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Abstract: Oat products are significant parts of a healthy diet. Pure oat is gluten-free, which makes
it an excellent choice for people with celiac disease. Elimination of alien cereals is important not
only in gluten-free oat production but also in seed production. Detecting gluten-rich crops such as
wheat, rye, and barley in an oat production field is an important initial processing step in gluten-
free food industries; however, this particular step can be extremely time consuming. This article
demonstrates the potential of emerging drone techniques for identifying alien barleys in an oat stand.
The primary aim of this study was to develop and assess a novel machine-learning approach that
automatically detects and localizes barley plants by employing drone images. An Unbiased Teacher
v2 semi-supervised object-detection deep convolutional neural network (CNN) was employed to
detect barley ears in drone images with a 1.5 mm ground sample distance. The outputs of the object
detector were transformed into ground coordinates by employing a photogrammetric technique. The
ground coordinates were analyzed with the kernel density estimate (KDE) clustering approach to
form a probabilistic map of the ground locations of barley plants. The detector was trained using a
dataset from a reference data production site (located in Ilmajoki, Finland) and tested using a 10%
independent test data sample from the same site and a completely unseen dataset from a commercial
gluten-free oats production field in Seinäjoki, Finland. In the reference data production dataset, 82.9%
of the alien barley plants were successfully detected; in the independent farm test dataset, 60.5%
of the ground-truth barley plants were correctly recognized. Our results establish the usefulness
and importance of the proposed drone-based ultra-high-resolution red–green–blue (RGB) imaging
approach for modern grain production industries.

Keywords: photogrammetry; UAV; remote sensing; plant species classification; drone; deep learning;
semi-supervised classification

1. Introduction

Oats (Avena sativa), a cereal crop used both by humans as nutrition and as feed for
livestock, are primarily cultivated in regions with cold and humid climates in the Northern
Hemisphere. They have a wealth of healthy elements, including lipids, proteins, minerals,
fiber, and vitamins. Compared to other edible grains, they possess distinctive qualities and
a rich nutritional profile [1]. Numerous interventional studies have shown that including
oats in a person’s regular diet lowers their chance of developing type 2 diabetes, obesity,
hypertension, and all-cause mortality [2]. These studies emphasize the importance of
including oats in humans’ everyday diet.
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After wheat, maize, rice, barley, and sorghum, oats are the 6th most produced grain
worldwide [3]. Global oat production totals 22.7 million metric tons per year [4]. With
7.6 million metric tons produced, the European Union (EU) is the largest oat producer. In
the EU countries, Finland ranks among the EU’s top producers with an annual production
of 1,100,000 tons, accounting for 11.92% of the bloc’s overall oat production [5].

The absence of gluten, a protein that causes autoimmune reactions in patients with
celiac disease, is a significant advantage of pure oats. Food products created from pure
oats, such as breakfast cereals, biscuits, and breads, are ideal choices for gluten-intolerant
people. The acceptable level of gluten in a gluten-free product is 20 mg/kg [6]. Consuming
non-pure oat products, which are contaminated with gluten-rich grains (rye, barley, and
wheat), may expose people with celiac disease to the gastrointestinal problems associated
with gluten [7]. Worldwide, between 0.5–1.0 percent of all people are gluten intolerant [8];
however, in many nations, including the United States, as many as 6 percent of all people
might be gluten intolerant [9]. Contamination of oats with gluten-rich grains can happen
during cultivation and harvesting, transportation, and processing [10]. On a typical Finnish
contract farm producing gluten-free oats, the cultivation of gluten-rich grains on the same
farm is avoided. In crop rotation, the risk of growing gluten-rich crops on the same field
parcel is also avoided; however, contamination by alien cereals through the seed material
for sowing, seed transportation by birds and animals, and flooding can possibly take place.
Gluten-rich species seem very similar to oats during their first stages of growth; however,
the differences between them become more obvious at heading when ears emerge in wheat
and barley and panicles emerge in oats. Therefore, to implement a uniform oat farming
that secures the purity of oat production, a common initial practice is to manually eradicate
alien (gluten-rich) species, which typically entails considerable manual labor costs.

Precise detection of alien species plays a critical role in ensuring the consistency of
grain products, which is essential for various industries. Gluten-free products are good
examples of products that require very strict quality control throughout the entire produc-
tion process. Usually, a considerable labor cost will be incurred by a farmer to meticulously
localize and eradicate alien species two to four times in the course of a growing season. This
task involves hours of costly manual labor, which affects the profitability of production.
Therefore, manual alien species eradication is a pitfall that affects the competitiveness of
gluten-free oat production. This situation could be significantly improved by employing
emerging automation technologies in different ways, e.g., new technologies could be em-
ployed to accurately localize and eradicate alien species to improve the initial treatment
costs for farms. Low-cost capturing platforms such as small unmanned aerial vehicles
(UAVs) with red–green–blue (RGB) cameras can play a substantial role in this task, since
the small flyers are relatively easy to employ in imaging tasks that can potentially cover a
whole farm in a relatively short period of time.

