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Abstract: This paper presents a critical analysis of image-based 3D reconstruction using neural
radiance fields (NeRFs), with a focus on quantitative comparisons with respect to traditional pho-
togrammetry. The aim is, therefore, to objectively evaluate the strengths and weaknesses of NeRFs
and provide insights into their applicability to different real-life scenarios, from small objects to
heritage and industrial scenes. After a comprehensive overview of photogrammetry and NeRF
methods, highlighting their respective advantages and disadvantages, various NeRF methods are
compared using diverse objects with varying sizes and surface characteristics, including texture-
less, metallic, translucent, and transparent surfaces. We evaluated the quality of the resulting 3D
reconstructions using multiple criteria, such as noise level, geometric accuracy, and the number of
required images (i.e., image baselines). The results show that NeRFs exhibit superior performance
over photogrammetry in terms of non-collaborative objects with texture-less, reflective, and refrac-
tive surfaces. Conversely, photogrammetry outperforms NeRFs in cases where the object’s surface
possesses cooperative texture. Such complementarity should be further exploited in future works.

Keywords: photogrammetry; neural radiance fields; NeRF; 3D reconstruction; quality; accuracy

1. Introduction

In the fields of computer vision and photogrammetry, high-quality 3D reconstruction
is an important topic that has many applications, such as quality inspection, reverse
engineering, structural monitoring, digital preservation, etc. However, low-cost, portable,
and flexible 3D measuring techniques that provide high geometric accuracy and high-
resolution details have been in great demand for some years. Existing methods for 3D
reconstruction can be broadly categorized as either contact or non-contact techniques [1].
In order to determine the precise 3D shape of an object, contact-based techniques often
employ physical tools like a caliper or a coordinate measurement machine. While precise
geometrical 3D measurements are feasible and well-suited for many applications, they do
have some drawbacks, such as the length of time required to acquire data and perform
sparse 3D reconstruction, the limitations of the measuring system, and/or the need for
expensive instrumentation, which limits their use to specialized laboratories and projects
with unique metrological specifications. Non-contact technologies, on the other hand,
allow for accurate 3D reconstruction without the associated drawbacks. Most researchers
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have focused on passive image-based approaches due to their low cost, portability and
flexibility over a wide range of application fields, including industrial inspection and
quality control [2–5] as well as heritage 3D documentation [6–9].

Among image-based 3D reconstruction approaches, photogrammetry is a widely rec-
ognized method that can create a dense and geometrically accurate 3D point cloud of a
real-world scene from a set of images taken from different perspectives. Photogrammetry can
handle a wide range of scenes, from indoor to outdoor environments and has a proven track
record in multiple projects with many commercial and open-source tools available [10,11].
However, photogrammetry has its limitations, particularly when it comes to the 3D measure-
ment of non-collaborative surfaces due to its sensitivity to textural properties of objects, and
it can struggle with the generation of highly detailed 3D reconstructions. The presence of
specular reflections in images, for instance, can result in noisy results for highly reflective
and weakly textured objects, while transparent objects can pose significant challenges due to
texture changes induced by refraction and mirror-like reflections [12–15].

More recently, a novel approach for the 3D reconstruction from image datasets based
on Neural Radiance Fields (NeRFs) has attracted significant attention in the research
community [16–22]. This approach is capable of producing novel views of complex scenes
by optimizing a continuous scene function from a set of oriented images. NeRF works by
training a fully connected network, referred to as a neural radiance field, to replicate the
input views of a scene through the use of a rendering loss (Figure 1).
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As shown in Figure 1, the neural network takes as input a set of continuous 5D
coordinates consisting of spatial locations (x, y, z) and viewing directions (θ, φ), and
it outputs the volume density (σ) and view-dependent emitted radiance (RGB) in each
direction at each point. The NeRF is then rendered from a certain perspective, and 3D
geometry can be derived, e.g., in the form of a mesh by marching camera rays [23].

Despite their recent popularity, however, there remains a need for a critical analysis of
NeRF-based methods in comparison to the more conventional photogrammetry in order
to objectively quantify the quality of resulting 3D models and to fully understand their
strengths and limitations.
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Aims of This Research

NeRF methods have recently emerged as a promising alternative to photogrammetry
and computer vision in the field of image-based 3D reconstruction. Therefore, this research
seeks to thoroughly analyze NeRF approaches for 3D reconstruction purposes. We evaluate
the accuracy of the 3D reconstruction generated using NeRF-based techniques and via
photogrammetry on a wide variety of objects ranging in size and surface characteristics
(well-textured, texture-less, metallic, translucent and transparent). We examined the data
generated by each technique in terms of surface deviation (noise level) and geometric accu-
racy. The final aim is to assess the applicability of the NeRF method in a real-world scenario
and to provide objective evaluation metrics regarding the advantages and limitations of
NeRF-based 3D reconstruction approaches.

