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Abstract: Robust unsupervised feature learning is a critical yet tough task for synthetic aperture radar
(SAR) automatic target recognition (ATR) with limited labeled data. The developing contrastive self-
supervised learning (CSL) method, which learns informative representations by solving an instance
discrimination task, provides a novel method for learning discriminative features from unlabeled SAR
images. However, the instance-level contrastive loss can magnify the differences between samples
belonging to the same class in the latent feature space. Therefore, CSL can dispel these targets from
the same class and affect the downstream classification tasks. In order to address this problem,
this paper proposes a novel framework called locality preserving property constrained contrastive
learning (LPPCL), which not only learns informative representations of data but also preserves
the local similarity property in the latent feature space. In LPPCL, the traditional InfoNCE loss of
the CSL models is reformulated in a cross-entropy form where the local similarity of the original
data is embedded as pseudo labels. Furthermore, the traditional two-branch CSL architecture is
extended to a multi-branch structure, improving the robustness of models trained with limited batch
sizes and samples. Finally, the self-attentive pooling module is used to replace the global average
pooling layer that is commonly used in most of the standard encoders, which provides an adaptive
method for retaining information that benefits downstream tasks during the pooling procedure and
significantly improves the performance of the model. Validation and ablation experiments using
MSTAR datasets found that the proposed framework outperformed the classic CSL method and
achieved state-of-the-art (SOTA) results.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); contrastive
self-supervised learning (CSL); instance-level contrastive loss; noise-induced estimation of mutual
information (InfoNCE); locality preserving projections (LPP)

1. Introduction

Synthetic aperture radar (SAR) is a high-resolution coherent imaging radar. It is
widely employed in commercial and military surveillance and reconnaissance as an active
microwave remote-sensing technology [1]. As the number of operating SAR sensors and
images to be interpreted continues to grow, automatic target recognition using SAR imagery
(SAR ATR) has piqued the interest of many researchers [2].

Due to the specific electromagnetic imaging mechanism of SAR sensors, it is a consid-
erable challenge to interpret SAR images without domain knowledge and obtain sufficient
annotated data for target classification tasks. Recently, with the rapid development of un-
supervised or self-supervised deep learning theory, robust representation learning with un-
labeled data has received increasing attention from the SAR remote sensing community [3].
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Numerous unsupervised models have been developed to mine discriminative features
from unlabeled SAR images, including Auto-Encoders (AE) [4], Variational Auto-Encoders
(VAE) [5], Generative Adversarial Networks (GANs) [6] and contrastive self-supervised
learning (CSL) [7]. Although these methods can adaptively learn robust, informative
representations without labels, they still have some issues that greatly deteriorate the
performance of their learned features in downstream tasks. AEs and their variants, which
learn representation by reconstructing the inputs from the encoded features, focus on
the reconstruction performance rather than the discriminative capability of their learned
features. Accordingly, there is no guarantee that these models’ learned representations will
contribute to downstream classification tasks [8]. As a specific AE, VAEs have these same
drawbacks. Moreover, they usually assume that the variables follow Gaussian distributions
with diagonal covariance matrices, which are quite different from the distributions of
SAR images, leading to performance degradation in downstream classification tasks [9].
GANs provide an alternative method of learning the distributions of the inputs through
the adversarial procedure with a generator and a discriminator. However, GANs encounter
many problems in representation learning tasks related to, for instance, the complexity of
their model architecture, the mode collapse problem, the non-convergence and instability
of the training procedure, and their requirement for large amounts of data [10].

Recently, the CSL framework, which is a popular form of self-supervised learning,
has been adapted to solve various vision tasks, including classification, object detection,
and instance segmentation. Using unlabeled data, the CSL models are trained in instance
discrimination tasks that discriminate pairs of positive (similar) inputs from a selection of
negative (dissimilar) pairs minimizing the InfoNCE loss [11]. CSL models usually obtain a
positive sample of the anchor by complex data augmentations and treat the other data in
the dataset as negative samples. Due to its excellent performance in unsupervised repre-
sentation learning, it has been utilized to extract discriminative features from unlabeled
SAR images. However, in the absence of true labels, negative samples are often randomly
sampled; these samples may have the same label. Furthermore, because SAR images
belonging to the same category are highly similar, the CSL framework can dispel samples
from the same class using the traditional InfoNCE loss. Both aspects mentioned above
lead to a biased representation, greatly affecting these models’ performance in downstream
classification tasks. To alleviate this problem, a Debiased Contrastive Learning (DCL) [12]
model based on the SimCLR [13] framework has been proposed, which exploits a decom-
position of the true negative distribution to correct for the sampling of same-label data
points. Although the DCL model significantly outperforms the traditional CSL methods, it
still struggles to estimate the negative distribution.

To tackle this problem, in this paper, an alternative debiased approach based on the
LPP constraint is proposed, called locality preserving property constrained contrastive
learning (LPPCL). Similar to the DCL model, the proposed model adopts the SimCLR
framework as its prototype due to its tractability and satisfactory results. The proposed
method organically combines contrastive loss and the LPP constraint and is able to learn
an informative representation of data while simultaneously maintaining the local similarity
property in the feature space. Specifically, the LPP constraint is added to the cross-entropy
form of the InfoNCE loss as a soft pseudo label, which can introduce additional data
structure in order to alleviate the problem of biased sampling and promote performance
in representation learning. Moreover, we used a multi-branch structure to produce more
training samples through numerous stochastic data augmentations. Finally, we replaced
the traditional average pooling approach with self-attention pooling to extract features
more effectively.

