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Abstract: Quantification of vegetation biophysical variables such as leaf area index (LAI), fractional
vegetation cover (fCover), and biomass are among the key factors across hydrological, agricultural, and
irrigation management studies. The present study proposes a kernel-based machine learning algorithm
capable of performing adaptive and nonlinear data fitting so as to generate a suitable, accurate, and robust
algorithm for spatio-temporal estimation of the three mentioned variables using Sentinel-2 images. To
this aim, Gaussian process regression (GPR)–particle swarm optimization (PSO), GPR–genetic algorithm
(GA), GPR–tabu search (TS), and GPR–simulated annealing (SA) hyperparameter-optimized algorithms
were developed and compared against kernel-based machine learning regression algorithms and artificial
neural network (ANN) and random forest (RF) algorithms. The accuracy of the proposed algorithms was
assessed using digital hemispherical photography (DHP) data and destructive measurements performed
during the growing season of silage maize in agricultural fields of Ghale-Nou, southern Tehran, Iran,
in the summer of 2019. The results on biophysical variables against validation data showed that the
developed GPR-PSO algorithm outperformed other algorithms under study in terms of robustness and
accuracy (0.917, 0.931, 0.882 using R2 and 0.627, 0.078, and 1.99 using RMSE in LAI, fCover, and biomass
of Sentinel-2 20 m, respectively). GPR-PSO also possesses the unique ability to generate pixel-based
uncertainty maps (confidence level) for prediction purposes (i.e., estimated uncertainty level <0.7 in
LAI, fCover, and biomass, for 96%, 98%, and 71% of the total study area, respectively). Altogether,
GPR-PSO appears to be the most suitable option for mapping biophysical variables at the local scale
using Sentinel-2 images.

Keywords: biophysical variables; optimization algorithm; Gaussian process regression; machine
learning regression algorithms; remote sensing

1. Introduction

An essential step in monitoring cropland properties, modeling crop growth, and
forecasting yield, optimizing crop production [1], and improving crop field management [2]
during the growing season involves the space-based estimation of key canopy biophysical
variables such as leaf area index (LAI), fractional vegetation cover (fCover), and biomass [3].

LAI and fCover characterize the vegetation cover structure [4] and energy absorption
capacity of the canopy, and so are indispensable in most global climate models, as well as
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studies on hydrology, ecology, and agro–ecosystems [5]. These variables also play crucial
roles in the estimation of aboveground biomass and vegetative evapotranspiration [6].

Traditionally, the estimation of these variables was conducted via in situ destructive
methods, which of course are very time-consuming and costly. However, recent algorithms
based on remote sensing data are employed for retrieving biophysical variables [7]. Optical
remote sensing has proved its potential for quantitative and continuous spatio-temporal
retrieval of key canopy characteristics [8]. Following the launch of the super-spectral
Copernicus Sentinel-2 (S2) missions, unprecedented data streams for land monitoring [9]
also became readily available, ensuring the development of spatio-temporal quantitative
retrieval techniques deemed necessary among remote sensing communities [10–12].

Yet, widely accepted empirical methods remain prone to unstable performance in
different case studies, and are limited to 2–5 bands, making it unclear whether the best band
combinations are being employed; in addition, vegetation indices (VIs) are considerably
affected by additional confounding factors such as vegetation structure and background at
canopy level [13–15]. Conversely, physically based methods such as inverting a radiative
transfer model (RTM) are computationally demanding and require further site-specific
information simultaneously for proper model parameterization, which is not always in-
stantly available, accurate, or up-to-date. The quality of such methods relies upon prior
knowledge and regularization [3]. However, machine learning regression algorithms
(MLRAs) can generate adaptive and robust relationships in a given study area and are
easily applicable with less site-specific information [16]. MLRAs can typically cope with
strong nonlinearity arising out of the functional dependence between biophysical variables
and the observed reflected radiance [15,17], as nonlinear relationships are often the case
in multi- or hyperspectral imagery [3]. Kernel-based MLRAs involve few and intuitive
hyperparameters for tuning and can perform a flexible input-output nonlinear mapping.
The main idea of kernel-based algorithms is to use a kernel function, which is a similarity
function over all pairs of data points, to map the data into a high-dimensional feature
space where linear methods can be applied to solve nonlinear problems [18]. Specifically,
during the last two decades, a family of kernel-based methods has emerged as competitive
alternatives to neural networks (NN) in many operational applications [15,17], yielding the
most accurate results (e.g., [19,20]). In the application of biophysical variable estimation, it
is still unclear which technique provides the highest efficiency (higher accuracy, robustness,
lower computation costs), especially in silage maize biophysical variable retrieving.