The paper is organised as follows: an overview of previous research activities for
3D reconstruction using both photogrammetric-based and NeRF-based approaches is
presented in Section 2. Section 3 presents the proposed quality evaluation pipeline and
employed datasets, whereas Section 4 reports the evaluation and comparison results.
Finally, conclusions and future research plans are provided in Section 5.

2. The State of the Art

In this section, a comprehensive overview of previous research on 3D reconstruc-
tion is conducted, incorporating both photogrammetric and NeRF-based approaches and
considering their application to non-collaborative surfaces (reflective, textureless, etc.).

2.1. Photogrammetric-Based Methods

Photogrammetry is a widely accepted method for 3D modeling of well-textured objects
and is capable of accurately and reliably recovering the 3D shape of an object through multi-
view stereo (MVS) methods. Photogrammetric-based methods [19,24–30] either rely on
feature matching for depth estimation [27,28] or use voxels to represent shapes [24,29,31,32].
Learning-based MVS methods can also be used, but they typically replace certain parts
of the classic MVS pipeline, such as feature matching [33–36], depth fusion [37,38], or
multi-view image depth inference [39–41]. However, objects with texture-less, reflective, or
refractive surfaces are challenging to reconstruct because all photogrammetric methods
require matching correspondences across multiple images [14]. To address this, various
photogrammetric methods have been developed to reconstruct these non-collaborative
objects. For texture-less objects, solutions such as random pattern projection [13,42,43]
or synthetic pattern [14,44] have been suggested. However, these methods struggle with
highly reflective surfaces with strong specular reflections or interreflection [43]. Other
methods like cross polarisation [7,45] and image pre-processing [46,47] have been used for
reflective or non-collaborative surfaces, but some techniques can potentially smooth off
surface roughness and affect texture consistency across views [48,49]. Photogrammetry
is also utilized in hybrid methods [50–53], where MVS approaches are used to generate a
sparse 3D shape that can serve as a base for high-resolution measurements using Photo-
metric Stereo (PS). Conventional [52,54,55] and learning-based [56–58] PS methods are also
used to understand the image irradiance equation and retrieve the geometry of the imaged
object but specular surfaces are still challenging for all image-based methods.

2.2. NeRF-Based Methods

Synthesizing photo-realistic images and videos is at the heart of computer graphics
and has been the focus of decades of research [59]. Neural rendering is a learning-based
class of image and video generation approach to control scene properties (e.g., illumination,
camera parameters, pose, geometry, appearance, etc.). Neural rendering combines deep
learning methods with physical knowledge from computer graphics to achieve controllable
and photo-realistic (3D) models of scenes. Among them, NeRF, first proposed by Mildenhall
et al. in 2020, is a method for rendering new views and reconstructing 3D scenes using an
implicit representation (Figure 1). In the NeRF approach, a neural network is employed to
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learn the 3D shape of an object from 2D images. The radiance field, as defined in Equation
(1), captures the color and volume density for each point in the scene from every possible
viewing direction:

F(X, d) ====> (c, σ) (1)

The NeRF model utilizes a neural network representation where X represents the 3D
coordinate of the images, d represents the azimuthal and polar viewing angles, c represents
color and σ represents the volume density of the scene. In order to ensure multi-view
consistency, the prediction of σ is designed to be independent of the viewing direction,
while the color c can vary based on both the viewing direction and position. To achieve
this, a Multi-Layer Perceptron (MLP) is employed in two steps. In the first step, the MLP
takes X as input and outputs both σ and a high-dimensional feature vector. The feature
vector is then combined with the viewing direction d and passed through an additional
MLP, which produces the color representation c.

The original NeRF implementation, as well as subsequent methods, utilized a non-
deterministic stratified sampling approach, which is described by Equations (2)–(4). This
method involved dividing the ray into N equally spaced bins and uniformly drawing a
sample from each bin:

C(r) =
N

∑
i=1

αiTici (2)

Ti = e−∑i−1
j=1 σjδj (3)

αi = 1− eσiδi (4)

where δi denotes the distance between the consecutive samples (i and i + 1), while σi
and ci represent the estimated density and color values along the sample point (i). The
transparency or opacity αi at sample point (i) is computed also using Equation (4).

Successive methods [60–62] have also incorporated the estimated depth, as expressed
in Equation (5), to impose restrictions on densities, making them resemble delta-like
functions at the surfaces of the scene, or to enforce smoothness in depth:

D(r) =
N

∑
i=1

αitiTi (5)

To optimize the MLP parameters, a square error photometric loss is used for each pixel:

M = ∑
r∈R

∥∥C− Cgt
∥∥2

2 (6)

where the variable Cgt(R) represents the ground truth color of the pixel in the training
image that corresponds to the ray r, while R refers to the batch of rays associated with the
image to be synthesized. It should be noted that the learned implicit 3D representation
of an NeRF is designated for view rendering. To obtain the explicit 3D geometry, depth
maps for different views need to be extracted by taking the maximal likelihood of depth
distribution for each ray. These depth maps can then be fused to derive point clouds or fed
into the Marching Cube [23] algorithm to derive 3D meshes.