The main contributions can be summarized as follows:

1. Prior knowledge of local similarity was embedded into the InfoNCE loss, which was
reformulated in the cross-entropy form, reproducing the debiased contrastive loss
that the intra-class relationship of nearby samples maintains in the feature space.
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2. A multi-branch structure was devised to replace the traditional double-branch struc-
ture of CSL, significantly improving the sample diversity, the robustness of represen-
tations, and the stability of mutual information estimation.

3. The novel self-attention pooling was introduced to replace the global average pooling
in the standard ResNet encoders, providing an adaptive informative feature extraction
capability according to the characteristics of inputs and thus avoiding information
loss caused by traditional hand-crafted pooling methods.

The rest of this manuscript is organized as follows: a literature review on the CSL
method and its application in the SAR ATR is presented in Section 2. A brief summary of
backgrounds, including those on LPP and the traditional SimCLR framework, is provided
in Section 3, while the proposed new framework is presented in Section 4. Section 5 reports
the results of validation and ablation experiments on the MSTAR dataset, with this being
followed by the study’s conclusion in Section 6.

2. Related Work

The CSL approach, which provides a means of enhancing the performance of unsu-
pervised feature learning, is beginning to capture the interest of many researchers. The
approach has two essential components: notions of positive and negative pairs of data
points. Its training objective, typically the noise-contrastive estimation of mutual informa-
tion [14], guides the learned representation to map positive pairs to nearby locations in the
feature space, as well as negative pairs that are farther apart. Most recent CSL models fall
into one of two categories: context-instance contrast (CIC) and instance-instance contrast
(IIC) models [15]. CIC models [16,17] aim to represent the affiliation between a sample’s
local characteristics and its global context representation. However, IIC models analyze
the relationships between various samples’ instance-level local representations directly.
For a variety of classification tasks, instance-level representation is more important than
context-level representation, which was first studied in a paper on DeepCluster [18]. The
authors suggested using clustering to generate the pseudo-label for every image, and the
labels of these images were predicted by a discriminator. Instance discrimination-based
approaches, on the other hand, eliminate the sluggish clustering stage and add useful image
augmentation mechanisms. InstDisc [19] was a prototype model that used instance dis-
crimination as its pretext task. Based on InstDisc, the MoCo [20] model further investigated
the concept of utilizing instance discrimination and significantly increased the number of
negative samples by a sample queue. With an online encoder and an offline encoder, it
created momentum contrast learning by updating the weights of the offline encoder with
the exponential moving average according to the parameters of the online encoder. The
momentum contrast learning scheme played a critical role in preventing model collapse.
To address the issue of requiring massive negative samples in MoCo, SimCLR [13] used an
end-to-end training architecture with a large batch size. SimCLR possessed a two-branch
structure that had encoders with shared weights. It also replaced the original linear layer
with a projection head to change the dimensions of the representation. Based on SimCLR,
Debiased Contrastive Learning (DCL) [12] proposed a debiased contrastive objective that
corrected for the sampling of same-label examples without labels. It achieved this by
taking the viewpoint of Positive-unlabeled Learning and exploiting a decomposition of
the true negative distribution. InfoMin [21] incorporated additional research on enhancing
positive samples, it reduced MI between augmented views in order to learn more effective
representations. Furthermore, BYOL [22] was devised in a Siamese network framework to
reject the need for negative samples in MoCo and SimCLR models. Additional research
on SimSiam [23] revealed the significance of the stop-gradient strategy to avoid collapsing
in CSL. To conclude, the CSL approach has better generalization performance and fault
tolerance in classification tasks.

The developing CSL approach provides a novel method for learning useful features
from unlabeled SAR images. However, the traditional contrastive learning method does
not perform well on SAR ATR tasks; many efforts have been made to improve the CSL
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framework, and several new models have been devised. Wang et al. conducted SAR
imagery classification on the basis of pseudo labels and contrastive learning to address
the issue of the lack of labeled SAR images [24]. Zhou et al. proposed a limited data
loss function (LDLF) that naturally integrated contrastive loss function and cross-entropy
loss function. This aimed to solve the problem of overfitting in SAR ATR by combining
strong supervision and weak supervision [25]. Based on the instance-level contrastive
loss, Zhai et al. proposed batch instance discrimination and feature clustering (BIDFC),
which can adjust the embedding distance in the feature space [26]. A contrastive domain
adaption methodology was used by Bi et al. to reduce the disparity in distribution between
a simulated and actual sparse SAR dataset [27]. The efficiency of multi-view contrastive
loss was confirmed by Chen et al. [28]. They suggested the use of a self-supervised method
to extract pixel-level feature representations from unlabeled SAR images. To increase the
classification accuracy of SAR ATR for ships, Xu et al. modified the SimSiam framework,
which is a classic CSL framework, and developed a new positive pair sampling method
that considered polarization information [29]. Wang et al. proposed a mixture loss method
consisting of contrastive loss and label propagation to investigate the global and local
representations in SAR images [30]. Ren et al. proposed a Siamese feature embedding
network and leveraged the CSL approach to train a low-dimensional feature space for
feature extraction in SAR ATR [31]. The efficiency of CSL-based pre-training models for
SAR and optical imagery classification was examined by Liu et al. They used registered
examples that had structural consistency as contrastive pairs in the Siamese framework
to acquire shared representations of SAR images [32]. For the task of SAR image scene
classification, Xiao et al. forwarded a lightweight CSL framework to learn features by
maximizing the similarity between augmented views [33]. Liu et al. proposed a clustering-
based CSL model in order to map SAR images from pixel space to feature space, promoting
node representation and information propagation in the network [34]. Additionally, Yang
et al. forwarded a coarse-to-fine CSL framework to extract valuable representations for SAR
image classification tasks at the pixel level [35]. Despite these advances, the CSL model in
the SAR image processing domain does not perform as well as in the CV domain due to
the lack of prior knowledge and biased sampling of negative samples.