Gaussian process regression (GPR) is a Bayesian kernel-based MLRA that may be of
particular interest given its powerful regression capabilities for remote sensing applications, as it
not only provides pixel-wise predictions but also establishes confidence intervals, i.e., uncertainty
maps, associated with the predictions [14,15,21,22]. The associated uncertainty estimates also
provide information on the success status of transporting a locally trained model to other sites
or observation conditions [15]. On the other hand, uncertainties are not intended to replace
true accuracy estimates of biophysical variable products but rather provide complementary
information. Since uncertainty maps provide information about the robustness of retrieval
methods, the GPR family methods may therefore be more suitable candidates for operational
applications, especially now that earth observation is reaching maturity [17]. Moreover, this
method can rank features (bands) and provide insight into bands carrying relevant information
and detect bands that contribute the most to the development of a GPR model [23].

Despite the importance of Bayesian nonparametric models (e.g., GPR family methods)
and their advantages in biophysical variable retrieval, this field has only undergone its infancy
during the past decade [3]. Therefore, algorithm calibration procedures are required to develop
highly accurate models for the retrieval of biophysical variables. To date, these methods have
been assessed for LAI and fCover variables in limited studies (e.g., [10,20,22,24,25]). The
challenge and opportunity for the upcoming years are to foster further implementations of
the methods incorporating uncertainty and band relevancy properties.

Such features allow the GPR family methods to go far beyond what is typically
available from parametric or nonparametric approaches [3]. Hyperparameter optimization
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is an important part of Gaussian process modeling, related to the reliability of the regression
model. In the standard GPR method, a conjugate gradient algorithm is used to determine
parameters, albeit this form of optimization is strongly reliant on the selection of the
initial guess, and it is difficult to determine the number of iterations [26]. Additionally, in
most cases of GPR estimation, hyperparameter optimization is not a convex optimization
problem, and so the gradient-based method can easily fall into the local optimum [27]. The
question which now arises is whether developing hyperparameter-optimized algorithms
leads to increased accuracy of biophysical variable retrieval using satellite imagery?

The main contribution of this paper hinges on the use of particle swarm optimization
(PSO), genetic algorithm (GA), tabu search (TS), and simulated annealing (SA) algorithms
to optimize the hyperparameters of the GPR model as opposed to the traditional gradient
method. The GPR-PSO, GPR-GA, GPR-TS, and GPR-SA hyperparameter-optimized algo-
rithms are proposed for the optimization of GPR models to overcome the limitations of the
conjugate gradient algorithm.

Compared to the conjugate gradient algorithm, the PSO, GA, TS, and SA algorithms
do not rely on the selection of an initial guess and can be used in addressing the problem
of global optimization with high calculation efficiency and few input parameters using a
simple principle. So, in this study, given different S2 band settings, the proposed GPR-PSO,
GPR-GA, GPR-TS, and GPR-SA algorithms and the kernel-based MLRAs, i.e., support
vector machine (SVR), kernel ridge regression (KRR), relevance vector machine (RVM) and
GPR family kernel methods (GPR and VH-GPR), together with the random forest (RF) and
artificial neural network (ANN), were evaluated for biophysical variables (i.e., LAI, fCover,
and biomass) retrieval. The associated uncertainty about the proposed algorithms and GPR
methods were also determined. On the premise that if relationships between reflectance
and biophysical variables are nonlinear, then nonlinear algorithms have an advantage
over linear algorithms for relationship extraction and biophysical variable retrieval [3,10];
nonlinear MLRAs were employed in this study. The data used for the experiments were
acquired from silage maize crop fields, sampled from the agricultural fields of Ghale-Nou
County, Tehran, Iran.

2. Materials and Methods
2.1. Study Area

Field experiments were conducted during the growing seasons of silage maize in the
Ghale-Nou County, Tehran, Iran (51◦24′–51◦35′E and 35◦23′–35◦36′N, Figure 1). The study
area is characterized by a flat morphology, an extent of 7 × 15 km, and dominated by
agricultural fields, predominantly silage maize (7500 ha). Two local silage maize cultivars
(Zea maize 704 and 706 single-crosses) were planted from mid-June to late-July, 2019, and
harvested from mid-September to late-October, 2019. Silage maize fields are irrigated
during the hottest months (July, August, and September). Field experiments included
30 fields of silage maize that were assessed per each elementary sampling unit (ESU). ESU
refers to a plot size compatible with a pixel size of about 20 × 20 m for S2. During the
experimental field period, the average annual humidity was 40%, and the minimum and
maximum temperatures were, respectively, 19.7 ◦C and 35.3 ◦C (daily mean temperature
approximately 27.5 ◦C), on a 120-day average basis [28] (“IRIMO”, 2019).

