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Abstract: Small target detection has been widely used in applications that are relevant to everyday
life and have many real-time requirements, such as road patrols and security surveillance. Although
object detection methods based on deep learning have achieved great success in recent years, they
are not effective in small target detection. In order to solve the problem of low recognition rate
caused by factors such as low resolution of UAV viewpoint images and little valid information,
this paper proposes an improved algorithm based on the YOLOv5s model, called YOLOv5s-pp.
First, to better suppress interference from complex backgrounds and negative samples in images,
we add a CA attention module, which can better focus on task-specific important channels while
weakening the influence of irrelevant channels. Secondly, we improve the forward propagation and
generalisation of the network using the Meta-ACON activation function, which adaptively learns to
adjust the degree of linearity or nonlinearity of the activation function based on the input data. Again,
the SPD Conv module is incorporated into the network model to address the problems of reduced
learning efficiency and loss of fine-grained information due to cross-layer convolution in the model.
Finally, the detection head is improved by using smaller, smaller-target detection heads to reduce
missed detections. We evaluated the algorithm on the VisDrone2019-DET and UAVDT datasets
and compared it with other state-of-the-art algorithms. Compared to YOLOv5s, mAP@.5 improved
by 7.4% and 6.5% on the VisDrone2019-DET and UAVDT datasets, respectively, and compared to
YOLOv8s, mAP@.5 improved by 0.8% and 2.1%, respectively. For improving the performance of the
UAV-side small target detection algorithm, it will help to enhance the reliability and safety of UAVs
in critical missions such as military reconnaissance, road patrol and security surveillance.

Keywords: small target detection head; improving YOLOv5s; activation function; attention mechanism;
spd conv module

1. Introduction

In recent years, the unmanned aerial vehicle (UAV) industry has developed rapidly,
and UAVs have been widely used in various industries. Low-cost and easy-to-use consumer-
grade UAVs have been developed and used in aerial photography, highway traffic, military
reconnaissance, agriculture, construction and other fields, bringing great convenience to
people. However, when using target recognition algorithms such as YOLO for small target
detection tasks from the perspective of UAVs, there are still many challenges that need to
be overcome which pose a significant challenge to target recognition tasks on the UAV side.
According to the definition of the international organization SPIE, targets with sizes less
than 0.12% of the original image are considered as small targets in this paper.

The YOLO (You Only Look Once) algorithm is widely used in image recognition tasks,
and has also received a lot of attention in drone or remote sensing image recognition. The
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first version of YOLO, YOLOv1 [1], was first proposed by Redmon et al. in 2015, followed
by YOLOv2 [2] and YOLOv3 [3], both also by Redmon et al. In 2020, Bochkovskiy et al.
proposed YOLOv4 [4], and since then YOLOv5, YOLOv6, YOLOv7, YOLOv8 and other
models have been developed, all of which play an important role in computer vision.

This article cites several previous studies. In Reference [5], this paper investigates
how replacing certain structural elements of a model (as well as their connections and
other parameters) affects performance and inference time. In this process, a series of
models at different scales are proposed and named YOLO-Z. In Reference [6], the paper
proposes to add a prediction head to detect objects of different scales based on YOLOv5.
Then, the original prediction head is replaced with a transformer prediction head to
explore the potential of self-attention mechanism. The Convolutional Block Attention
Module (CBAM) is also integrated to find attention regions in scenes with dense objects.
Attention regions are searched for in scenes with dense objects. Reference [7] selects
YOLOv5s as the benchmark method of the article. By introducing the feature extraction
structure of shufflenetv2, the backbone of YOLOv5s is improved to reduce the amount
of calculation of the network, and then the attention mechanism CBMA module is added
to the network. Reference [8] addressed the issue of imbalanced quantities of car model
pictures in the dataset by using image processing techniques such as image flipping,
adding Gaussian noise, and color changes to balance the number of car models. They also
added a SimAM attention mechanism without parameters to the bottleneck to improve
the network’s feature extraction ability. Reference [9] proposed a strategy combining
the Faster-RCNN object detection model and three convolutional neural networks, ZF,
VGG-16 and ResNet-101, which demonstrated good generalization ability on the dataset.
Reference [10] presents an improved U-Net (SU-Net) model for water body detection by
fusing deep neural networks for the interference of mixed and dark features on water
body detection. Reference [11] proposes the use of a UAV to acquire aerial imagery of
the study area through a predetermined mission. Then, the image data were processed
using Structure in Motion (SfM) software to obtain a digital surface model (DSM), digital
orthophoto map (DOM), point cloud and 3D model. Finally, the generated spatial data
are analysed and studied by spatial feature extraction. Reference [12] proposes to segment
the image using multi-resolution image segmentation technique with appropriate scale,
compactness and smoothing to form homogeneous image objects. Various parameters
(spectral, texture, background and elevation) are calculated for VHR UAV images. Urban
feature extraction and classification rules are developed especially for roads and buildings.
Segmented roads are classified based on their width and connectivity. Extracted buildings
are classified based on their elevation and size. Finally, in Reference [13], a lightweight
remote sensing rotating object detection model based on YOLOv5 is proposed in this study
to improve the performance of remote sensing image object detection. To solve the problem
of detecting rotating objects at any angle, the angle regression problem is transformed into
a classification problem, enabling the model to predict an additional angle information that
is used to rotate the horizontal bounding box to enclose the rotating objects at any angle. In
response to the issue of dense distribution of small objects in remote sensing images, the
detection layer structure of the model is improved and an object detection scale is added to
pay more attention to small objects.

In summary, based on the application characteristics of the YOLOv5 object detection algo-
rithm in small target recognition from the perspective of unmanned aerial vehicles (UAVs) and
the advantages and disadvantages of previous research literature, this article designs a small
target detection algorithm for the UAV perspective based on the YOLOv5s network structure,
named YOLOv5s-pp. The following improvements were made: (1) The CA [14] attention
mechanism was introduced, which can consider lightweight attention in both channel and
spatial dimensions and can solve problems such as long-distance dependence. (2) The Meta-
ACON [15] adaptive activation function was used, which can adaptively adjust the linear or
nonlinear degree of the activation function based on the input data. (3) The SPD Conv [16]
module was integrated into the network to reduce the loss of fine-grained information caused
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by cross-layer convolution and feature representation with low learning efficiency, improving
the small target feature extraction ability. (4) The detection head of the network was optimized,
using a smaller detection head which can reduce the overall loss and the occurrence of missed
and false detections, improving the recognition performance of small target information fea-
tures. Experimental results show that the improved YOLOv5s-pp algorithm has an mAP@.5
of 33.8% on the VisDrone2019-DET dataset, which is 7.4 percentage points higher than the
original YOLOv5s network.