3. Background
3.1. Locality Preserving Projections

The LPP algorithm [36] is a manifold learning strategy that maps high-dimensional
data into a low-dimensional manifold where the local relationship of the data is preserved,
utilizing the nearest-neighbor graph of the input data. The algorithm’s objective function is
shown below:

min ∑
i,j

(
ei − ej

)2Sij (1)

where ei = GTxi, xi denotes the original samples, G is the optimal projection matrix.
The affinity matrix S represents the similarity between xi and xj, which is established by
calculating the cosine distance between two points:

Sij =

{
xi

T xj
‖xi‖·‖xj‖

, if xj is k− nearest neighbor of xi

0, otherwise
(2)

It is not difficult to determine from (1) and (2) that when the neighboring points xi
and xj are mapped far away from each other, the loss function with the symmetric weights
Sij = Sji will incur a heavy penalty. Therefore, the purpose of minimizing this function
is to ensure that the corresponding points will still be neighbors in the low-dimensional
projection space if two points are considered to be close by in the high-dimensional space.
To some extent, LPP optimally preserves the local neighborhood information of data.
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3.2. Contrastive Learning and InfoNCE Loss

As a very popular self-supervised learning technique, CSL usually obtains effective
image features from the multi-view perspective. In the CSL framework, two views of
the input are generated independently by various image transformations. Based on the
assumption that each view contains all the required information for the downstream tasks,
the CSL network utilizes a dual-branch architecture to learn discriminative representations
via an instance discrimination criterion named InfoNCE [11]. Accordingly, the features
extracted from different views of the same instance are attracted together, while features
extracted from the views of different instances are dispelled.

The SimCLR framework, a crucial baseline for current CSL methods, has a two-branch
structure with shared weights in both the encoders and the projection heads of each branch.
Instead of using a momentum encoder to update the memory bank, the model requires
the batch size of the input data to be large enough to eliminate the requirement for a
memory bank. The framework also uses more complicated data augmentation strategies
and replaces the original linear layer with a projection head to change the dimensions of a
given representation to enhance the effectiveness of contrastive learning. SimCLR is nearly
the simplest model, and yet one of the models that achieved the SOTA results in various
downstream tasks, including classification, semantic segmentation, and object detection. As
shown in Figure 1, the core idea of SimCLR is to learn informative representations by solving
an instance discrimination task that pulls together the positive samples from the same
instance and pushes away the other 2(N− 1) negative samples from different instances in
the feature space. More specifically, positive samples are generally derived from various
augmented images of the same instance, while negative samples are augmented data from
different instances. The objective function of SimCLR is derived from the estimation of
mutual information (MI) between the inputs and the learned representations. Intuitively
speaking, a useful feature should contain as much input information as possible. To this
end, an effective strategy is to maximize the MI between embedding features and the
original image. However, it is infeasible to compute MI directly in most conditions. An
alternative approach is to calculate the upper bound or low bound of MI as an approximal
estimation. Recent work has introduced variational bounds with deep learning by using
a variational distribution, pv(y|x ), instead of the conditional distribution, pc(y|x ), when
calculating the lower bound of the MI:

I(X; Y) ≥ Epc(x,y)[log pv(y|x )]+g(X) (3)

where, X and Y are random variables in the data space and the learned embedding space,
respectively; x represents the samples of X; y is the corresponding representation that has
maximal MI with x subject to constraints on the mapping. Poole et al. combined the above
unnormalized bound with multiple examples [11]. Then, the low bound of the MI can be
maximized by minimizing the InfoNCE loss [37]:

LIn f oNCE = E
[
−log

exp(sim(xi, yi)/τ)

∑N
k=1 exp(sim(xi, yk)/τ)

]
(4)
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Figure 1. Basic concept of the SimCLR framework. V1
anchor and V2

anchor are two augmented views
generated by the same anchor instance xanchor, which are regarded as a positive pair by SimCLR,
while all other views from different instances are regarded as negative samples, whether from the
same class like V1

positive and V2
positive and from different class like V1

negative and V2
negative, which is also

the reason for biased sampling.

The loss function of SimCLR can be obtained by substituting the parameters into
Equation (4):

L = −log
exp
(
simi,j/τ

)
∑2N

k=1,k 6=i exp(simi,k/τ)
(5)

with

simi,j =
zT

i zj(
‖ zi ‖ · ‖ zj ‖

) (6)

where z =gϕ( fθ(V)), and the positive pair
(
zi, zj

)
represents the corresponding represen-

tation projection of the augmented views Vi and Vj. Specifically, this involves the data
augmentation t ∼ T , t′ ∼ T that transforms the given example xanchor, resulting in two cor-
responding views of the same example, denoted V1

anchor and V2
anchor (see Figure 1). Further,

fθ(·) is the encoder network and gϕ(·) represents the projection head. The temperature
coefficient τ is used to modulate the intensity of contrastive learning, which is dependent
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on confidence. Larger τ values result in a smoother probability distribution. By optimizing
the objective function in (5), the SimCLR model can be easily trained.

