equipment.

In the field of forest fire detection, wildfire detection based on satellite imagery has a
deep research foundation [44,45], but it also has some shortcomings. For instance, it is easy
to detect large-scale fire situations because satellite images usually cover a large area, while
it is not easy to detect the features of smoke in the early stage of a fire, especially small
smoke, and it is crucial for forest fires to be extinguished as early as possible. To address
the above issues, our model has good potential for application. Firstly, our model performs
excellent when detecting small smoke and smoke with smoke-like inference. Secondly, our
model is designed to be lightweight and suitable for resource-constrained environments,
such as emergency response sites or platforms such as UAVs. This makes our model easy
to deploy and integrate into existing satellite-imagery-based wildfire detection systems.

Certainly, the model proposed in this article also has some limitations. The model
mainly focuses on detecting forest smoke during the daytime, and the dataset used is
mostly from the daytime. However, the risk of forest fires occurring at night is also high.
Therefore, in our next study, we will incorporate data on forest smoke at night to improve
the generalization ability and broad applicability of this model.
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