2.2. Field Data Measurements and Collections

Based on the map of silage maize farms (Figure 1) and previous years’ map/information
including soil texture, soil organic matter, and information provided by farmers at the
beginning of the silage maize growing season, a reasonable stratified sampling was used
for selecting ESUs with different silage maize varieties and sowing dates to cover as much
variability in the study area as possible [29].
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Figure 1. (a,b) illustrate the study area in Iran and Tehran Province, respectively; (c) the location of
the study area (Ghale-Nou County) and the location of field data collection (i.e., ESUs).

Thirty ESUs were identified for field sampling in the study area (Figure 1). LAI and
fCover were measured for each ESU using DHP and destructive protocols during the
growing season of silage maize from 12 July 2019 to 10 October 2019, with the subsequent
calculation of mean values for the two protocols. Biomass measurements of silage maize
were also carried out during the field data collection. The time interval between each
measurement ranged from 10 to 15 days (6-fold sampling for each ESU), attempting to
cover the phenology stages of silage maize (three to four leaves, eight to nine leaves,
twelve leaves, flowering, grain formation, and the start of grain-filling stages) (Figure 2). It
merits mention that due to delays in the plantation time, the field measurements of 27 July,
1 August, 11 August, and 16 August were carried out in the three-to-four-leaves stage for
certain cases. Accordingly, the time of the first sampling was set to three weeks after the
plantation on each farm. Therefore, ESUs involved different phenology stages, given the
asynchronous cultivation in different farms.
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2.2.1. DHP LAI/fCover Measurement

LAI and fCover measurements were carried out in 30 ESUs (6-fold sampling in each
ESU) during the growing season of silage maize, simultaneous with S2 data acquisition,
with a total of 180 measurements accounting for important phenological stages (Figure 2).
The same sampling scheme was used over each ESU, applying the guidelines of the
Validation of Land European Remote Sensing Instruments (VALERI) protocol (http://w3
.avignon.inra.fr/valeri/ (accessed on 10 May 2019)). The ESUs’ locations were situated far
from the farm borders, and the center of the ESU was geo-located using GPS for subsequent
matching. To characterize the spatial variability within each ESU, 9 to 12 photos were taken
based on the photography plan suggested for homogenous canopies [30]. LAI and fCover
were measured using digital hemispherical photographs (DHPs) taken with a Canon 5d
Mark II camera equipped with a FC-E8 fisheye lens (Figure 3). For error reduction in the
directional gap fraction estimates, the camera was placed at the top of a telescopic tripod to
keep the viewing direction downward and the canopy-to-sensor distance constant (~1.5 m)
during the growing season, following Claverie et al. [31]. The DHP was processed using
CAN-EYE V6.491 (http://www4.paca.inra.fr/can-eye (accessed on 20 October 2019)), to
provide estimates of LAI and fCover.
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2.2.2. Destructive LAI Measurement

Silage maize plant samples were acquired simultaneously with the S2 sensor readings
during the growing season. Four plants were destructively harvested from each ESU and
the length and width of each leaf were measured manually. The area of each individual leaf
was estimated based on the measured length and maximum width of each leaf multiplied
by 0.75. LAI was calculated by dividing the total leaf area of each plant by the sampling
area; the sampling area was estimated as sample numbers multiplied by row and plant
spacing [32]. Canopy cover was also derived using the Ritchie model from Equation (1) [33].

fCover = 1− exp(−K×LAI) (1)

where K is the extinction coefficient assumed to be 0.507643 for maize, based on in situ
DHP processing and the Beer–Lambert law [34].

2.2.3. Biomass Measurement

Biomass weight was measured for all samples in all phenology stages of silage maize
(4 plants per every 180 samples) via oven-drying. The samples were dried at a temperature
of 70 ◦C for a few days and biomass per unit area was calculated using Equation (2). The
calculated biomass in each ESU was used to extract the biophysical biomass using S2 imagery.

Biomass =
weight

(number of destructive samples× row distance× distance between plants in each row)
(2)

2.3. Remote Sensing Data

During the 2019 silage maize growing season, 15 S2 A/B (S2) images (almost all cloud-free)
were acquired from 12 July 2019 to 10 October 2019 over the study area (Figure 2). These images
were selected based on the phenological information of silage maize crop. The multispectral

http://w3.avignon.inra.fr/valeri/
http://w3.avignon.inra.fr/valeri/
http://www4.paca.inra.fr/can-eye
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information of ESA’s S2 satellites covers visible, near-infrared (VNIR), and short-wave infrared
(SWIR), and features four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial
resolutions. A level-2A image was produced using the Sentinel Application Platform (SNAP)
toolbox and a plugin called Sen2Cor.