In fact, by combining the positive sample zj and negative samples
{

z1, z2 . . . z2(N−1)

}
together as

{
z′1, z′2 . . . z′2N−1

}
,
{

zj, z1, z2 . . . z2(N−1)

}
, the objective function of the SimCLR

in (5) can be reformulated as a cross-entropy loss function with one-hot labels:

L = −∑2N−1
q=1 yqlogpq (7)

with

pq =
exp
(

S′i,q/τ
)

∑2N−1
k=1 exp

(
S′i,k/τ

)
yq =

{
1, q = 1

0, otherwise

S′i,q =
zi

Tz′q
(‖zi‖·‖z′q‖)

(8)

where
[
p1, p2 . . . pq . . . p2N−1

]
represents the prediction probability vector and[

y1, y2 . . . yq . . . y2N−1
]

is the corresponding one-hot pseudo label.
In a supervised case, pq represents the probability that the sample belongs to each

class and yq denotes the true label. In unsupervised or self-supervised cases, however, the
label yq is generated at the instance level, i.e., each instance belongs to a separate semantic
class. As a result, samples are not clustered according to their categories in the latent space.
This issue is more serious when the samples of different categories are very similar, and the
distance between individual samples is smaller than the distance between categories. As a
result, samples of the same categories and different categories will all be dispelled, thus
affecting the framework’s classification accuracy in downstream tasks.

4. Methodology
4.1. Locality Preserving Property Constrained InfoNCE Loss

To solve the problems associated with the instance-level CSL mentioned above, we
aim to introduce additional data structure information into our proposed model to assist
its representation learning. The problem with instance-based contrastive learning is that
it does not take into account the actual distribution of negative examples when sampling
the negative samples, and all other samples except the anchors are regarded as negative
samples. Such a sampling scheme leads to bias in the learned representations. Some
features extracted from samples of the same class are regarded as negative samples, which
seriously weakens the classification capability of the learned features. Given this problem,
additional categorical information is required to alleviate the biases in the sampling of
negative samples. Obviously, in the case of supervised learning, it is easy to introduce the
labels as the categorical information to the cross-entropy form of the SimCLR loss function
in (7), and thus biases can be eliminated.

However, in unsupervised representation learning, the prior knowledge we can obtain
only comes from the distribution of the data itself. DCL [12] alleviates the biased sampling
process by assuming the distribution of negative samples, which could be interfered with
the improper prior distribution of the negative samples. Recalling the LPP algorithm, the
local similarity relationship in the original data space is preserved in feature space since it
accurately reflects the inherent clustering structure of the samples. Motivated by the LPP
algorithm, in this study, we considered the local similarity of samples in the data space as
the prior knowledge to improve the sampling of negative samples to improve the SimCLR
InfoNCE loss.

To accomplish this, the adjacency matrix used for the local similarity measure in the
LPP algorithm is introduced into the CSL framework, and its loss function in the cross-
entropy form is modified. The aim of this is to preserve the local neighborhood relationship
of the original data in the learned features. We first construct the LPP affinity matrix
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Sij of the original feature of the target image [x1, x2 . . . xN ], which will maintain the local
similarity property in the feature space. For a given sample, the data in the original dataset,
which has a local similarity relationship, is regarded as the framework’s positive sample.
Further, the modified contrastive loss in the cross-entropy form is as follows:

L = −∑2N
i=1∑2N

j=1,j 6=iSijlog
exp
(
zi·zj

T/τ
)

∑2N
k=1,k 6=i exp(zi·zk

T/τ)
(9)

Sij =

{
xi

T xj
‖xi‖·‖xj‖

, if xjis k− nearest neighbor of xi

0, otherwise
(10)

where Sij can be regarded as the soft pseudo label of the cross-entropy loss, and k represents
the quantity of defined adjacent similar samples.

The core idea of the proposed locality preserving property-constrained contrastive
learning is illustrated in Figure 2. The proposed model has more than one positive sample.
This change comes from the introduction of the LPP algorithm’s affinity matrix into the
SimCLR framework. The positive samples consist of both the augmented pair Vi

anchor

and V j
anchor of the anchor instance xanchor and the augmented views Vi

positive and V j
positive of

xanchor’s adjacent sample xpositive. All these adjacent samples not only have a neighborhood
relationship with xanchor in the sample space but also quite possibly come from the same
class as xanchor. Augmented views of the anchor instance and its adjacent samples constitute
a larger positive sample set to assist the representation learning. The other views from
different classes are considered negative samples, like Vi

negative and V j
negative. Specifically,

the model constructs the affinity matrix of the original images in the whole dataset to
find the nearest first k samples that have higher local similarity properties to xanchor. The
soft pseudo label Sij is introduced when calculating the contrastive loss value between
xanchor and its corresponding positive samples. The modified pseudo label alleviates the
performance deterioration caused by the biased pseudo labels without true labels and
induces the model to learn better feature representation. This leads to the embedding
features of similar image instances being closer to each other and the embedding features
of dissimilar image instances being dispelled in the feature space.