The remainder of this article is structured as follows. In Section 2, we briefly review
the related work of this article. Section 3 briefly introduces the network structure of the
Yolov5 algorithm. Section 4 provides detailed information on the modules of the proposed
Yolov5s-pp algorithm. Section 5 presents the experimental results. Finally, Section 6
presents the conclusions.

2. Related Work

In this section, we provide a summary of work related to the research presented in
this paper. The summary is divided into two parts: general object detection strategies and
methods for detecting small objects.

2.1. General Object Detection

Currently, deep convolutional neural networks dominate the field of object detection.
Object detection algorithms can be divided into two categories: single-stage and two-
stage (region-free and region-based). Single-stage detectors (region-free detectors) directly
predict the location of objects without extracting suggestions, such as SSD [17], YOLO
and RetinaNet [18]. Two-stage detectors (region-based detectors) generate a set of region
proposals and then predict the object categories within the proposed regions of interest
(RoIs) and refine the proposals based on the defined position and size. This approach
has been adopted in methods such as Fast R-CNN [19], Faster R-CNN [9] and Cascade
R-CNN [20]. Typically, single-stage methods are faster than two-stage methods, while
two-stage methods have higher accuracy than single-stage methods. With improvements
in recent years, single-stage methods (such as YOLO, RetinaNet, etc.) have also made
progress, and the overall performance of the algorithms is superior to two-stage methods.
However, these algorithms are designed for general object detection and are not good at
detecting small and dense objects.

2.2. Small Object Detection

Compared to general image detection, object detection in aerial drone imagery is
more challenging. This is because the objects to be detected in aerial imagery are relatively
small, their distribution is uncertain and they can be particularly sparse or concentrated,
making the distribution uneven and resulting in a large number of overlapping objects
to be detected. As a result, many studies have focused specifically on the detection of
small objects. For example, in [21], VariFocal is used to replace the binary cross-entropy
loss function in the original classification to overcome the problem of uneven sample
distribution and improve detection recall. Meanwhile, the Coordinating Attention (CA)
mechanism is added to improve the detection accuracy. In [22], the Cross-Layer Context
Fusion Module (CCFM) is proposed, which learns different scales of context information
in parallel through multiple branches to improve the representational ability of feature
information and the recognition ability of the network. To address the problem of spatial
information loss of small objects, the Spatial Information Enhancement Module (SIEM) is
designed to adaptively learn the weak spatial information to be protected for small objects.
In [23], anchor boxes are assigned according to the aspect ratio of the ground truth box to
provide the network with prior information about the shape of the object. The network
uses the Hard Sample Mining Loss (HSM Loss) function to guide learning and provide
prior information about the shape of the object. In [24], appropriate spatial information is
adaptively obtained through multi-scale receptive fields to improve the feature extraction
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capability. In addition, a Segmentation Fusion (SF) submodule is proposed to effectively
reduce the time complexity of ASPConv, and a Fast Multi-Scale Fusion (FMF) module is
proposed to alleviate the shortcomings of semantic and spatial information fusion.

The aim of this paper is to address the challenges of detecting small and unevenly
distributed objects in drone aerial imagery. We choose the relatively lightweight Yolov5s
network model as the base algorithm and adopt the Meta-ACON adaptive activation
function. This function adaptively learns and adjusts the linear or nonlinear degree of the
activation function based on the input data in order to fully learn the feature information
in the input data. To reduce the fine-grained information loss caused by cross-layer con-
volution and the decrease in the efficiency of feature representation, we integrate the SPD
Conv module into the integrated network. To address the problem of small objects, we
optimise the detection head by using a smaller detection head, which can not only reduce
the overall loss, but also reduce the number of missed detections and false detections. To
address the problem of information loss due to long-range dependencies, we introduce the
CA attention mechanism, which considers lightweight attention in both the channel and
spatial dimensions in parallel to improve the feature extraction capability.

3. YOLOv5s Algorithm

The YOLOv5 algorithm is a single-stage target detection algorithm that can complete
target detection in a single step. YOLOv5 offers four models in different sizes: YOLOv5s,
YOLOv5m, YOLOv5l and YOLOv5x. To improve the detection accuracy while maintaining
the detection speed, we chose the YOLOv5s lightweight model. This model follows the
detection idea of the YOLO series, which is to divide the input image into a grid and detect
the object by detecting the center point of the object within a certain grid.

The YOLOv5s model consists of four parts: input, Backbone, Neck, and output (also called
head/predict).This paper briefly introduces the YOLOv5s network model using the YOLOv5s-5.0
version as the baseline network. The overall network structure is shown in Figure 1.
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Figure 1. Overall structure diagram of YOLOv5s.

The Focus module mainly performs slicing and reorganization of the input data, and
then passes the output data to the next module through CBL operation. This module can
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better capture the details of objects while reducing computation and memory consumption.
The structure diagram of the Focus module is shown in Figure 2.
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Figure 2. Structure diagram of the Focus module.

The CBL module consists mainly of a convolution operation, followed by batch
normalization and the SiLU [25] activation function, and then outputs the data to the next
module. The Res-unit (residual module) consists mainly of a 1× 1 convolution and a 3× 3
convolution. By introducing skip connections, the residual module allows information to
flow more smoothly through the network, reducing the problems of gradient vanishing
and gradient explosion. Additionally, the residual module can improve the network’s
expressive power, enabling it to better fit complex nonlinear functions. The structure
diagrams of the CBL module and the Res-unit module are shown in Figure 3.
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Figure 3. Structure diagram of the CBL and Res-unit module.

The YOLOv5s model extensively uses the C3 module structure, which is an improve-
ment over the bottleneckCSP structure. In addition, residual modules can be added to the
C3 module to make parameter passing more stable, ensuring the overall learning stability
of the network. The structure diagram of the C3 module is shown in Figure 4.
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Figure 4. Structure diagram of the C3 module.