2.4. Experimental Setup and Validation

To fit MLRA models with S2 spectral reflectance and LAI, fCover, and biomass mea-
surements, field data were collected for model training and validation. The spatial-temporal
estimation of fCover, LAI, and biomass was carried out using kernel-based MLRAs: SVR,
KRR, RVM, GPR, and VH-GPR. A description of these algorithms with associated references
is given in [35]. The hyperparameter-optimized GPR-SA, GPR-TS, GPR-GA, and GPR-PSO
were also developed by exploring the capacities of PSO, GA, TS, and SA to optimize the
GPR parameters (Figure 4). The performance of these models was compared to the RF
and ANN algorithms (multilayer perceptron using back-propagation learning algorithm).
The optimal number for trees in RF was obtained, where increases in the number of trees
ensured no changes in the estimated error. Also, due to the limited number of output layers,
only one hidden layer was adapted, and the Levenberg–Marquardt function was used for
ANN training.
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Figure 4. Flowchart of LAI, fCover, and Biomass estimations using kernel-based MRLA methods, RF,
ANN and developed GPR-SA, GPR-TS, GPR-GA and GPR-PSO. ESU, LAI, GPR, SA, TS, GA, PSO, RF,
ANN and k-fold C-V in the flowchart are abbreviations of elementary sampling unit (ESU), leaf area
index (LAI), gaussian process regression (GPR), simulated annealing (SA), tabu search (TS), genetic
algorithm (GA), particle swarm optimization (PSO), random forest (RF), artificial neural network
(ANN), and k-fold cross-validation (k-fold C-V).

Regarding the usage of multispectral data into GPR, Verrelst et al. [10] concluded that
since the individual bands entered into GPR always lead to superior results, there is no need
to calculate vegetation indices before entering into a GPR. That is also the pursued approach
here. In the case of hyperspectral data, the effect of multicollinearity starts to degrade the
prediction capacity; therefore, applying a dimensionality reduction method, e.g., principal



Remote Sens. 2023, 15, 3690 7 of 17

component analysis (PCA), is preferred [36]. Here, field data sampling (i.e., 180 samples)
according to two Sentinel configurations (i.e., S2–10 m (4 bands with a spatial resolution of
10 m) and S2–20 m (10 bands with a spatial resolution of 20 m)) were divided into training
and validation datasets.

The MLRA methods were evaluated based on a k-fold (10-fold) cross-validation tech-
nique, where the dataset was randomly divided into k equal-sized sub-datasets. Here, k-1
sub-datasets were selected as the training dataset and a single k sub-dataset was utilized as the
validation dataset for model testing. The cross-validation process was repeated k times, with
each k sub-dataset used as a validation dataset only once, and the results of k iterations were
combined to produce a single estimation value. The performance or the predictive power
of the developed models was evaluated through absolute root-mean-squared error (RMSE)
to assess accuracy, and the coefficient of determination (R2) to account for the goodness-
of-fit. Subsequently, the best algorithm was selected. To evaluate the MLRA methods by
the k-fold cross-validation technique, the average and standard deviation of RMSE and R2

were calculated in cross-validation mode (i.e., RMSE C-V (mean), R2
C-V (mean and standard

deviation)). Finally, the maps of LAI, fCover, biomass, and their corresponding uncertainty
(using standard deviation (SD)), and relative uncertainty (using coefficient of variation (CV;
or relative standard deviation/uncertainty, i.e., CV = SD/µ × 100, where µ is the predictive
mean [17])) were created using the selected algorithm. The entire workflow was developed in
Matlab (2017).