Furthermore, (9) can be transformed into the following form:

L = −∑2N
i=1 Siplog

exp(zi ·zp
T/τ)

∑2N
k=1,k 6=i exp(zi ·zk

T/τ)
− λ∑2N

i=1 ∑2N
j=1,j 6=i,p Sijlog

exp(zi ·zj
T/τ)

∑2N
k=1,k 6=i exp(zi ·zk

T/τ)

= −∑2N
i=1log

exp(zi·zp
T/τ)

∑2N
k=1,k 6=iexp(zi·zk

T/τ)︸ ︷︷ ︸
LC

−λ∑2N
i=1∑2N

j=1,j 6=i,psim
(
zi, zj

)
·Sij︸ ︷︷ ︸

LLPP

(11)

where LC is standard contrastive loss. zp is the positive example. λ is the weight coefficient;
when it is set to 1, the loss function degenerates into (9). LLPP can be regarded as the
objective function of the LPP between different views in the feature space, where the
Euclidean distance similarity is replaced by the normalization exponential cosine similarity
between different views. Consequently, it demonstrates that the proposed model’s objective
function is a contrastive loss function constrained by an LPP term.
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Figure 2. Basic architecture of the proposed model. In LPPCL, for augmented view Vi
anchor, the
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positive of xanchor’s adjacent sample xpositive, which quite possibly comes from the
same class as xanchor.

4.2. Multi-Branch Contrastive Learning

In some recent research [12,38], it is found that the robustness of representation learn-
ing and the performance of classification tasks could be improved to some extent by increas-
ing the number of positive samples. A similar strategy is therefore included in the proposed
model. In order to obtain a robust estimation of mutual information, we adopted a multi-
branch structure instead of SimCLR’s two-branch structure. As shown in Figure 3, in order
to improve the model’s representation of augmented views, we augment the original images
[x1, x2 . . . xN ] for M(M > 2) times to obtain more views [V1,...,m,...M

1 ,V1,...,m,...M
2 . . .V1,...,m,...M

N
]

with m ∈ [1, M]. Obtaining the corresponding representation projection [zm
1 , zm

2 . . .zm
N

], we
then calculate the loss of multiple groups using permutation and combination in pairs.
Encoders and projection heads of all branches share their weights. The final loss function
value is obtained after the average:

L = ∑M
m,t=1;m 6=t

∑N
i=1

−log
exp
(

zm
i ·(zt

i)
T

/τ
)

Ek
− λ∑N

j=1,j 6=i Sij

log
exp
(

zm
i ·
(
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j

)T
/τ

)
Ek

+ log
exp
(
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i ·
(

zt
j

)T
/τ

)
Ek
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(
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k
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)
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i ·
(
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k
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Figure 3. The multi-branch structure of the proposed model.

Our experimental results and some recent research [12,38] both demonstrated that
the representation learning capability of the CSL models would be boosted by embedding
more augmented views into the framework. The multi-branch structure not only enriched
the number of positive and negative samples but also increased the diversity of samples,
therefore significantly improving the robustness and discriminative capability of the learned
features. As shown in Figure 2, in the embedding space, features extracted from different
views of samples in the same class are attracted, while features learned from samples
of different classes are dispelled so that the local data structure will be preserved. As
illustrated in Algorithm 1, the overall loss to optimize the encoder can be formulated as:

Algorithm 1 The proposed LPPCL algorithm

input: batch size N, matrix Sij, constant τ, m, the structure of f, g, T .

for {xk}N
k=1 do

obtain the corresponding affinity matrix Sij
draw M augmentation functions tm ∼ T , m ∈ [1, M]

for a in range (M):
for b in range (a + 1, M):

for all k ∈ {1, . . . , N} do
Vk = ta(xk), hk= f (Vk), zk= g(hk)
Vk+N = tb(xk), hk+N= f (Vk+N), zk+N= g(hk+N)

end for
L+ = −∑2N

i=1 log
exp(zi ·zp

T /τ)
∑2N

k=1,k 6=i exp(zi ·zk
T /τ)
− λ∑2N

i=1 ∑2N
j=1,j 6=i,p Sijlog

exp(zi ·zj
T /τ)

∑2N
k=1,k 6=i exp(zi ·zk

T /τ)

end for
end for
L = Ltotal

M(M−1)/2
update f and g to minimize L

end for
return f and g

4.3. Model Architecture

As shown in Figure 4, the model uses an elaborate network architecture inspired by
self-attentive pooling [39]. In the first stage, we make use of a stochastic data augmentation
module to transform the selected samples randomly and produce M correlated views
[V1, V2 . . . VM] of the same example. In this study, following the approaches in [12,13,25,26],
we use the data augmentation methods comprising random cropping involving resizing,
color jitter, random horizontal flip, random grayscale, and Gaussian blur to strengthen the
richness of the augmentation combinations and the complexity of the pretext. Secondly,
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we adopt the ResNet50 architecture as the encoder network fθ(·) to map data into an
embedding space, which can extract representation vectors h = fθ(·) from augmented
samples. A convolutional layer with a 3× 3 kernel is used before the ResNet module to
reduce the model’s computational complexity. ResNet50 utilizes an average pooling layer
at the end of the convolutional layer to generate the feature vectors, which only correspond
to one local area on the input feature maps. This pooling technique results in the loss of
feature information to some extent. Therefore, we replace the global average pooling in the
original ResNet50 network with self-attentive pooling.
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Figure 5 shows the unique pooling approach, which uses the multi-head self-attention
module and weights the pooling layer using non-local information. At first, the patch em-
bedding module is used to compact and encode local information of the input

x ∈ Rh×w×cx , and the output xp ∈ R
( h×w

ε2
p
)×(εrcx)

is a token series, where εp is the patch size
and εrcx denotes the number of output channels. A learnable positional encoding is then
added to xp. Secondly, the multi-head self-attention module is employed to simulate the
long-term interdependence between patch tokens, yielding a self-attentive token sequence
xattn. Q, K, and V represent three weight matrices of this module. xattn maintains the size

of xp, which is
(

b× h×w
ε2

p
× εrcx

)
, where b represents the batch size. Thirdly, the spatial

and channel information from xattn is decoded in the spatial-channel restoration module,
and the xattn is restored to the same size as the input x. To be specific, the token sequence
is first reshaped to