Although NeRF provides an alternative solution for 3D reconstruction compared to
traditional photogrammetry methods and can produce promising results in situations
where photogrammetry may fail to deliver accurate results, it still faces several limitations,
as reported by different authors [63–68]. Some of the main issues from a 3D metrological
perspective that need to be considered include:
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(1) The resolution of the generated neural renderings (afterward converted into a 3D
mesh) can be limited by the quality and resolution of the input data. In general, higher-
resolution input data will result in a higher-resolution 3D mesh, but the tradeoff is
increased computational requirements.

(2) Generating a neural rendering (and then a 3D mesh) using NeRF can be computation-
ally intensive, requiring significant amounts of computing power and memory.

(3) The general inability to accurately model the 3D shape of non-rigid objects.
(4) The original NeRF model is optimized based on a per-pixel RGB reconstruction loss,

which can result in a noisy reconstruction as an infinite number of photo-consistent
explanations exist when using only RGB images as input.

(5) NeRF generally requires a large number of input images with small baselines to gen-
erate an accurate 3D mesh, especially for scenes with complex geometry or occlusions.
This can be a challenge in situations where images are difficult to acquire or when
computational resources are limited.

To face the above issues, researchers have proposed several modifications and ex-
tensions to the original NeRF method in order to improve performance and 3D results.
Tancik et al. [69] and Sitzmann et al. [70] adopted the position encoding operation with a
different frequency to NeRFs in order to improve the resolution of the neural rendering
outcome since high-frequency representation capacity in NeRFs is insufficient. Following
this, other approaches have focused on improving the efficiency and resolution of the
neural rendering outcome in different ways, including model acceleration [20,71], compres-
sion [72–74], relighting [75–77], and View-Dependence Normalization [78] (Zhu et al., 2023),
or high-resolution 2D feature planes [68]. Müller et al. [20] introduced the concept of instant
Neural Graphics Primitives with a Multiresolution Hash Encoding, which allows for fast
and efficient generation of 3D models. Barron et al. [64,79] proposed that Mip-NeRF, a mod-
ified version of the original NeRF, allows for the representation of scenes on continuously
valued scales. Mip-NeRF greatly increases the capacity of NeRF to emphasize fine details by
efficiently rendering anti-aliased conical frustums instead of rays. However, limitations of
the method may include the difficulty in training and issues with computational efficiency.
Chen et al. [72] presented a new method called Tensorf for modeling and reconstructing
the radiance fields of a scene as a 4D tensor. This approach represents a 3D voxel grid with
per-voxel multi-channel features. In addition to providing superior rendering quality, this
method achieves much lower memory usage compared to previous and contemporary
methods. Yang et al. [80] presented a fusion-based approach called PS-NeRF that combines
the strengths of NeRF with photometric stereo methods. This method aims to address the
limitations of traditional photometric stereo techniques by utilizing NeRF’s capability to
reconstruct a scene, ultimately leading to an improved resolution of the resultant mesh.
Reiser et al. [68] introduced Memory-Efficient Radiance Field (MERF) representation, which
allows for the fast rendering of large-scale scenes by utilizing a sparse feature grid and
high-resolution 2D feature planes. Li et al. [21] introduced Neuralangelo, an innovative
method that utilizes multi-resolution 3D hash grids and neural surface rendering to achieve
superior results in recovering dense 3D surface structures from multi-view images, enabling
highly detailed large-scale scene reconstruction from RGB video captures.

Some approaches [67,81–85] have been proposed that extend NeRF to a dynamic
domain. These approaches make it possible to reconstruct and render images of objects
while they are undergoing rigid and non-rigid motions from a single camera that is moving
around the scene. For example, Yan et al. [84] introduced a surface-aware dynamic NeRF
(NeRF-DS) and a mask-guided deformation field. By incorporating surface position and
orientation as conditioning factors in the neural radiance field function, NeRF-DS improves
the representation of complex reflectance properties in specular surfaces. Additionally,
the use of a mask-guided deformation field enables NeRF-DS to effectively handle large
deformations and occlusions occurring during object motion.