Drones are gradually becoming the de facto data capturing platform for many practical
applications. They contain many rapidly developing technologies that are believed to bring
new sustainable solutions to outdoor agriculture. Using aerial images to detect trees or
plants is a well-known problem in agricultural technology. For example, Wang et al. [11]
used an unsupervised classifier to detect single-plant-level cotton from images captured by
a drone. They reported that 95.4% of the underlying plants were correctly detected. In their
research, sick plants infected by cotton root rot (CRR) were accurately classified at the sub-
pixel level. A summarized report of recent studies concerning feature selection methods
and resultant waveband selections for hyperspectral sensors for the task of vegetation
classification can be found in Hennessy et al. [12]. Rodrigo et al. [13] used the random
forest method on hyperspectral data captured by a drone to classify plant communities on
a river. Jurišić et al. [14] discussed the potential applications of remote-sensing methods
employing drones in crop management. Rosle et al. [6] reviewed UAV-based methods
to detect weeds. An open database of 47 plant species that was manually labeled was
proposed by Madsen et al. [15]. Zhao et al. [16] used the improved YoloV5 network to
detect wheat ears by UAV with an average accuracy of 94.1%.
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There exist different approaches for utilizing photogrammetric image blocks in en-
vironmental analysis. An image block is formed by collecting overlapping images, and
typically composed of several flightlines, with images having overlaps within flightlines
as well as between flightlines [17]. Two major approaches for collecting image blocks are
nadir views (or integrating nadir) and oblique views [18]. The nadir blocks typically have
within- and between-flightlines overlaps of 70–90%, providing 10–30 views covering each
object point [19]. The oblique image blocks are often collected in three-dimensional (3D)
environments such as cities. The nadir blocks are often processed into orthorectified image
mosaics where the most nadir parts of images are used to provide a top view of the object.
The oblique datasets are suited for providing realistic 3D views of objects, such as textured
3D models [20]. When investigating plant detection through the utilization of drone data
and machine-learning techniques to generate detection maps in real-world coordinates,
previous studies have predominantly relied on training classifiers directly using ortho-
mosaic imagery instead of single images (De Castro et al., [21]; Sa et al., [22]). While the
effectiveness of this approach has been demonstrated in specific scenarios such as row crops
without overlapping plants, it is not well suited for our particular application of detecting
barley within an oat field. This discrepancy arises from the distinctive characteristics of the
crop and the requirement for a non-nadir view to accurately identify and distinguish the
target plants.

Most of the existing classification approaches are unable to feasibly address the com-
plex situation of single plant detection at the ground level, since they mainly concentrate on
image level without considering the connectivity of viewing the same object from different
angles. In this article, we developed a new semi-supervised approach for detecting barley
ears in oat crops to address those gaps. Our method is based on Unbiased Teacher v2 [23]
for object detection from a set of multiview images and an image—“Digital Surface Model
(DSM)” intersection method for 3D estimation of barley locations. We employed the kernel
density estimate (KDE) approach [24] to filter out outliers and create robust 3D estimations
from multiple detected coordinates. The main novel points of this article are:

1. Proposing a complete pipeline for detecting the 3D positions of alien barley ears in an
oat stand as a probabilistic map;

2. Demonstrating the efficiency of the proposed semi-supervised classifier in detecting
barley ears at the image and ground levels;

3. Coupling the image-level estimates with a clustering approach to form a probability
density function (PDF) of barley plants as a reliable and robust estimate;

4. Demonstrating the effectiveness of the complete pipeline proposed by applying it to a
completely unseen dataset.

2. Deep Multi-Image Object Detection Method

The three primary stages of the proposed multi-view object detection approach are deep
multi-image object detection, image annotation, and georeferencing of imagery (Figure 1).
The following section is a detailed description of the phases shown in Figure 1.

2.1. Georeferencing

The first step of the proposed method is the georeferencing [25] of images in the
photogrammetric block. In this step, a bundle block adjustment (BBA) software is em-
ployed to calculate accurate locations and rotations of each image as well as the calibration
parameters of the camera. All necessary and optional inputs such as global navigation
satellite system (GNSS) and inertial measurement unit (IMU) observations, as well as initial
sensor estimations and locations of a few ground control points (GCPs), are fed into the
BBA software to estimate an accurate set of positions and orientations for the given sets of
images, as well as to gain accurate calibrated sensorial information as the main outputs [17].
The expected output of this part of the pipeline includes a DSM, estimated positions and
orientations of images, and calibrated sensor information.
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Figure 1. Overview of the proposed method. Measurements, modules, and outputs are plotted in
green, yellow, and blue boxes, respectively. The photogrammetric core is grouped on the left side.
Dashed lines with numbers show long-distance connections. (GNSS = Global Navigation Satellite
System, IMU = Inertial Measurement Unit, GCPs = Ground Control Points, DSM = Digital Surface
Model, BBA = Bundle Block Adjustment, NNC = Nearest Neighbor Clustering, KDE = Kernel Density
Estimation, PDF= Probability Density Function).