2.5. Hperparameter-Optimized GPR–PSO, GPR-GA, GPR-TS, and GPR-SA Algorithms

The GPR algorithm provides a probabilistic approach for learning generic regres-
sion problems with kernels. This model establishes a relation between the input (B-band
spectra) x and the output variable (canopy variable) y. Conjugated gradient ascent is
typically used for model optimization in the GPR algorithm to estimate hyperparameters θ
(ϑ, σn, and σb) (where ϑ is a scaling factor (signal scale), σn is the standard deviation of
the (estimated) noise, and a σb is the length scale per input bands (features), b = 1B) (The
length scale describes the smoothness of a function.) by maximizing the negative log
marginal likelihood (also called evidence) of the observations. However, this optimization
method is heavily dependent on the initial guess and number of iterations and can easily
fall into a local optimum due to the use of partial derivatives [27]. To achieve superior
performance in optimizing hyperparameters during the training phase, the PSO, GA, TS,
and SA optimization algorithms were considered instead of the traditional gradient method
(i.e., conjugated gradient ascent method) and proposed GPR-PSO, GPR-GA, GPR-TS, and
GPR-SA algorithms. The main advantages of these approaches include convenient proce-
dural treatment, simple and fast implementation, memory function, convergence rate, and
quality of optimized designs [26].

In hyperparameter-optimized GPR algorithms, the process of finding the optimal
solution (optimal features) can be repeated until the ultimate criterion (higher accuracy
in estimating biophysical variables) is met. The marginal probability was considered
as the cost function, and the variation in the GPR algorithm parameters (or the meta-
heuristic algorithm search space) was tested and set between 0–10, 0–20, and 0–100 in
order to develop the proposed algorithms (i.e., GPR-PSO, GPR-GA, GPR-TS, and GPR-SA).
Accordingly, the cost function in each iteration was calculated using k-fold cross-validation
on training and validation data. The coding of meta-heuristic algorithms was performed in
MATLAB (2017).

Steps of the GPR-PSO, GPR-GA, GPR-TS, and GPR-SA Algorithms

In summary, the steps of the proposed GPR-PSO, GPR-GA, GPR-TS, and GPR-SA
algorithms are:

Step 1: Choose the initial parameters of the PSO, GA, TS, and SA and GPR mod-
els in each hyperparameter-optimized GPR algorithm: PSO = [Npop, max_iteration, w,
damping rate, c1, c2]; GA= [Npop, max_iteration, crossover percentage (Pc), mutation
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percentage (Pm), and mutation rate (Mu)]; TS = [max_iteration, number of neighbors];
SA = [max_iteration, number of neighbors, T0, damping rate]; GPR = [var_min, var_max].
GPR standard algorithms are available at https://github.com/IPL-UV/simpleR (accessed
on 20 September 2021).

Step 2: Generate a random initial population and initialize the θ (ϑ, σn, and σb) parameters
of GPR algorithm using length scales (σb) = log((max(X)−min(X))/2); SignalPower (ϑ) = var(Y)
and NoisePower (σn) = SignalPower/4. Construct the composite Cov (or kernel) function by
adopting an RBF kernel for signal relations (covSum) with adaptive lengthscale (covSEard), and
a diagonal noise covariance matrix (covNoise) based on SimpleR toolbox acquired from [37].

Step 3: Calculate the cost value (or function) using Equation (3),

log log p(y |x, θ) = −1
2

yT
(

K + σ2
n I
)−1

y− 1
2

log log
(

det det
(

K + σ2
n I
) )
− n

2
log log (2π) (3)

where K is a kernel function.
Step 4: Update algorithms (with respect to the positions of population in PSO;

crossover, mutation, and selection in GA; temperature in SA; and tabu list in TS).
Step 5: Check the convergence criteria: if the stopping criterion is satisfied, terminate the

algorithm and return to the optimal hyperparameters of the GPR model; otherwise, return to
Step 3. Figure 5 shows the flowchart of GPR-SA (Figure 5a), GPR-TS (Figure 5b), GPR-GA
(Figure 5c), and GPR-PSO (Figure 5d) algorithms for modeling biophysical variables.
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3. Results
3.1. Kernel-Based MLRA, RF, ANN, and GPR-PSO, GPR-GA, GPR-TS, and GPR-SA
Method Evaluation

The R2 and RMSE estimation results were analyzed using different kernel-based
algorithms, as well as the algorithms developed in this study. The results were later
compared with RF and ANN as presented in Figure 6a–c. Since a 10-fold cross-validation
method was used to validate the algorithms, the corresponding results are also presented
as 10-fold mean and standard deviation.

Lower R2
C-V standard deviation values signify higher robustness of the algorithm [10].