To improve the accuracy of 3D reconstruction in the presence of noise, particularly
for smooth and texture-less surfaces, some studies incorporated various priors into the
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optimization process. These priors include semantic similarity [86], depth smoothness [60],
surface smoothness [87,88], Manhattan world assumptions [89], and monocular geometric
priors [90]. In contrast, the NoPe-NeRF method proposed by Bian et al. [91] uses mono-
depth maps to constrain the relative poses between frames and regularize NeRF’s geometry.
This method results in better pose estimation, which improves the quality of novel view
synthesis and geometry reconstruction. Rakotosaona et al. [92] introduced a novel and
versatile architecture for 3D surface reconstruction, which efficiently distills volumetric
representations from NeRF-driven approaches into a Signed Surface Approximation Net-
work. This approach enables the extraction of accurate 3D meshes and appearance while
maintaining real-time rendering capabilities across various devices. Elsner et al. [93] pre-
sented Adaptive Voronoi NeRFs, a technique that enhances the efficiency of the process by
employing Voronoi diagrams to partition the scene into cells. These cells are subsequently
subdivided to effectively capture and represent intricate details, leading to improved per-
formance and accuracy. Similarly, Kulhanek and Sattler [94] introduced a new radiance
field representation called tera-NeRF, which successfully adjusts to 3D geometry priors
given as a sparse point cloud for exploiting more details. However, it is worth noting that
the quality of rendered scenes may differ depending on the density of the point cloud in
various regions.

Some works aimed to reduce the number of input images [60,70,78,86,90,95].
Yu et al. [95] presented an architecture that conditions NeRF on image inputs using a
fully convolutional method, enabling the network to learn a scene prior to being trained
on multiple scenes. This allows it to perform feed-forward view synthesis from a small
number of viewpoints, even as few as one. Similarly, Niemeyer et al. [60] introduced a
method to sample unseen views and regularize the appearance and geometry of patches
generated from these views. Jain et al. [86] proposed DietNeRF to enhance few-shot quality
via an auxiliary semantic consistency loss that boosts realistic renderings of new positions.
DietNeRF learns from individual scenes to accurately render input images from the same
position and to match high-level semantic features across diverse, random poses.

In the field of cultural heritage, only a limited number of publications have explic-
itly investigated and recognized the potential of NeRFs for 3D reconstruction, digital
preservation and conservation purposes [96,97].

3. Analysis and Evaluation Methodology

The main goal is to conduct a critical evaluation of NeRF-based methods with respect
to conventional photogrammetry by objectively measuring the quality of resulting 3D
data. To accomplish this, a variety of objects and scenes with different sizes and surface
characteristics, including well-textured, texture-less, metallic, translucent, and transparent,
are considered (Section 3.3). The proposed evaluation strategy and metrics (Sections 3.1
and 3.2) should help researchers to understand the strengths and limitations of each
approach and could be adopted for quantitative evaluations of newly proposed methods.
All experiments are based on the SDFStudio [98] and Nerfstudio [22] frameworks. It is
worth reminding that the NeRF output is a neural rendering; therefore, a marching cube
approach [23] is used to create a mesh model from the different depth maps of each view. A
point cloud is then extracted from the mesh vertices for the quantitative evaluations using
the Open3D library [78].

3.1. Proposed Methodology

Firstly, various NeRF methods available in dedicated frameworks [22,98] are applied to
two datasets in order to understand their performances and choose the most outperforming
method (Section 4.1). Then, this method is applied to other datasets to run evaluation
and comparisons (Sections 4.2–4.7) with respect to conventional photogrammetry and the
available ground truth (GT) data.

Figure 2 shows the general overview of the proposed procedure to quantitatively
assess the performance of an NeRF-based 3D reconstruction. All collected images or videos
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require camera poses in order to generate 3D reconstructions, either with conventional
photogrammetry or NeRF-based methods. Starting from the available images, camera poses
are retrieved using Colmap. Then, a multi-view stereo (MVS) or NeRF is applied to generate
3D data. Finally, we provide a unique and robust environment and conditions to provide an
objective geometric comparison. To achieve this, 3D data produced with photogrammetry
and NeRF are co-registered and rescaled with respect to the available ground truth (GT)
data in Cloud Compare (using an Iterative Closest Point (ICP) algorithm [99] and a quality
evaluation is performed. To provide an unbiased evaluation of geometric accuracy, different
well-known criteria are applied [13,43,100–102], including best plane fitting, cloud-to-cloud
comparison, profiling, accuracy, and completeness. For the first two criteria, metrics, such
as Standard Deviation (STD), Mean Error (Mean_E), Root Mean Squares Error (RMSE) and
Mean Absolute Error (MAE), are used (Section 3.2).
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struction with respect to conventional photogrammetry.

Best plane fitting is accomplished by using a Least Squares Fitting (LSF) algorithm that
defines a best-fitted plane on an area of the object, which is assumed to be planar. This cri-
terion allows us to evaluate the level of noise in the 3D data generated by photogrammetry
or NeRF methods.