The SPP (Spatial Pyramid Pooling) module is a convolutional neural network module
used to enhance feature extraction capabilities. This module can accept input feature maps
of any size and output fixed-size feature vectors. The SPP module mainly consists of two
convolutional layers, a pooling layer and a concatenation layer. The module uses max
pooling to reduce the computational load of network parameters, while also increasing the
receptive field. The structure diagram of the SPP module is shown in Figure 5.
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Figure 5. Structure diagram of the SPP module.

4. YOLOv5s-pp Algorithm

The optimization of the YOLOv5s-pp algorithm compared to the YOLOv5s algorithm
mainly involves four aspects: using the Meta-ACON activation function, introducing the
CA attention mechanism, optimizing the small target detection head and integrating the
SPD Conv module. These optimization measures can effectively improve the recognition
performance of the model, making the YOLOv5s-pp algorithm perform better in small
target detection tasks. The Meta-ACON activation function can improve the model’s
generalization ability and robustness, the CA attention mechanism can improve the model’s
focus on important features, the small target detection head can improve the model’s small
target detection ability and the SPD Conv module can further improve the model’s feature
representation ability. The overall network structure of YOLOv5s-pp is shown in Figure 6.
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Figure 6. Overall structure diagram of YOLOv5s-pp.

The improved YOLOv5s-pp network model has a certain increase in depth compared
to the YOLOv5s model, and the number of parameters in the whole model increases by
about 3.3M compared to YOLOv5s. As the width and depth of the network model increases,
the amount of computation required by the model increases and the inference speed of the
model decreases, so we hope to make the small target detection algorithm achieve better
results with as little increase in the complexity of the network model as possible.
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4.1. Meta-ACON Activation Function

To improve the forward propagation and generalization capabilities of the YOLOv5s
model, we used the Meta-ACON activation function instead of the original SiLU activation
function. The Meta-ACON activation function is a function that combines the ReLU [26]
and Swish [27] activation functions, and it can not only better solve the problem of neuron
death, but also adaptively choose whether to activate neurons and adaptively choose the
degree of linearity or nonlinearity of the activation function. The introduction of this
activation function can effectively improve the performance and generalization ability of
the model, making it more robust and adaptive.

The formula for max(x1, . . . , xn) can be obtained from the definition of smooth maximum [28],
as shown in equation:

Sβ(x1, ..., xn) =
∑n

i=1 xieβxi

∑n
i=1 eβxi

(1)

Assuming that the function f = max(ηa(x), ηb(x)), and then using the above Smooth
maximum formula to obtain its smooth approximation function, the following formula can
be obtained, as shown in this equation:

Sβ(ηa(x), ηb(x))

= ηa(x) · eβηa(x)

eβηa(x) + eβηb(x)
+ ηb(x) · eβηb(x)

eβηa(x) + eβηb(x)

= ηa(x) · 1
1 + e−β(ηa(x)−ηb(x))

+ ηb(x) · 1
1 + e−β(ηb(x)−ηa(x))

= ηa(x) · σ[β(ηa(x)− ηb(x))] + ηb(x) · σ[β(ηb(x)− ηa(x))]

= (ηa(x)− ηb(x)) · σ[β(ηa(x)− ηb(x))] + ηb(x)

(2)

Let ηa(x) = P1x, ηb(x) = P2x, and the expression of Meta-ACON can be obtained, as
shown in this equation:

MetaACON(x) = (P1 − P2)x · σ[β(P1 − P2)x] + P2x (3)

The parameters P1 and P2 of Meta-ACON are two learnable parameters that control the
upper and lower limits of the function. The σ parameter represents the Sigmoid function.
The β parameter is responsible for dynamically controlling the linearity or nonlinearity of
the activation function and adapting the degree of nonlinearity for each layer. In order to
make the linear and nonlinear capabilities of the Meta-ACON activation function adaptive,
a module G(x) is proposed to dynamically learn β from the input feature x(C×W × H), in
order to dynamically adaptively control the linear or nonlinear capabilities of the function.
This customised behaviour of the activation function helps to improve generalization and
propagation performance. The formula is shown in this equation:

βc = σW1W2

H

∑
h=1

W

∑
w=1

xc,h,w (4)

The design space of the adaptive function includes channels, pixels and layers, and
the shared parameter β of the channel is used here. First, the mean values of the H and
W dimensions are calculated, respectively, and then two 1 × 1 convolution layers are
used to make all pixels in each channel share a weight. Finally, the Sigmoid activation
function is used to obtain β. It should be noted that a scaling parameter r is added between
W1 ∈ RC×C/r and W2 ∈ RC/r×C to reduce the parameters, which is set to 16 by default.

4.2. SPD Conv Module

Convolutional Neural Networks (CNNs) have achieved tremendous success in com-
puter vision for object detection and image classification tasks. However, for small object
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detection tasks, especially those involving small objects with overlapping occlusions, their
performance can drop dramatically. One of the reasons for this is that the use of cross-
convolutional layers can lead to the loss of fine-grained information and low learning
efficiency of the feature representation. To solve this problem, we introduce the SPD Conv
module to eliminate the effect of each cross-convolution layer. This approach can perform
better in small object detection tasks. The SPD Conv module can effectively preserve the
detailed information in the image while improving the learning efficiency and feature
representation ability of the model.

Consider any intermediate feature map X of size S × S × C, and slice, merge and
convolve a series of subfeature maps as shown in Figure 7.

S

S

C

4C

S/2

S/2

S/2

S/2

C1SPD Conv

Figure 7. Structure diagram of the SPD Conv module.