According to Figure 6, compared with other kernel-based algorithms, GPR-PSO has higher
computational accuracy and robustness with higher R2

C-V (mean), lower standard de-
viation, and lower RMSE C-V in both the 10 m and 20 m band groups of S2. Using this
algorithm, it is possible to accurately estimate LAI, fCover, and biomass by combining the
four 10 m S-2 bands. Meanwhile, adding bands in the red-edge and SWIR ranges of S2–20
m can improve conformity and accuracy. Among all the algorithms applied to the two
S2-band groups, GPR-PSO responded more accurately and robustly in the 20 m S2-band
group in estimating LAI, fCover, and biomass with R2

C-V (mean) of 0.917, 0.931 and 0.882,
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RMSE C-V of 0.627, 0.078, and 1.99, and standard deviation of R2
C-V equal to 0.029, 0.02 and

0.041, respectively. GPR-GA was ranked second for LAI, fCover, and biomass estimation in
both band groups with higher accuracy and robustness and lower RMSE. The performance
of algorithms in the 20 m band group (including red-edge and SWIR ranges), compared
with the 10 m band group, showed an increased R2

C-V (mean), a reduced RMSE and R2
C-V

(standard deviation), and an improved accuracy in LAI, fCover, and biomass estimation.
Only in the 10 m band group did the RF and ANN algorithms, rather than GPR, show
more similar R2 values for different k-fold scenarios in the estimation of LAI. However,
the computational accuracy of these algorithms (i.e., RF and ANN) was lower than that of
kernel-based algorithms in the 10 m and 20 m band groups.
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Figure 6. Assessment of kernel-based MLRAs and developed algorithms compared to RF and ANN
in LAI, fCover, and biomass estimation (in 10 and 20 m band groups) by R2

C-V (mean and standard
deviation) (a,b), respectively, RMSEC-V (c), and Runtime (d). The RMSE units for LAI, fCover, and
biomass were m2/m2, %, and ton/ha, respectively. R2

C-V-(µ and σ) and RMSEC-V-(µ) were calculated
using µ and σ of results in C-V mode (cross-validation).

The processing speed is also of the essence for an algorithm to be a good candidate
in the operational cycle of estimating biophysical variables over a large area. The runtime
(training and validation processing time) calculations presented in Figure 6d are related
to a system running Windows 8.1, Intel® Core™ i7-2640M CPU @ 2.80GHz, 4.00 GB RAM
in the MATLAB environment. In terms of runtime, the KRR algorithm was the fastest,
whereas the SVR algorithm required a longer time for model development in estimating
LAI, fCover, and biomass. Only one hyperparameter is involved in the model’s structure
through the KRR algorithm, which makes it simpler than other algorithms. Although
the RVM algorithm required more runtime than the KRR, accuracy values were similar
for both algorithms in the estimation of LAI, fCover, and biomass. GPR was the second
fastest algorithm, which, given its high processing speed and accuracy, showed higher
computational efficiency in LAI, fCover, and biomass estimation.
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Hyperparameter-optimized GPR algorithms developed in this study require more
runtime, especially training time, compared with the basic GPR algorithm due to the
structure of their optimization method. They are, however, more accurate in LAI, fCover,
and biomass estimation.

3.2. Spectral Band Selection for Vegetation Property Retrieval

Another key feature of the GPR algorithm is its ability to assess the importance of
bands used in the estimation of biophysical variables thanks to the Automatic Relevance
Determination (ARD) covariance function. The ARD provides a separate length scale for
each predictor and so allows band relevance determination. Lower values of the length
scale (σ) parameter represent higher information content for that band (see also [24]). The
bands relevance in model development of LAI, fCover, and biomass variables showed that
red-edge and SWIR bands are more effective in the estimation process (Figure 7).
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Figure 7. Significance values (length scale (σ)) of S2 bands in biophysical variable extraction generated
by the GPR model: the lower the length scale (σ), the more significant the band.

3.3. Biophysical Variable Retrieval and Pixel-Based Uncertainty Mapping Based on GPR-PSO

In addition to its higher accuracy and robustness, GPR-PSO is significant, given its
ability to provide information on the uncertainty of pixel-based estimation of biophysical
variables. Considering the higher accuracy and robustness of GPR-PSO in the 20 m S2 band
group (Figure 6), this algorithm is used for the mapping of LAI, fCover, and biomass of
silage maize, the uncertainty around it (standard deviation), and the coefficient of variation
(CV; or relative standard deviation) at the regional level (Figure 8).