Profiling is carried out by extracting a cross-section from the 3D data to highlight
complex geometric details of the reconstructed surface. An inspection of profiles allows us
to evaluate the performance of a method in preserving geometric details, such as edges
and corners, and avoid smoothing effects.

Cloud-to-cloud (C2C) comparison refers to the measurement of the nearest neighbor-
ing distance between corresponding points in two point clouds.

3.2. Metrics

Despite the increasing popularity and widespread application of NeRF to 3D recon-
struction purposes, there is still a shortage of information on quality assessment based
on a specified standard or criteria (e.g., the VDI/VDE 2643 BLATT 3). Following the
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co-registration process and criteria mentioned before, the following metrics are used (in
particular for cloud-to-cloud and plane fitting processes):

STD =

√√√√ 1
N − 1

N

∑
j=1

(
Xj − X

)2 (7)

Mean_E =

(
X1 + X2 + · · ·Xj

)
N

(8)

RMSE =

√
∑N

j=1
(
Xj
)2

N
(9)

MAE =

√
∑N

j=1
∣∣Xj
∣∣

N
(10)

where N denotes the number of observed point clouds, Xj denotes the closest distance
of each point to the corresponding reference point or surface, and X denotes the average
observed distance.

Accuracy and completeness, respectively, also known as precision and recall [101,102],
involve measuring the distance between two models. When assessing accuracy, the distance
is computed from the computed data to a ground truth (GT). Conversely, to evaluate com-
pleteness, the distance is computed from the GT to the computed data. These distances
can be either signed or unsigned, depending on the specific evaluation method. Accuracy
reflects how closely the reconstructed points align with the ground truth, while completeness
indicates the degree to which all GT points are covered. Typically, a threshold distance is
employed to determine the fraction or percentage of points that fall within the acceptable
threshold. The threshold value is determined based on factors such as data density and
noise levels.

3.3. Testing Objects

To achieve the work objectives, different datasets are used (Figure 3): they feature
objects of different dimensions and surface types, and they were captured under different
lighting conditions, materials, camera networks, scales, and resolutions.
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The Ignatius and Truck datasets are derived from the Tanks and Temples bench-
mark [101], where GT data (acquired with laser scanning) are also available.
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The other datasets (Stair, Synthetic, Industrial, Bottle_1 and Bottle_2) are created in
FBK. The Stair dataset offers a flat, reflective, and well-textured surface with sharp edges.
GT is provided by ideal plans of the step surfaces. The Synthetic 3D object created using
Blender v3.2.2 (for the geometric model, UV texture and material) and Quixel Mixer v2022
(for PBR textures) has a well-textured surface featuring complex geometry, including edges
and corners. A virtual camera with specific parameters (Focal length: 50 mm; Sensor size:
36 mm; image size: 1920 × 1080 pixels) is used to create a sequence of images that follows
a spiral curvy path around the object. The 3D model generated in Blender is used as GT
for the accuracy assessment. The Industrial object has a textureless and highly reflective
metallic surface which raises problems for all passive 3D methods. Its GT data are acquired
with a Hexagon/AICON Primescan active scanner with a nominal accuracy of 63 µm. Two
bottles are also included, featuring transparent and refractive surfaces: their GT data are
generated using photogrammetry after powdering/spraying the surfaces.

A specific benchmark for NeRF methods is under preparation by the authors and will
be available at https://github.com/3DOM-FBK/NeRFBK [103], containing many more
datasets with ground truth data.

4. Comparisons and Analyses

This section presents experiments that evaluate and compare the performance of NeRF-
based techniques versus standard photogrammetry (Colmap). After comparing multiple
state-of-the-art methods (Section 4.1), Instant-NGP was selected as the NeRF-based method
to be fully assessed, as it delivered superior results with respect to the other methods. The
NeRF training was executed using a Nvidia A40 GPU, while the geometric comparisons of
the 3D results were performed on a standard PC.

4.1. State-of-the-Art Comparison

The primary objective is to conduct a comprehensive analysis of multiple NeRF-based
methods. To achieve this goal, the SDFStudio unified framework developed by Yu et al. [98]
is used as it incorporates multiple neural implicit surface reconstruction approaches into a
single framework. SDFStudio is built upon the Nerfstudio framework [22]. Among the im-
plemented approaches, ten were chosen in order to compare their performances: Nerfacto
and Tensorf from Nerfstudio, Mono-Neus, Neus-Facto, MonoSDF, VolSDF, NeuS, Mono-
Unisurf and UniSurf from SDFStudio and InstantNGP from its original implementation in
Müller et al. [20].

Two datasets are used: (i) the Synthetic dataset, composed of 200 images (1920× 1080 px)
and (ii) the Ignatius dataset [101], which contains 263 images (extracted from a video at
1920 × 1080 px resolution).