The SPD component integrates the input feature map transformation technique into
the entire YOLOv5 network, downsampling the feature maps throughout the network. The
specific splitting formula is shown in equation:

f0,0 = X[0 : S : scale, 0 : S : scale],

f1,0 = X[1 : S : scale, 0 : S : scale], . . . ,

fscae−1,0 = X[scae− 1 : S : scale, 0 : S : scale];

...

f0,scae−1 = X[0 : S : scale, scae− 1 : S : scale],

f1,scae−1 = X[1 : S : scale, scae− 1 : S : scale], . . . ,

fscae−1,scae−1 = X[scae− 1 : S : scale, scae− 1 : S : scale]

(5)

Given any feature map X, the submaps fx,y are formed by all entries X(i, j) that can be
divided proportionally by i + x and j + y. Therefore, each submap downsamples X by a
proportional factor, resulting in four submaps f0,0, f1,0, f0,1, and f1,1, each downsampling X
by a factor of 2x. These submaps are then concatenated along the channel dimension to
obtain a feature map X

′
, which has reduced spatial dimensions by a proportional factor

and increased channel dimensions by a proportional factor two.
After the SPD operation, a non-strided convolution with a stride of one is used to pro-

cess the output feature map. This is done to preserve as much feature map information as
possible. Using a strided convolution could result in the loss of some feature map informa-
tion. In addition, channel compression on the feature map after the SPD operation does not
result in a significant loss of feature information, as each pixel along the channel direction
is a sparse matrix and most of the compressed information is not significant. Therefore,
we use non-strided convolution to preserve the feature map information and channel
compression to reduce the computational complexity of the model while maintaining its
performance stability.

4.3. Small Target Detection Head

When detecting objects, YOLOv5s algorithm may encounter problems detecting small
targets from the drone’s perspective, such as missed detection or poor detection per-
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formance. Although YOLOv5’s default detection heads can complete multi-scale object
detection tasks, they may not perform well on detecting small targets. Therefore, we use
smaller detection heads to address this issue. Directly adding a small target detection head
would increase the number of model parameters and decrease the inference speed, and the
overall detection performance may suffer. Therefore, we decided to change the size of the
three detection heads in YOLOv5 and set the corresponding prior box sizes. This approach
can effectively improve the model’s detection capability and accuracy without significantly
affecting the model’s computational speed and inference efficiency.

The structure of the output section of the YOLOv5s-pp head is shown in Figure 8.

Conv Conv

Output
40*40*255

Output
80*80*255

Prediction
Conv

Output
160*160*255

Neck

S/2

S/2

40

S/2

80
160

160
40 80

255 255 255

Figure 8. Structure diagram of the small target detection head module.

To match the changed size of the detection heads, the anchor size of the prior boxes
must be changed to improve detection performance on small targets. The anchor sizes of
the prior boxes are set as shown in Table 1.

Table 1. Improved anchors parameters.

Anchors Anchor Size

Anchor-1 [ 4, 5 5, 9 9, 7 ]
Anchor-2 [ 8, 14 15, 12 10, 23 ]
Anchor-3 [ 30, 18 24, 28 58, 46 ]

On the YOLOv5s-pp model, we introduced a new detection head through the first
feature of the C3 layer, shown in Figure 6. The detection head has a resolution of 160× 160
pixels, which corresponds to only two downsampling operations in the backbone network
and contains richer low-level feature information. A further upsampling operation is
performed in the Neck network to obtain features at the same scale as the input feature
map from the backbone network, followed by feature fusion by concatenation. The output
feature is the fusion result of multiple input features, which enables the detection head to
detect small targets more effectively. The modified small target detection head can better
focus on the small target features in the feature map and is more sensitive to small targets.
Adding this detection head adds almost no computational and memory overhead to the
model, but significantly improves the model’s ability to detect small targets.

4.4. Coordinate Attention Mechanism

In the YOLOv5s-pp network model, we incorporated the Coordinate Attention (CA)
mechanism, which allows the model to focus on key information from a large amount
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of information and better attend to the detailed features of the input feature map, thus
improving the recognition performance of small targets. In convolutional neural networks,
attention mechanisms such as SENet [29–31] and CBAM [32,33] are widely used, but the
SENet attention mechanism only focuses on channel dimension information and does not
consider spatial dimension information, while the CBAM attention mechanism, although
it integrates both channel and spatial dimension information, cannot solve the problem
of long-distance dependencies in spatial dimensions. The CA attention mechanism is a
lightweight attention mechanism that concurrently considers both channel and spatial
dimensions and can solve problems such as long-distance dependencies. Therefore, we
chose to incorporate the CA attention mechanism into YOLOv5s-pp to improve the model’s
recognition capability and accuracy for small targets.

The flowchart of the Coordinate Attention (CA) mechanism is shown in Figure 9.

Residual

Re-weight

X Avg Pool Y Avg Pool

Concat + Conv2d

BatchNorm+Non-linear

Conv2d Conv2d

Sigmoid Sigmoid

Input

Ouput

C×H×1

C×H×1

C×H×1

C/r×1×(W+H)

C×1×W

C×1×W

C×1×W

C/r×1×(W+H)

C×H×W

C×H×W

split

Figure 9. Structure diagram of the CA module.

For the input feature map of size H ×W × C, average pooling operations are per-
formed along the horizontal and vertical directions of the feature map. A 1×W pooling
kernel is used in the horizontal direction (X direction) to obtain an H × 1× C information
feature map through global average pooling, as shown in this equation:

Zh
c (h) =

1
W ∑

0≤i<W
xc(h, i), Zh

c ∈ RC×H×1 (6)

Similarly, an H × 1 pooling kernel is used in the vertical direction (Y direction) to obtain
a 1 ×W × C information feature map through global average pooling, as shown in this
equation:

Zw
c (w) =

1
H ∑

0≤j<H
xc(j, w), Zw

c ∈ RC×1×W (7)
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The two information feature maps Zh
c and Zw

c , obtained by pooling operations, are
concatenated along the spatial dimension. The concatenated feature map is then passed
through a 1× 1 convolutional layer with an activation function. The resulting feature map
is then sliced along the spatial dimension to obtain two separate feature maps. Each of
these feature maps is passed through a convolutional layer with an activation function,
resulting in two attention vectors gh and gw. The specific equations for these operations are
shown in this equation:

f = δ(F1([Zh, Zw])), f ∈ RC/r×1×(H+W) (8)

where: f h ∈ RC/r×H×1, f w ∈ RC/r×1×W .

gh = σ(Fh( f h)) (9)

gw = σ(Fw( f w)) (10)

The two attention vectors gh ∈ C×H× 1 and gw ∈ C× 1×W obtained in the previous
step are broadcast to the dimensions of C× H ×W and multiplied element-wise with the
input feature map Xc after residual operations to obtain the final attention features. The
equation is shown here:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (11)

The CA attention mechanism considers not only the importance of different channel
information, but also the importance of spatial information. It concatenates the global fea-
tures in the horizontal and vertical directions to form the whole global feature, which helps
to solve the problem of long-range dependencies to some extent. This allows coordinate
attention to more accurately locate the position of the object of interest, thereby improving
the recognition performance of the whole model.