(
b× εrcx × h

εp
× w

εp

)
, and then expanded to the original spatial resolu-

tion (b× εrcx × h× w) by bilinear interpolation up-sampling. The number of channels is
afterwards altered back to (b× cx × h× w) via a convolution process. Finally, the down-
sampled output feature map π(x) from xr is obtained in the weighted pooling module,
which is utilized to produce the whole output activation map. The model’s well-designed
global view increases its capacity to capture long-term dependencies and aggregation
characteristics in order to extract data features more effectively.
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The representations are then further mapped to the space where contrastive loss is
performed using a tiny neural network projection head gϕ(·). In this study, we adopt an
MLP with two fully connected layers to obtain z =gϕ( fθ(x)) . After the training is com-
pleted, we utilize the encoder fθ(·) and representation h for classification tasks. Although
many unsupervised models often utilize a pre-training and fine-tuning scheme, which will
fine-tune the representation networks when it is applied to the downstream classification
tasks, the proposed model does not require such a scheme. As the proposed model can
learn robust and discriminative representations for classification, it is not necessary to apply
a fine-tuning process to the trained model to achieve acceptable results in downstream
classification tasks.

5. Experiments and Results
5.1. Experimental Settings
5.1.1. Dataset Description

The MSTAR program provided the experimental dataset required to assess our pro-
posed model. This dataset provides a large amount of SAR images from several kinds of
military vehicles as a standard for assessing SAR ATR performance. The photographs and
corresponding SAR images are illustrated in Figure 6. Table 1 lists specific details of the
experimental dataset.

To thoroughly evaluate the performance of the proposed model, it was tested under
two conditions: SOC and EOC. Under SOC, the training set images and the testing set
images had the same serial numbers. However, under EOC, images of all the serial numbers
were used to test the performance of the proposed method [40]. Following the setup of the
EOC experimental method in [41], we used MSTAR datasets with different configurations
for evaluation. Due to insufficient training samples, we did not evaluate the performance
of the proposed model at the variance of the depression angle. In our experiments, the
validations of the other CSL approaches were all carried out using the MSTAR dataset. The
training set featured patches acquired at a 17◦ depression angle, and the testing set was
made up of patches taken at a 15◦ depression angle. Among these, we used the images
from BMP2-9563 and T72-132 as training samples for BMP2 and T72.
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Table 1. Detailed information on the MSTAR dataset.

Type Serial No.
Number of Samples

17◦ 15◦

2S1 b01 299 274
9563 233 194

BMP2 9566 232 196
c21 233 196

BRDM2 E-71 298 274
BTR60 K10yt7532 256 195
BTR70 c71 233 196

D7 92v13015 299 274
T62 A51 299 273

132 232 196
T72 812 231 195

s7 233 191
ZIL131 E12 299 274
ZSU234 d08 299 274

5.1.2. Experiment Setup

To reduce the data volume calculated while ensuring the input data size remained
consistent, we used image crop processing based on the center of the target region to resize the
input patches to the same shape, which was 64× 64. In addition, many of the target patches
had significant variations in target intensity, which obscured the target distinctions. Therefore,
intensity normalization was used to map the pixel intensities into the range [−1, 1].

A particular network was used for the proposed method, which is presented in Figure 4
in detail. In this experiment, we set the temperature coefficient τ to 1 and the number of the
adjacent samples k to 5. The balance weight coefficient λ of the LPP constraint was set to 1.
The branch number M was set to 3 in this study due to the limited memory of the GPU.
The preprocessed training dataset was used to train the model, and the Adam optimizer,
which had a starting learning rate of 0.0001, was used to optimize it. The exponential decay
rates β1 and β2 were 0.9 and 0.999. The maximum number of iterations was 8000, and the
size of the mini-batch was 64. After extracting features from the images, the classification
performance was evaluated using a SoftMax classifier. The experiments were implemented
on a PC with an Intel(R) Xeon(R) Sliver 4215R CPU @ 3.20 GHz, 256.0 G DDR4, and an
NVIDIA GeForce RTX 3090 GPU. The proposed network was built using Pytorch 1.10.2.

The probability of correct classification (Pcc) serves as a measure to evaluate the
performance of the model, which is equal to the number of samples recognized correctly
divided by the number of total samples.