The comparison results with respect to GT data are reported in Figure 4. Results in
terms of RMSE, MAE, and STD show that Instant-NGP and Nerfacto methods achieved the
best outcomes, outperforming all other methods. In terms of processing time, Instant-NGP
required less than a minute for both datasets to train the model, Nerfacto some 15 min. It
should be noted that for the Ignatius sequence (Figure 4b), despite the neural rendering for
MonoSDF, VolSDF, and Neus-facto being visually satisfactory, the marching cube to export
a mesh model failed; hence, no evaluation was possible.

Therefore, based on the achieved accuracies and processing time, Instant-NGP was
chosen and employed for the successive experiments in this paper.

https://github.com/3DOM-FBK/NeRFBK
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Figure 4. The comparison results of the various NeRF-based methods on the Synthetic (a) and
Ignatius (b) datasets with 200 and 263 images, respectively.

4.2. Image Baseline’s Evaluation

This section reports the assessment of NeRF-based methods when the number of
input images is reduced (i.e., the baseline increases). A comparative evaluation between
Instant-NGP, identified as the superior method among others (Section 4.1), and Mono-
Neus, a well-established approach for sparse image scenarios [66,90], is performed. The
experiment utilizes the Synthetic dataset consisting of four subsets of input images, ranging
from 200 to 20 images (Figure 5), progressively reducing the number of input images (i.e.,
approximately doubling the image baselines). For every set of input images, both NeRF
methods are used to generate 3D results, keeping a similar number of epochs. For each
subset, the RMSE through point-to-point comparison with the GT data is estimated as
reported in Figure 5.

The findings depict that Instant-NGP exhibits superior performance compared to
Mono-Neus when a large number of input images is available. However, Mono-Neus
outperforms Instant-NGP in scenarios where the number of images is low. Nevertheless,
it is important to note that neither Instant-NGP nor Mono-Neus are able to successfully
generate a 3D reconstruction using only 10 input images.
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4.3. Monte Carlo Simulation

The aim is to evaluate the quality of NeRF-based 3D results when the camera poses are
changed/perturbed. Therefore, a Monte Carlo simulation [104] is employed to randomly
perturbate the rotation and translation of camera parameters within a limited range. After
the perturbation, using Instant-NGP, a 3D reconstruction is generated and compared to
reference data. A total of 30 iterations (runs) are performed within two scenarios: (A) the
rotation and translation are randomly disturbed in the range of ±20 mm for translation
and ±2 degrees for rotation, (B) rotation and translation are randomly disturbed in the
range of ±40 mm and ±4 degrees, respectively. The Ignatius dataset is used to run this
simulation, and results are reported in Figure 6 and Table 1. The findings clearly show the
importance of having accurate camera parameters. In scenario A, on average, the estimated
RMSE is 19.72 mm, with an uncertainty of 2.95 mm. In scenario B, the average estimated
RMSE stayed almost the same (19.97 mm), whereas the uncertainty doubled (5.87 mm) due
to the larger perturbation range.
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Table 1. Summary of the Monte Carlo simulation results on the Ignatius dataset. The Error Range
is the difference between the Max and Min RMSE, while the Uncertainty is computed as half of the
Error Range.

Scenario A Scenario B

Perturbing translation (mm) ±20 ±40

Perturbing rotation (degree) ±2 ±4

Average RMSE (mm) 19.72 19.97

Max RMSE (mm) 22.10 24.78

Min RMSE (mm) 16.90 13.03

Error range (mm) 5.91 11.75

Uncertainty (±mm) 2.95 5.87

4.4. Plane Fitting

A plan-fitting approach can be used to evaluate/measure the level of noise on re-
constructed flat surfaces. In the first experiment with the Stair dataset (Figure 7a), pho-
togrammetric point cloud and NeRF-based reconstructions are derived, employing the
same number of images and camera poses. Two horizontal planes and three vertical planes
are identified and analyzed based on a best-fitting process (Figure 7b). The derived metrics
are presented in Table 2.
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Table 2. Evaluating the noise level in the 3D surfaces of the Step dataset processed using photogram-
metry and Instant-NGP [Unit: mm].

Plane
Photogrammetry NeRF

RMSE MAE STD Mean Distance Max Distance RMSE MAE STD Mean Distance Max Distance

H_plane_01 0.70 0.61 0.43 0.61 1.65 1.89 1.51 1.38 1.51 6.00

H_plane_02 0.75 0.56 0.55 0.55 2.14 3.53 2.61 2.47 2.60 10.26

V_plane_01 0.78 0.57 0.60 0.57 1.4 2.77 1.79 2.17 1.79 6.69

V_plane_02 0.92 0.77 0.67 0.77 1.94 2.95 2.19 2.06 2.18 6.73

V_plane_03 0.43 0.30 0.37 0.30 1.42 3.10 0.20 2.45 1.96 7.29
Average 0.72 0.56 0.52 0.56 1.65 2.84 1.66 4.74 2.10 7.39
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In a similar way, the Synthetic dataset was used, with 200 images for the Instant-NGP
and 24 images for the photogrammetric processing. Five vertical and five horizontal planes
were selected, as shown in Figure 8, to perform a surface deviation analysis by fitting an
ideal plane to the reconstructed object surfaces. Derived metrics are reported in Table 3.
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Table 3. Evaluation metrics for photogrammetry and NeRF results on the Synthetic object [unit: mm].