5. Experiments
5.1. Experimental Environment Introduction

In the experimental part of this paper, we have chosen the UAV view small target
detection datasets VisDrone2019-DET and UAVDT as the experimental datasets. Where
the VisDrone2019-DET dataset was used as the main test dataset for the experiments, the
UAVDT dataset was used to further test the robustness and applicability of the model.
All the images in these two datasets are from the aerial view of UAVs, which are typical
UAV view small target detection datasets. Among them, VisDrone2019-DET is a dataset
collected and published by the AISKYEYE team [34], which ensures the rigour of the
dataset. The UAVDT dataset is a dataset proposed by Dawei Du et al. [35]. at ICCV2018.
Both datasets contain images taken with different models of UAV equipment in different
scenarios, weather and lighting conditions, respectively, and are highly representative.

The VisDrone2019-DET dataset is a dataset mainly used for image classification and
object detection experiments, consisting of 10,209 images divided into four subsets as shown
in Table 2. The training subset is used to train the algorithm and contains 6471 images. The
validation subset is used to verify the performance of the algorithm during the training
process and contains 548 images. The test-challenge subset is used for competition and
contains 1580 images. The test-dev subset is the default test set for public evaluation and
contains 1610 images. The VisDrone2019-DET dataset contains 10 categories, including
motor, bus, awning-tricycle, tricycle, truck, van, car, bicycle, person and pedestrian.

Table 2. Number of VisDrone2019-DET dataset images.

Train Val Test-Challenge Test-Dev

6471 images 584 images 1580 images 1610 images
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Dividing the dataset is one of the most important steps in the training of a network
model. Firstly, dividing the dataset avoids the problem of over-fitting the model to the
training data, which can lead to degradation in generalisation performance. Secondly,
dividing the dataset helps us to evaluate the performance of the model more accurately.
Finally, partitioning the dataset also ensures the independence of the training, validation
and testing datasets, which is important for evaluating the performance of the model
and avoiding data leakage problems. We will use the following three subsets in the next
experiments: the training set, the validation set and the test-dev set. The train set is used
to train the model, the validation set is used to evaluate the performance of the model
during training and to perform hyperparameter tuning, and the test-dev set is used to
finally evaluate the performance of the model.

The UAVDT dataset is specifically designed for vehicle detection tasks from an un-
manned aerial vehicle (UAV) perspective. It contains images taken by UAVs at different
heights and angles on urban roads, along with corresponding annotation information such
as vehicle position, bounding box and category in each frame. Vehicle categories in the
dataset include private cars, buses and trucks. The dataset has features such as different
perspectives, rich vehicle categories, large data volume and high annotation accuracy.

The UAVDT dataset contains a total of 40,735 images, including 15 scenes and over
20,000 vehicle instances. The dataset is divided into three subsets as shown in Table 3. The
training subset is used to train the algorithm and contains 31,515 images; the validation
subset is used to verify the performance of the algorithm during training and contains
2396 images; and the test subset is used to evaluate the generalization ability of the overall
model and contains 6824 images.

Table 3. Number of UAVDT dataset images.

Train Val Test

31,515 images 2396 images 6824 images

This experimental project is based on the PyTorch open source framework and uses the
GPU to train and test the YOLOv5 algorithm. The data is accelerated by GPU computing
through the CUDA and CUDNN environments, which speeds up the training process. The
batch size of training samples is set to 16. The input image size is 640× 640. The specific
configuration of the training and testing environments is shown in Table 4.

Table 4. Experimental environment configuration.

Projects Environment

Operating System Windows 10(x64)
CPU i5-9300HF CPU@2.40GHz

Memory size 32GB
GPU NVIDIA GeForce GTX 2080 Ti

CUDA Version 10.2
Python Version 3.8

5.2. Evaluation Indicators

The most commonly used metrics in object detection algorithms include Precision (P),
Recall (R), F1 Score, Average Precision (AP), and mean Average Precision (mAP). Here are
brief introductions to their calculation:

The Precision (P), which represents the proportion of true positive predictions among
all samples predicted as positive. Its formula is shown in this equation:

Precision =
TP

TP + FP
(12)
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where TP represents the number of true positive samples that are predicted as positive, and
FP represents the number of false positive samples that are predicted as positive but are
actually negative.

The Recall (R) is used to determine how many true positive samples are successfully
detected among all actual positive samples. Its formula is shown in this equation:

Recall =
TP

TP + FN
(13)

where TP represents the number of true positive samples that are predicted as positive, and
FN represents the number of false negative samples that are predicted as negative but are
actually positive.

TheF1 score is the weighted harmonic mean of precision and recall, and is used to
balance the trade-off between precision and recall. The formula for calculating the F1 score
is shown in equation:

F1 =
2TP

2TP + FN + FP
(14)

Mean Average Precision (mAP) is an important evaluation metric for object detection
that is usually involved in research that involves detecting multiple classes. For each class,
the model calculates its corresponding average precision, and the mAP is obtained by
summing the average precision of all classes in the dataset and dividing it by the number
of classes. The formula for calculating mAP is shown in this equation:

mAP =
∑ AveragePrecision(c)

N(classes)
(15)

where Average Precision(c) represents the average precision of a class c, and N(classes)
represents the total number of classes in the dataset.

5.3. Experimental Results

Through experiments, we can obtain the specific performance comparison between the
original YOLOv5s model and the optimized YOLOv5s-pp model on the VisDrone2019-DET
dataset, as shown in Table 5. It can be seen that the overall performance of the YOLOv5s-pp
model is better than that of the original YOLOv5s model.

Table 5. Improved before and after model in VisDrone2019-DET dataset val subset of experimental data.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv5s 38.0 52.0 31.2
YOLOv5s-pp 47.0 (+9.0) 63.0 (+11.0) 41.7 (+10.5)

The validation results of the YOLOv5s model on the val subset are shown in Table 6.

Table 6. Experimental data of YOLOv5s on the val subset.