S2 image results from 26 August 2019 are presented in Figure 8, marking the flowering
of some silage maize fields planted in mid-late June. However, since all farms are not
cultivated at the same time, some fields have not yet reached the flowering stage. The
spatial variability of LAI, fCover, and biomass values can be seen clearly in these figures.
Fields with LAI > 3, fCover > 0.7, and biomass > 7, and areas of 59.5%, 64%, and 44% are
located in the central areas of the region, respectively in Figure 8a,d,g. Farms with low
LAI are mostly planted at a later time, and those with values close to zero are fallow lands.
Figure 8b,e,h present the pixel-based spatial variability of uncertainty (SD) in LAI, fCover,
and biomass estimation, respectively. The standard deviation or uncertainty of the majority
of farms (for LAI, fCover, and biomass with an area of 96%, 98%, and 71%, respectively)
was less than 0.7, while SD values higher than 0.7 were obtained in areas marked by a circle
(Figure 8b,e,h) in 4%, 2%, and 29% of the respective fields for LAI, fCover, and biomass
(Table 1).
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S2 image results from 26 August 2019 are presented in Figure 8, marking the flower-
ing of some silage maize fields planted in mid-late June. However, since all farms are not 

Figure 8. LAI pixel-based map (a), uncertainty (SD) (b), and CV (c); fCover pixel-based map (d), un-
certainty (SD) (e), and CV (f); and Biomass pixel-based map (g), uncertainty (SD) (h), and CV (i) using
GPR-PSO in the S2 20 m band group (26 August 2019). Red circles in figures (b,e,h) mark the position of
areas with SD > 0.7. See Figure 1 for the geo-information.
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Table 1. Summarized results of pixel-based map and corresponding uncertainties using GPR-PSO in
the S2 20 m band group (26 August 2019) based on Figure 8.

Area of Pixel-Based Map and Its Uncertainty [%]

µ %
Uncertainty (SD) Uncertainty (CV)

<0.7 [%] >0.7 [%] <20 [%] <30 [%]

LAI
>3 [m2/m2] 59.5

96 4 67 76<3 [m2/m2] 40.5

fCover
>0.7 [%] 64

98 2 84 89<0.7 [%] 36

Biomass
>7 [ton/ha] 44

71 29 57 74<7 [ton/ha] 56

Figure 8c,f,i present the spatial variability of CV for a more significant analysis of
uncertainty in LAI, fCover, and biomass estimation and assessment of the GPR-PSO robust-
ness using a pixel-based method. The uncertainty threshold proposed by GCOS is less than
20% [38], while the uncertainty obtained for LAI, fCover, and biomass estimation using
this method in the study area was less than 20% in 67%, 84%, and 57% of the fields and
less than 30% in 76%, 89%, and 74% of the fields, respectively, indicating the algorithm’s
high robustness (Table 1). Only 7% of the croplands led to a CV of more than 100%, which
classifies them as fallow lands. Meanwhile, higher CV values were observed in other
fields planted at a later time, in which soil was visible in the background alongside plants.
Figures 9 and 10 show the pixel-based spatio-temporal variations of the fCover and biomass
calculated using the GPR-PSO algorithm in the time series of satellite images. The zoomed
images in Figures 9 and 10 show a single experimental field.
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Figure 9. Pixel-based spatio-temporal variations in fCover (%) calculated using the time series satellite
images (taken respectively on 12 July, 27 July, 11 August, 26 August, 5 September, and 20 September,
which are only some of the sampling dates). In subimage 6 of Figure 9, the zoomed field is reaped,
resulting in decreased fCover values. See Figure 1 for the geo-information.
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4. Discussion

The correlation between the measured LAI, fCover, and biomass values and the
recorded reflectance in the 10 and 20 m S2 band groups signifies a nonlinear relationship.
Therefore, nonlinear, nonparametric algorithms were used for the estimation of biophysical
variables under study. As acknowledged by Verrelst et al. [3,10], linear nonparametric
algorithms such as PLSR and PCR cannot estimate such nonlinear relationships. So, the R2

and RMSE estimation results were analyzed using different kernel-based algorithms, as
well as the algorithms developed in this study.

Based on the obtained results and according to Verrelst et al. [10], i.e., lower R2
C-V

standard deviation values signify higher robustness of the algorithm, GPR-PSO produced
superior computational accuracy and robustness over the other kernel-based algorithms,
RF and ANN, in both the 10 m and 20 m band groups of S2. Adding red-edge and SWIR
ranges in the 20 m band group of S2 led to an increased R2

C-V (mean), a reduced RMSE and
R2

C-V (standard deviation), and an improved accuracy of algorithms in LAI, fCover, and
biomass estimation. Among all the tested algorithms, GPR-PSO appeared more accurate
and robust in the 20 m S2-band group in estimating LAI, fCover, and biomass with R2

C-V
(mean) of 0.917, 0.931 and 0.882, RMSE C-V of 0.627, 0.078, and 1.99, and standard deviation
of R2

C-V equal to 0.029, 0.02 and 0.041, respectively. Hyperparameter-optimized GPR
models developed in this study are more accurate in LAI, fCover, and biomass estimation;
however, they require more runtime as compared with the basic GPR algorithm, especially
in training time, due to the structure of their optimization method.