Plane
Photogrammetry NeRF

RMSE MAE STD Mean Error Max Error RMSE MAE STD Mean Error Max Error

H_plane_01 0.015 0.020 0.017 0.012 0.150 0.070 0.100 0.086 0.070 0.600

H_plane_02 0.014 0.014 0.016 0.010 0.190 0.110 0.120 0.130 0.090 0.600

H_plane_03 0.015 0.011 0.013 0.014 0.200 0.040 0.040 0.060 0.020 0.300

H_plane_04 0.012 0.012 0.013 0.010 0.070 0.040 0.050 0.050 0.040 0.290

H_plane_05 0.080 0.025 0.080 0.020 0.170 0.070 0.080 0.080 0.070 0.450
H_Average 0.027 0.016 0.027 0.013 0.150 0.066 0.078 0.081 0.058 0.448
V_plane_01 0.060 0.046 0.070 0.010 0.450 0.140 0.050 0.150 0.000 0.450

V_plane_02 0.018 0.018 0.020 0.010 0.080 0.050 0.050 0.060 0.030 0.200

V_plane_03 0.039 0.020 0.040 0.014 0.190 0.050 0.070 0.080 0.040 0.25

V_plane_04 0.016 0.016 0.018 0.010 0.090 0.050 0.050 0.070 0.000 0.20

V_plane_05 0.020 0.020 0.027 0.010 0.050 0.070 0.060 0.090 0.000 0.330
V_Average 0.030 0.024 0.035 0.010 0.170 0.072 0.056 0.090 0.014 0.286

From both results (Tables 2 and 3), it is clear that for such two objects, photogrammetry
outperforms NeRF, and it can derive less noisy results. NeRF RMSEs are, in general, at
least 2–3 times higher than photogrammetry.

4.5. Profiling

The extraction of cross-section profiles is useful to demonstrate the capability of a 3D
reconstruction method to retrieve geometric details or apply smoothing effects to the 3D
geometry. The results of the Synthetic dataset presented in Section 4.4 are processed using
Cloud Compare: several cross-sections are extracted (Figure 9) at predefined distances
and geometrically compared against the reference data using different metrics, as reported
in Table 4.
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Table 4. Comparison of profiles and metrics [unit: mm]—see Figure 9a.

Cross-Section
Profiles

Photogrammetry NeRF

RMSE STD Mean Error Max Error RMSE STD Mean Error Max Error

a 0.09 0.14 0.07 0.20 0.12 0.11 0.04 0.80

b 0.11 0.13 0.08 0.22 0.18 0.15 0.18 1.20

c 0.09 0.05 0.05 0.22 0.16 0.13 0.12 1.40

d 0.08 0.05 0.06 0.21 0.15 0.09 0.09 1.50

e 0.09 0.05 0.07 0.17 0.12 0.21 0.11 1.60
Average 0.09 0.08 0.06 0.20 0.15 0.14 0.11 1.30

The obtained findings for individual cross-sectional profiles, as well as the average
of all profiles, show that photogrammetry outperforms NeRF, which generally produces
more noisy results (Figure 9a–c). For instance, the average of estimated RMSE and STD for
photogrammetry is around 0.09 mm and 0.08 mm, while this value for NeRF is bigger than
0.13 mm.

4.6. Cloud-to-Cloud Comparison

A cloud-to-cloud comparison refers to the assessment of relative Euclidean distances
between corresponding 3D samples in a dataset with respect to the reference data. Different
objects with different characteristics are considered (Figure 3): Ignatius, Truck, Industrial,
and Synthetic. They are small and large-scale objects with texture-less, shiny, and metallic
surfaces. For each dataset, 3D data are produced using photogrammetry (Colmap) and
Instant-NGP and then co-registered to the available GT (Figure 10). Finally, metrics are
derived as reported in Table 5. Worth to notice that the employed number of images is not
always the same within the performed tests: indeed, for the Synthetic, Ignatius and Truck
datasets, photogrammetry was already providing accurate results with a lower number of
images, hence adding more images was not leading to further improvements. On the other
hand, for NeRF, all available images were used as fewer images (or an enlargement of the
baseline) did not lead to good results (see also Section 4.2).
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Table 5. Metrics of cloud-to-cloud comparisons for Instant-NGP and photogrammetry methods [unit:
mm]. For all but the Industrial object, Photogrammetry was used with a smaller number of images as
the achieved accuracy was already better than NeRF.