Category P (%) R (%) mAP@.5 (%)

pedestrian 43.8 41.6 37.4
people 44.1 36.1 29.5
bicycle 27.2 14.0 9.8

car 57.7 75.1 71.5
van 44.5 35.5 33.4

truck 40.7 30.7 25.4
tricycle 38.3 24.1 17.8

awning-tricycle 24.1 14.2 9.2
bus 64.6 38.2 41.8

motor 47.2 44.7 36.4
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The validation results of the YOLOv5s-pp model on the val subset are shown in Table 7.

Table 7. Experimental data of YOLOv5s-pp on the val subset.

Category P (%) R (%) mAP@.5 (%)

pedestrain 61.9 (+18.1) 49.9 (+8.3) 51.7 (+14.3)
people 56.4 (+12.3) 38.2 (+2.1) 39.6 (+10.1)
bicycle 40.4 (+13.2) 19.3 (+5.3) 19.0 (+9.2)

car 72.5 (+14.8) 81.8 (+6.7) 82.1 (+10.6)
van 57.0 (+12.5) 42.4 (+6.9) 44.1 (+10.7)

truck 58.7 (+18.0) 33.6 (+2.9) 36.0 (+10.6)
tricycle 48.6 (+10.3) 29.6 (+5.5) 26.3 (+8.5)

awning-tricycle 38.3 (+14.2) 17.9 (+3.7) 14.7 (+5.5)
bus 68.3 (+3.7) 51.4 (+13.2) 55.3 (+13.5)

motor 63.0 (+15.8) 47.2 (+2.5) 48.2 (+11.8)

The overall performance of the trained YOLOv5s and YOLOv5s-pp models on the
VisDrone2019-DET dataset test-dev subset is shown in Table 8.

Table 8. Improved before and after model in VisDrone2019-DET dataset test-dev subset of experimental data.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv5s 33.0 52.0 26.4
YOLOv5s-pp 40.0 (+7.0) 60.0 (+8.0) 33.8 (+7.4)

The validation results of the YOLOv5s model on the test-dev subset are shown in Table 9.

Table 9. Experimental data of YOLOv5s on the test-dev subset.

Category P (%) R (%) mAP@.5 (%)

pedestrain 39.9 27.1 23.6
people 40.6 16.5 13.3
bicycle 26.8 7.2 6.4

car 56.7 72.5 67.3
van 31.0 37.9 29.5

truck 32.4 36.1 26.1
tricycle 23.4 20.6 12.8

awning-tricycle 34.8 16.7 13.1
bus 62.9 49.1 50.2

motor 38.8 30.0 22.0

The validation results of the YOLOv5s-pp model on the test-dev subset are shown in Table 10.

Table 10. Experimental data of YOLOv5s-pp on the test-dev subset.

Category P (%) R (%) mAP@.5 (%)

pedestrain 49.9 (+10.0) 35.5 (+8.4) 33.9 (+10.3)
people 46.4 (+5.8) 21.0 (+4.5) 19.5 (+6.2)
bicycle 31.4 (+4.6) 12.7 (+5.5) 10.7 (+4.3)

car 65.8 (+9.1) 77.5 (+5.0) 75.0 (+7.7)
van 44.9 (+13.9) 39.6 (+1.7) 37.8 (+8.3)

truck 44.5 (+12.1) 40.0 (+3.9) 34.9 (+8.8)
tricycle 29.3 (+5.9) 31.1 (+10.5) 20.2 (+7.4)

awning-tricycle 40.1 (+5.3) 22.5 (+5.8) 18.6 (+5.5)
bus 67.1 (+4.2) 52.6 (+3.5) 56.1 (+5.9)

motor 47.4 (+8.6) 36.5 (+6.5) 31.1 (+9.1)
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From Tables 5–10, it can be observed that the performance of the YOLOv5s-pp model
on the VisDrone2019-DET dataset is superior to the original YOLOv5s model for both the
val and test subsets. The overall optimization and generalization ability of the YOLOv5s-pp
model is better.

The performance parameter results of YOLOv5s trained on the VisDrone2019-DET
dataset are shown in Figure 10.

Figure 10. YOLOv5s performance parameter results diagram.

The performance parameter results of YOLOv5s-pp trained on the VisDrone2019-DET
dataset are shown in Figure 11.

Figure 11. YOLOv5s-pp performance parameter results diagram.

From the experimental results shown in Figures 10 and 11, we can observe the im-
provement curves of the overall optimization performance of the model before and after
the improvements. The figures not only display performance curves such as Precision,
Recall and mAP, but also demonstrate the loss curves of model parameter optimization.
Among them, the Box curve is the loss of bounding box using GIOU Loss in YOLOv5s. The
smaller the value, the more accurate the selected target is. The Objectness curve is the mean
loss inferred as the target, and the smaller the value, the more accurate the target detection
is. The Classification curve is the mean loss inferred as classification, and the smaller the
value, the more accurate the target classification is. From the before-and-after optimization
result figures, it can be seen that the optimized YOLOv5s-pp model has better overall loss
and detection performance.
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Through experiments, we evaluated the effects of the CA attention mechanism, Meta-
ACON activation function, SPD Conv module, and small object detection head on the
YOLOv5s-pp network model. Specifically, we refer to the YOLOv5s-pp model with the CA
attention mechanism removed as the YOLOv5s-A model; the YOLOv5s-pp model with
the Meta-ACON activation function removed as the YOLOv5s-B model; the YOLOv5s-pp
model with the SPD Conv module removed as the YOLOv5s-C model; and the YOLOv5s-pp
model with the small object detection head modified as the YOLOv5s-D model.

We trained each of the above models on the VisDrone2019-DET dataset and tested them
on the validation subset. The comparison results of the test data are shown in Table 11.

Table 11. Validating the performance impact of each module on a val subset of the VisDrone2019-DET dataset.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv5s 38.0 52.0 31.2
YOLOv5s-A 45.0 60.0 38.5
YOLOv5s-B 46.0 61.0 40.6
YOLOv5s-C 45.0 62.0 39.3
YOLOv5s-D 40.0 55.0 33.2
YOLOv5s-pp 47.0 63.0 41.7

After training, each model was tested on the test-dev subset, and the comparison
results of the test data are shown in Table 12.