The herein-developed GPR models also outperformed the RF and ANN models in
accuracy, which makes them better candidates in applied research and large-scale studies.
This superiority is largely due to the kernel function used in kernel-based algorithms, espe-
cially in GPR, as it estimates nonlinear relations with higher accuracy. The superiority of
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GPR over other kernel-based algorithms also confirms the higher accuracy of the parameter-
tuning method in this algorithm, as opposed to SVR and the absence of optimization in
KRR and RVM.

The herein-presented superiority of GPR was also confirmed by Verrelst et al. [10,15],
Upreti et al. [39] and Rosso et al. [40], even though the present study investigated the total
growth period of silage maize using S2 real data, whereas Verrelst et al. [10,15] used S2
simulated data from Barrax, Spain to investigate various plants by sampling at only one
stage of growth. Upreti et al. [39] and Rosso et al. [40] processed S2 real data for retrieving
biophysical variables in certain private fields by sampling only some growth stages of
wheat and barley. Upreti et al. [39] also introduced kernel-based algorithms, specifically
GPR, which outperformed ANN and can be used as an alternative to ANN in operational
and applied programs.

Assessing the ARD length scale band relevance in the GPR model development of the
targeted biophysical variables revealed that red-edge and SWIR bands are more effective in
the estimation process. Similarly, the red edge was selected as among the most sensitive
spectral bands to leaf chlorophyll content (LCC), confirmed by Verrelst et al. [24], for
assessing band sensitivity of hyperspectral data to biophysical variables such as LCC and
LAI by the GPR-based band analysis tool (GPR-BAT). The findings of [24] also indicated
that the red edge region, NIR and SWIR contribute to the highest impact of LAI, which
was also confirmed by Kira et al. [41]. In our study, this may be a satisfactory reason for
why the mentioned bands were selected as the most important bands in variable retrieval
of crops using the length scale (σ) parameter of GPR. Therefore, to overcome limitations
related to multicollinearity and noisy bands, spectral band selection can be obtained by the
length scale (σ) parameter of GPR for optimal biophysical variable retrieval.

Another feature assessed in this study is related to the spatial variability of LAI, fCover,
and biomass values. Due to the higher accuracy and robustness of GPR-PSO in the 20 m
S2 band group, this algorithm is used for the pixel-based estimation of LAI, fCover, and
biomass of silage maize, the uncertainty around it, and the coefficient of variation (Figure 8).
The standard deviation or uncertainty (SD) of the majority of farms (for LAI, fCover, and
biomass with an area of 96%, 98% and 71%, respectively) was less than 0.7 (Table 1). The
relative standard deviation or uncertainty (CV) obtained for LAI, fCover, and biomass
estimation using this method in the study area was less than 20% in 67%, 84%, and 57% of
the fields and less than 30% in 76%, 89%, and 74% of the fields, respectively; indicating the
algorithm’s high robustness (Table 1). The capability of the GPR algorithm for estimating
biophysical variables has been evaluated in some comparison studies (e.g., [10,14,15,24,42]),
which confirms the results of the present study and the method’s efficiency.

5. Conclusions

The present study proposes the hyperparameter-optimized GPR algorithms for spatio-
temporal estimation of biophysical variables using S2 images. The synergetic use of
GPR-PSO and red-edge and SWIR bands of S2 enhanced the accuracy of the estimation
of LAI, fCover, and biomass at the 20-m spatial resolution. The superiority of the kernel-
based algorithms, especially GPR-PSO, over ANN and RF was driven by its kernel-based
execution mode and the structure of the PSO meta-heuristic algorithm, which uses both
personal flying experience and the experience of other particles to find optimal values. The
relative uncertainties over the majority of the study area were below the 20% requirements
proposed by GCOS, pointing to the robustness of the GPR-PSO algorithm in estimating
LAI, fCover, and biomass. Therefore, considering the accuracy, robustness, and uncertainty
associated with the estimation of the agricultural fields’ biophysical variables, it can be
concluded that the developed hyperparameter-optimized GPR algorithms applied to S2
imagery make it possible to examine the spatio-temporal variability of LAI, fCover, and
biomass in agricultural fields. Finally, toolbox development of hyperparameter-optimized
GPR algorithms will allow users to develop accurate and generically applicable biophysical
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retrieval algorithms; for instance, the optimization algorithms are foreseen to become part
of ARTMO’s Machine Learning Regression Algorithm (MLRA) toolbox [43].
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