Object Method Images RMSE MAE STD

Industrial
Photogr 140 0.85 1.10 1.50

NeRF 140 0.78 0.73 1.10

Synthetic
Photogr 25 0.13 0.11 0.17

NeRF 200 0.19 0.13 0.23

Ignatius
Photogr 130 2.50 0.90 2.00

NeRF 260 5.50 9.90 4.60

Truck
Photogr 48 16.0 15.0 20.0

NeRF 235 38.0 55.0 49.0

From the provided results, it can be seen that for the metallic and highly reflective
object (Industrial dataset), NeRF performs better than photogrammetry, whereas, for the
other scenarios, photogrammetry produces more accurate results.

Two other translucent and transparent objects are considered: Bottle_1 and Bottle_2
(Figure 3). Glass objects do not diffusely reflect the incoming light and do not have a
texture of their own for photogrammetric 3D reconstruction tasks. Their appearance
depends on the object’s shape, surrounding background and lighting conditions. Therefore,
photogrammetry can easily fail or produce very noisy results in such a situation. On the
other hand, NeRF, as declared by Mildenhall et al. [16] can learn to properly generate the
geometry associated with transparency due to the view-dependent nature of the NeRF
model. For both objects, the photogrammetric- and NeRF-based 3D results are co-registered
to the GT data and metrics are computed (Figure 11 and Table 6). Findings prove that NeRF
performed better than photogrammetry for transparent objects. For example, the estimated
RMSE, STD and MAE for photogrammetry on Bottle_1 are 6.5 mm, 7.1 mm and 7.5 mm,
respectively. In contrast, NeRF values were dramatically reduced to 1.3 mm, 1.7 mm, and
2.1 mm, respectively.
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Table 6. Statistics of cloud-to-cloud comparisons on transparent objects [unit: mm].

Object Method Images RMSE MAE STD

Bottle_1
Pho 360 6.50 7.10 7.50

NeRF 360 1.30 1.70 2.10

Bottle_2
Pho 360 4.50 5.20 5.10

NeRF 360 0.63 0.82 1.10

4.7. Accuracy and Completeness

Three different datasets are used to compare photogrammetry and NeRF in terms of
accuracy and completeness: Ignatius, Industrial and Bottle_1. For both NeRF (Instant-NGP)
and photogrammetry, the two metrics are computed with respect to the available ground
truth data. The results, presented in Figure 12, revealed the following insights: (i) for the
Ignatius dataset, photogrammetry exhibits higher accuracy and completeness compared to
NeRF; (ii) for the Industrial and Bottle_1 datasets, NeRF showcases slightly better results.
These findings quantitatively confirm Section 4.6 and that NeRF-based approaches excel
when dealing with objects featuring non-collaborative surfaces, particularly those that
are transparent or shiny. In contrast, photogrammetry faces challenges in capturing the
intricate details of such surfaces, making NeRF a more suitable or complementary choice.
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5. Conclusions

This paper provides a comprehensive analysis of image-based 3D reconstruction using
neural radiance field (NeRF) methods. Comparisons with conventional photogrammetry
were performed, reporting quantitative and visual results to understand advantages and
disadvantages while dealing with multiple types of surfaces and scenes. The study has ob-
jectively evaluated the strengths and weaknesses of NeRF-generated 3D data and provided
insights into their applicability to different real-life scenarios and applications. The study
employed a range of well-textured, texture-less, metallic, translucent, and transparent
objects, imaged using different scales and sets of images. The quality of the generated
NeRF-based 3D data was evaluated using various evaluation approaches and metrics,
including noise level, surface deviation, geometric accuracy, and completeness.

The reported results indicate that NeRF outperforms photogrammetry in scenarios
where conventional photogrammetric approaches fail or produce noisy results, such as with
texture-less, metallic, highly reflective, and transparent objects. In contrast, photogramme-
try still performs better with well-textured and partially textured objects. This is due to
the fact that the NeRF-based methods are capable of generating geometry associated with
reflectivity and transparency due to the view-dependent nature of the NeRF model.

The study provides valuable insights into the applicability of NeRF for different
real-life scenarios, particularly for heritage and industrial scenes, where surfaces can be
particularly challenging. More datasets are in preparation and will be shared soon at



Remote Sens. 2023, 15, 3585 18 of 22

https://github.com/3DOM-FBK/NeRFBK [103]. The findings of the study highlight
the potentials and limitations of NeRF and photogrammetry, providing a foundation for
forthcoming research in this field. Future investigations could explore the combination of
NeRF and photogrammetry to improve the quality and efficiency of 3D reconstruction in
challenging scenarios.
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