Table 12. Validating the performance impact of each module on a test-dev subset of the
VisDrone2019-DET dataset.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv5s 33.0 52.0 26.4
YOLOv5s-A 38.0 57.0 31.3
YOLOv5s-B 39.0 56.0 31.6
YOLOv5s-C 37.0 58.0 32.5
YOLOv5s-D 36.0 54.0 28.8
YOLOv5s-pp 40.0 60.0 33.8

Through Tables 11 and 12, we can see that when any of the CA attention mechanism,
Meta-ACON activation function, SPD Conv module, or any module in the small object
detection head is removed from the YOLOv5s-pp model, it will have a negative impact
on the overall performance of the model. It is worth noting that the change in the small
object detection head has a greater impact on the recognition performance of the entire
model, while the impact of the other modules on the model is relatively small. However,
overall, the recognition performance of these modified models is better than that of the
YOLOv5s model.

In order to further verify the advantages of the YOLOv5s-pp algorithm, we compared
it with other object detection models and conducted tests on the test set and validation set
of the VisDrone2019-DET dataset. The model training information is shown in Table 13,
and the model performance comparison results are shown in Tables 14 and 15.

The algorithms used for performance comparison in Table 14 and Table 15 are all
based on the VisDrone2019-DET dataset, where the FocSDet, ClusDet, HRDNet, YOLOv5sm+,
AF-O-YOLOv5, QueryDet, and RRNet algorithms are cited from the training results of other re-
searchers, and since the research results are not explicitly listed in the results of some researchers’
papers, we do not fill in the corresponding F1 scores and Rs in Tables 14 and 15.The rest of the
YOLOv5 versions and the YOLOv8 versions are trained by ourselves.

From Tables 13–15, we can see that the overall performance of the YOLOv5s-pp model
is superior to the four different sizes of YOLOv5 models. From Table 15, we can see that
the mAP@.5 value of the YOLOv5s-pp algorithm on the test-dev subset is 7.4% higher than



Remote Sens. 2023, 15, 3583 17 of 23

that of the YOLOv5s, 4.1% higher than that of the YOLOv5m, 2.6% higher than that of the
YOLOv5l and 1.3% higher than that of the YOLOv5x. From Table 13, we can see that the
YOLOv5s-pp algorithm has 10.5 M parameters, which is 3.3 M more than the YOLOv5s
model, but far less than the parameters of the other three versions of YOLOv5. The main
reason for the different numbers of parameters between the different versions of YOLOv5
is the difference in the depth of the network model, which to some extent reflects the width
and depth of the network model. As the width and depth of the network model increases,
the spatial and temporal complexity of the model also increases, which means that the
GPU resources occupied during model training also increase, and the training time and
forward inference time of the model will also increase to some extent. This can be reflected
from the model training time and model parameters in Table 13. From Table 15, we can
also see that the overall performance of the YOLOv5s-pp model is better than that of the
YOLOv8s model. The mAP@.5 value of the YOLOv5s-pp algorithm on the test-dev subset
is 0.8% higher than that of the YOLOv8s, and its overall performance is comparable to
that of the YOLOv8m model, but lower than that of the YOLOv8l and YOLOv8x models.
Although the mAP@.5 values of YOLOv8l and YOLOv8x models on the test-dev subset are
3.1% and 4.2% higher than that of the YOLOv5s-pp model, respectively, their parameter
amounts are 4.1 and 6.5 times that of the YOLOv5s-pp model. Their network model depth
and parameter amounts far exceed those of the YOLOv5s-pp model, which requires more
GPU resources and time to train and infer the model.

Table 13. Details of each model trained on the VisDrone2019-DET dataset.

Models Size (Pixels) Batch-Size Epoch Training
Hours Params (M)

YOLOv8s 640 16 300 8.8 11.2
YOLOv8m 640 16 300 11.1 25.9
YOLOv8l 640 16 300 13.3 43.7
YOLOv8x 640 16 300 16.9 68.2
YOLOv5s 640 16 300 9.4 7.2
YOLOv5m 640 16 300 12.2 21.2
YOLOv5l 640 16 300 13.7 46.5
YOLOv5x 640 16 300 20.5 86.7

YOLOv5s-pp 640 16 300 11.2 10.5

Table 14. Experimental results of various models on the val subset of the VisDrone2019-DET dataset.

Models F1 (%) R (%) mAP@.5 (%)

FocSDet [36] - 41.1 30.8
ClusDet [37] - - 32.4
HRDNet [38] - 46.6 35.5

YOLOv5sm+ [39] - - 36.7
AF-O-YOLOv5 [40] 45.0 61.0 41.5

YOLOv8s 44.0 61.0 40.9
YOLOv8m 46.0 62.0 43.3
YOLOv8l 49.0 62.0 45.6
YOLOv8x 50.0 63.0 46.9
YOLOv5s 38.0 52.0 31.2
YOLOv5m 42.0 57.0 35.1
YOLOv5l 44.0 59.0 36.9
YOLOv5x 45.0 60.0 38.8

YOLOv5s-pp 47.0 63.0 41.7



Remote Sens. 2023, 15, 3583 18 of 23

Table 15. Experimental results of various models on the test-dev subset of the VisDrone2019-DET dataset.

Models F1 (%) R (%) mAP@.5 (%)

QueryDet [41] - - 28.4
RRNet [42] - - 29.1

AF-O-YOLOv5 [40] 39.0 58.0 32.6
YOLOv8s 38.0 56.0 33.0
YOLOv8m 40.0 58.0 34.4
YOLOv8l 43.0 58.0 36.9
YOLOv8x 43.0 59.0 38.0
YOLOv5s 33.0 52.0 26.4
YOLOv5m 37.0 55.0 29.7
YOLOv5l 38.0 56.0 31.2
YOLOv5x 40.0 57.0 32.5

YOLOv5s-pp 40.0 60.0 33.8

The images in Figures 12 and 13 are selected from real scenes taken from the UAV’s
perspective. To better test the model’s performance, we have selected images from both
daytime and nighttime scenes, respectively. As we can see in Figure 12, the YOLOv5s
model did not recognize the two motorbikes in the lower left corner of the image in the
night environment; however, the YOLOv5s-pp model detected the motorbikes successfully.
As we can see in Figure 13, in the above set of test comparisons, the YOLOv5s-pp model
identified more small targets than the YOLOv5s model, and for the relatively more distant
and smaller targets, the YOLOv5s model showed a large number of missed detections.
Also in the upper left and right corners of the basketball court, the YOLOv5s model failed
to fully detect the pedestrians in the image, while the YOLOv5s-pp model successfully
detected the pedestrians in it. In contrast, the YOLOv5s-pp model is more accurate in
detecting small targets in the image.