5.2. Recognition Results under SOC

The experiment conducted under SOC was a standard vehicle target classification
problem. Table 2 shows the confusion matrix of the recognition results under SOC. The
curve of training loss of the proposed model is shown in Figure 7. The matrix’s diagonal
lines display the proportion of successfully recognized images for each category. It can be
seen that the recognition ratios of BTR60 and T72 were above 94%, the recognition ratios
of the other categories were above 97%, and BTR70 attained a 100% recognition rate. The
aggregate rate of recognition was 97.94%, which was obviously excellent. Through the
structure of the neural network, some robust features were extracted successfully, proving
that the proposed model performs excellently under SOC.
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Table 2. Recognition results under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T72 T62 ZIL131 ZSU234 Pcc (%)

2S1 266 0 0 1 0 0 0 7 0 0 97.08
BMP2 0 189 0 0 1 0 4 0 0 0 97.42

BRDM2 2 0 269 0 0 2 0 0 1 0 98.18
BTR60 0 0 3 184 0 2 0 5 0 1 94.36
BTR70 0 0 0 0 196 0 0 0 0 0 1

D7 0 0 0 0 0 272 0 1 0 1 99.27
T72 0 8 0 0 0 0 188 0 0 0 95.92
T62 1 0 0 1 0 0 0 269 1 1 98.53

ZIL131 1 0 0 0 0 0 0 0 270 3 98.54
ZSU234 0 0 0 0 0 0 0 1 2 271 98.91

Total 97.94
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5.3. Recognition Results under EOC

Target recognition was more complicated under EOC due to its variable operational
conditions. It was necessary to evaluate the robustness of the proposed model when faced
with varying target configurations. Table 3 shows the classification accuracy of the proposed
architecture under EOC. The recognition ratios of BMP2, BTR60, and T72 were above 94%,
the recognition ratios of other categories were above 97%, and BTR70’s recognition rate
was 100%. The proposed method obtained a superior overall recognition performance of
97.31%. The recognition results prove that the proposed architecture can recognize targets
with different configurations and show resilience to configuration variance.

Table 3. Recognition results under EOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T72 T62 ZIL131 ZSU234 Pcc (%)

2S1 266 0 0 1 0 0 0 7 0 0 97.08
BMP2 0 561 0 0 3 0 22 0 0 0 95.73

BRDM2 2 0 269 0 0 2 0 0 1 0 98.18
BTR60 0 0 3 184 0 2 0 5 0 1 94.36
BTR70 0 0 0 0 196 0 0 0 0 0 1

D7 0 0 0 0 0 272 0 1 0 1 99.27
T72 0 24 0 0 0 0 558 0 0 0 95.88
T62 1 0 0 1 0 0 0 269 1 1 98.53

ZIL131 1 0 0 0 0 0 0 0 270 3 98.54
ZSU234 0 0 0 0 0 0 0 1 2 271 98.91

Total 97.31
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5.4. Comparison with Reference Methods

In this section, the proposed method was compared with SimCLR and DCL. In ad-
dition, locality preserving property constrained DCL was also tested in a comparative
experiment. When incorporating additional data cluster structure to contrastive loss, we
also tried the second different form:

L = LC + λ′L′LPP (13)

with
L′LPP = ‖Sij

′ − Sij‖

Sij
′ =

{
zi

Tzj
‖zi‖·‖zj‖

, if zjis k− nearest neighbor of zi

0, otherwise

Sij =

{
xi

T xj
‖xi‖·‖xj‖

, if xjis k− nearest neighbor of xi

0, otherwise

(14)

where LC represents the contrastive loss in DCL or SimCLR, L′LPP denotes the distance
between the affinity matrix of the corresponding network outputs and the affinity matrix
of the original data, and λ′ is used for balancing LC and L′LPP, which we set to 0.1 for the
experiment according to the ten-fold cross-validation.

Accordingly, the proposed model was compared with the following models: LPP-
constrained SimCLR model in the form of cross entropy (LPPS-I), SimCLR model with
a conventional LPP regularization (LPPS-II), LPP-constrained DCL in the form of cross
entropy (LPPD-I) and DCL model with a conventional LPP regularization (LPPD-II). We
obtained the results for the above methods by implementing these methods with concrete
code. In addition, several recently proposed self-supervised learning approaches that
achieved state-of-the-art results in SAR ATR were selected to be used in comparison
experiments. These included three contrastive self-supervised learning models, i.e., the
PL method [24], the CDA method [27], and the ConvT method [30]. In addition, four
self-supervised learning methods were used, i.e., the TSDF-N method [9], the ICSGF
method [10], the SFAS method [42], and the DKTS-N method [43]. The experimental results
for the above methods were obtained from the corresponding references. The recognition
performance of various approaches under SOC was then evaluated, as illustrated in Figure 8.
Compared with the other approaches, our method recorded the highest Pcc, i.e., 97.94%; that
is, it performed excellently in SAR image recognition. Further, the proposed method yielded
features with superior classification performance, even compared with the DCL method,
which achieved SOTA results for feature extraction, i.e., 96.74%. The main reason for this is
that the proposed structure ensures that the model can learn an informative representation
of data but also preserve the local similarity property in the latent feature space, which
is overlooked by most CSL methods. The proposed objective function can diminish the
influence of instance-level contrastive loss. In addition, applying the LPP affinity matrix
constraint yielded better results for SimCLR than for DCL. For the loss function of SimCLR,
the form of cross entropy was found to be more conducive to representation learning than
the conventional LPP regularization method. However, for the loss function of DCL, the
conventional LPP regularization method achieved better performance.