 

（a） （b） 

（a） （b） 

Figure 12. Plot of test results for the example in a daytime environment (Based on VisDrone2019-DET
dataset). (a) shows the test results for the yolov5s model and (b) shows the test results for the
yolov5s-pp model.
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（a） （b） 

（a） （b） 

Figure 13. Plot of test results for the example in the nighttime environment (Based on VisDrone2019-
DET dataset). (a) shows the test results for the yolov5s model and (b) shows the test results for the
yolov5s-pp model.

To further test the applicability of the YOLOv5s-pp model, we evaluated the model
again on the UAVDT dataset. In this evaluation, we only compared the relatively lightweight
YOLOv5s, YOLOv5m, YOLOv8s and YOLOv8m models, as the UAVDT dataset has a larger
amount of data and does not train well on the same training environment as heavier models
such as YOLOv5l, YOLOv5x, YOLOv8l and YOLOv8x. Detailed information related to the
training of the models is presented in Table 16, while Tables 17 and 18 present the final
performance comparison results.

Table 16. Details of each model trained on the UAVDT dataset.

Models Size (Pixels) Batch-Size Epoch Training
Hours Params (M)

YOLOv8s 640 16 200 18.5 11.2
YOLOv8m 640 16 200 31.3 25.9
YOLOv5s 640 16 200 22.7 7.2
YOLOv5m 640 16 200 33.6 21.2

YOLOv5s-pp 640 16 200 24.1 10.5

Table 17. Experimental results of various models on the val subset of the UAVDT dataset.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv8s 45.0 61.0 41.6
YOLOv8m 47.0 62.0 42.8
YOLOv5s 41.0 55.0 35.4
YOLOv5m 44.0 58.0 37.7

YOLOv5s-pp 49.0 64.0 42.1

Table 18. Experimental results of various models on the test subset of the UAVDT dataset.

Models F1 (%) R (%) mAP@.5 (%)

YOLOv8s 40.0 58.0 33.6
YOLOv8m 44.0 60.0 35.9
YOLOv5s 37.0 54.0 29.2
YOLOv5m 41.0 57.0 31.5

YOLOv5s-pp 44.0 61.0 35.7

Combining Tables 16–18, we can see that the YOLOv5s-pp model has better overall
performance than the three different-sized models of YOLOv5s, YOLOv5m and YOLOv8s.
In Table 18, it can be observed that the YOLOv5s-pp algorithm’s mAP@.5 value on the test
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subset is 6.5% higher than that of YOLOv5s, 4.2% higher than that of YOLOv5m and 2.1%
higher than that of YOLOv8m. Compared to the YOLOv8m model, the mAP@.5 value of
the YOLOv5s-pp model on the test subset is slightly lower by 0.2%. However, it should be
noted that the parameter size of the YOLOv8m model is 2.5 times that of the YOLOv5s-pp
model. The overall network depth and parameter size of YOLOv8m are much larger than
those of YOLOv5s-pp, which will have a negative impact on the training and inference
speed of the model.

The images in Figures 14 and 15 are also selected from real scene images taken from
the UAV viewpoint, and again we selected images from both daytime and nighttime scenes.
From Figure 14, we can see that in the night environment, the YOLOv5s model does not
recognise the vehicle further away in the upper left corner of the picture; however, the
YOLOv5s-pp model detects all the vehicles in the picture smoothly. As we can see from
Figure 15, in the above set of test comparisons, the YOLOv5s-pp model identifies more
small targets on the motorway than the YOLOv5s model, and there is a significant amount
of under-detection by the YOLOv5s model of vehicles that are relatively farther away and
smaller in the picture. In addition, near the toll booths in the following set of images,
the YOLOv5s model fails to fully detect vehicles further away in the images, while the
YOLOv5s-pp model detects more targets. In contrast, the YOLOv5s-pp model has better
detection performance for small targets in the pictures.

 (a) 

(a) 

(b) 

(b) 

Figure 14. Plot of test results for the example in a daytime environment (Based on UAVDT dataset).
(a) shows the test results for the yolov5s model and (b) shows the test results for the yolov5s-pp model.

 (a) 

(a) 

(b) 

(b) 

Figure 15. Plot of test results for the example in the nighttime environment (Based on UAVDT dataset).
(a) shows the test results for the yolov5s model and (b) shows the test results for the yolov5s-pp model.
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6. Conclusions

In order to improve the performance of small target recognition algorithms for drone’s
perspective images, this paper selected YOLOv5s model as the basic model and made
improvements on it. Firstly, we replaced the original SiLU activation function with the
Meta-ACON activation function, so that the activation function of the entire model can
adaptively select the degree of activation between linear and nonlinear. Secondly, we
used the SPD Conv module to enhance the feature extraction capability of small targets
and optimized the fine-grained information loss and learning rate decrease caused by
cross-layer convolution. In addition, we incorporated the CA attention mechanism into
the network model, considering both channel dimensions and spatial dimensions, to
solve problems such as long-range dependencies. Finally, we improved the size of the
detection head, which not only reduced the overall loss but also improved the accuracy
of target detection. The experimental results show that compared with the benchmark
model YOLOv5s, the improved YOLOv5s-pp model improves the performance by 7.4%
on the test-dev subset of the VisDrone2019-DET dataset and by 6.5% on the test subset
of the UAVDT dataset. Compared with the YOLOv8s model, the improved YOLOv5s-pp
model improves the performance by 0.8% on the test-dev subset of the VisDrone2019-DET
dataset and 2.1% on the test subset of the UAVDT dataset, and the overall performance
of the small-target recognition outperforms that of the original YOLOv5s and YOLOv8s
models. In further research, we will continue to study the situation where the target cannot
be accurately recognised due to occlusion or overlap in the UAV view, and we will also
incorporate deep learning-based super-resolution techniques into our research, hoping to
further improve the performance of the small target recognition algorithms through this
work, and hopefully make some contribution to this field.
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