5.5. Further Analyses of Ablation Study

For an additional in-depth assessment of whether the proposed model achieves en-
hanced recognition performance using self-attentive pooling and a multi-branch structure,
further studies are discussed in this subsection. Our ablation experiment analyzed the
original SimCLR model (SimCLR), the multi-branch SimCLR model (m_SimCLR), and
the SimCLR model with self-attentive pooling (SimCLR_p). It also analyzed four cases
in which the locality-preserving property constraint was introduced, namely the locality-
preserving property constrained original SimCLR learning (LPPCL), the multi-branch LPPS
(m_LPPCL), the LPPS with self-attentive pooling (LPPCL_p), and the multi-branch LPPS
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with self-attentive pooling (m_LPPCL_p) models. Further, the recognition performance
of these models under SOC was compared. Figure 9 displays the recognition rates of
each model.
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It can clearly be seen that after introducing the local preserving property constraint to
the SimCLR model, its classification accuracy was greatly improved, i.e., its Pcc increased
from 96.33% to 97.03%. This proves that the introduction of additional local similarity
relationships can effectively assist representation learning and alleviate the problem of
biased sampling in instance-level contrastive learning. In the feature space, the embedding
features of similar image instances were closer to each other, and the embedding features
of dissimilar image instances were dispelled effectively. Further, the performance of the
multi-branch structure was also better than that of the double-branch structure. The main
reason for this is that the multi-branch structure can enrich the diversity of training sam-
ples through stochastic data augmentations, thus ensuring the robustness of the model,
especially when there are limited samples. It is also beneficial to the calculation of con-
trastive loss and the estimation of mutual information. By incorporating the multi-branch
structure in the traditional SimCLR model, the performance was improved by 0.17%, while
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in the LPP-constrained two-branch SimCLR model, the performance was improved by
0.54%. In addition, replacing average pooling with self-attention pooling can assist feature
extraction. Unlike average pooling, self-attention pooling can extract features adaptively
according to the structure of the data itself and thereby reduce the loss of feature infor-
mation. Thus, more effective information is retained, which is beneficial to downstream
tasks. By incorporating the self-attention pooling in the traditional SimCLR model, the
performance was improved by 0.62%, while in the LPP-constrained two-branch SimCLR
model, the performance was improved by 0.66%, and in the LPP-constrained multi-branch
SimCLR model, the performance was improved by 0.37%. Finally, when the multi-branch
structure and self-attention pooling were added together to the SimCLR model with LPP
constraint, it recorded the highest Pcc, i.e., 97.94%, which proves that the proposed strategy
can successfully enhance the model’s performance.

5.6. Experiment with Noise Corruption

In reality, inevitable noise often corrupts measured SAR imagery. In this study, SAR
images corrupted by different SNR ratios were used to assess the proposed model’s ro-
bustness to noise. The original SAR images were considered to be noise-free, which was
first transformed into the frequency domain with 2D-IDFT, and additive noises with SNRs
ranging from 20 dB to −20 dB were applied to the transformed images to produce noise-
contaminated images with SNRs specified in (15). The same imaging process was then
used to convert the noisy data into the image domain.

NR(dB) = 10log10
∑U−1

u=0 ∑V−1
v=0 | f (u, v)|2

HWσ2 (15)

where f (u, v) is the RCS; σ2 is the variance in the additive noise. H and W represent the
height and width of the image. Figure 10 shows various noise-contaminated images with
varying SNRs. The average experimental results for the proposed model, the SimCLR
model, and the DCL model at different SNR levels are shown in Figure 11. As noise
interference worsens, the recognition rates of all the models gradually decrease, with the
proposed model achieving the highest rate at every SNR level. Even when the image is
contaminated by the noise with SNR being 0dB, the geometric and scattering characteristics
of the image are not seriously affected by the noise; the Pcc of the model is still above 89%,
demonstrating the proposed model’s resilience under considerable noise interference.
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5.7. Experiment with Resolution Variance

Another important consideration when assessing the performance of a model is its
robustness to resolution fluctuation. Therefore, we varied the resolution of the SAR images
from 0.3 m× 0.3 m to 0.8 m× 0.8 m. Specifically, the sub-band was first retrieved when
the spatial SAR images were transformed by 2D-IDFT into the frequency domain. The
sub-band data were then resampled in the frequency domain using zero padding before
being switched back to the spatial domain. Figure 12 displays several images at various
resolutions. In our experiment, the model was trained using the original single-resolution
training set, and then the performance of the model was tested on different resolution
testing sets. The average experimental results for the proposed model, the SimCLR model,
and the DCL model at different resolution levels are shown in Figure 13. It is demonstrated
that the proposed model is still effective even with some deterioration in resolution. At all
resolutions, the model achieves the highest classification rate when compared with other
models. The proposed model’s Pcc is still higher than 85% even when the resolution is
0.7 m× 0.7 m, proving the model’s stability in the face of resolution variation.
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6. Conclusions and Future Work

In this paper, a contrastive self-supervised representation learning model is proposed.
This model provides an effective method for learning useful features from unlabeled SAR
images. Its use of the local preserving property constraint method prevents performance
deterioration caused by biased pseudo labels without true labels; rather, the model not only
learns informative representations of data but also preserves the local similarity property
in the latent feature space. Further, the proposed model’s multi-branch structure increases
the diversity of training samples, enhancing the model’s capacity for representation. In
addition, its use of self-attention pooling assists the model with learning informative
features, which is conducive to downstream classification tasks. Experiments demonstrated
that the proposed model outperformed most of the present CSL algorithms and obtained
the SOTA performance without supervised knowledge.
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