2.2. Annotation

The second phase is image annotation, i.e., detecting and marking the objects of interest
with rectangles. The objects are identified in ground inspection and their 3D ground
coordinates are measured using an accurate real-time kinematic (RTK) GNSS method.
These coordinates are transferred into accurate two-dimensional (2D) image locations of
the awns of barley ears by employing collinearity equations. This transformation involves
considering a hypothetical cube around each barley ear to eliminate the effect of noise
and errors. The outputs of the BBA (accurate positions and orientations of images) are
used to project back eight corners of each 3D cube into their corresponding 2D image
coordinates by employing the collinearity equation. A rectangular 2D image boundary is
then calculated for each barley. The list of rectangular boundaries is visually corrected by a
human operator such that only the tail parts of the target barleys remain.

2.3. Deep Multi-Image Object Detection

The third step of the proposed method concerns the foundation of the algorithm.
Three important tasks are performed in this section: object detection (Section 2.3.1), ground
point estimation (Section 2.3.2), and clustering (Section 2.3.3). In object detection, a semi-
supervised object detector is trained to locate barley plants in individual images. The
semi-supervised object detector uses annotated training and an unlabeled test dataset
to train itself, improve its classification scores, and to self-calibrate (second classification
paradigm in Figure 2). The trained classifier is then used to locate barley plants in the test
set. In ground point estimation, pixel coordinates of detected barley plants are transformed
into 3D ground coordinates by employing a computed photogrammetric DSM. In the
clustering phase, the close-by ground points are labeled and converted into individual
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groups of 3D points. For each cluster, a probabilistic map is produced. Finally, all clusters
are combined to form a prediction map.
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2.3.1. Semi-Supervised Method: Unbiased Teacher v2

Unbiased Teacher v2 [23] is a framework for semi-supervised object detection. It
supports two network architectures: FCOS [26] and Faster R-CNN [27]. We chose to use
Faster R-CNN, as it achieved better results in [28]. The advantage of the semi-supervised
method over a supervised approach is that additional unlabeled data could potentially be
used in the training phase to improve the performance metrics.

The core idea of Unbiased Teacher v2 is training two networks simultaneously, the
Student and the Teacher. Initially, in the burn-in stage, a network is trained with the
labeled samples only. The weights of the network are copied to the Student and Teacher
networks, and the mutual learning stage begins. In every iteration of the mutual learning
stage, the Teacher network predicts bounding boxes on unlabeled images, and predictions
with a confidence higher than a certain threshold are selected as pseudo-labels that are
subsequently employed to train the Student network. The Teacher’s weights are updated
as an exponential moving average of the Student’s weights.

Region-based convolutional neural networks (R-CNNs) are a family of object detectors
that consist of two stages: region proposal and detection [29]. The region proposal stage
extracts potentially interesting regions from an image, and the detection stage classifies
each proposed region.

R-CNNs were originally computationally expensive, as each region was treated sep-
arately. Fast R-CNN introduced sharing convolutions between proposals, significantly
reducing computational cost. Faster R-CNN moves the task of generating proposals to a
region proposal network (RPN), a deep convolutional network that shares convolutional
layers with the detection network, further improving speed.
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2.3.2. Automatic Labeling and 3D-Position Estimation of Unlabeled Barley Plants

The results of the image classification, as a list of image coordinates of barley plants,
are fed into a photogrammetric unit for further processing. Here, the aim is to use the
outputs of image classification to produce reliable ground estimations of alien barley plants;
therefore, image detections are reliably merged into unique ground entities. A valuable
tool in the labeling process is the epipolar geometry that helps to accurately eradicate
false detections. Moreover, a predefined range for acceptable y-parallaxes is employed to
make the object detections ever more robust. Two main approaches can be used: 3D ray
intersection and monoplotting [30]; we elected to use the monoplotting option.

3D Localization by DSM Intersection: DSM-based localization is founded upon
intersecting spatial rays and the DSM. This model is summarized as,

1. Constituting a linear relationship between an image point and its corresponding focal
points of the underlying images;

2. Estimating 3D positions of alien barley plants based on spatial intersection between
lines and the DSM. Iterative approach (Figure 3):

a. Considering an approximate plane with a height equal to the average height of
the DSM.

b. Finding the intersection between the plane and the line passing by the image point.
c. Projecting back the estimated point on the DSM and estimating a new height.
d. Repeating until the difference between the estimation and the projection becomes small.
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3. Intersecting 3D positions on all images to find all possible correspondences for each
alien barley plant;

4. Clustering nearby detected positions of each alien barley plant in all images;
5. Filtering out weak clusters based on a criterion such as the number of intersected rays,

or acceptable image residuals. The inner part of the mentioned algorithm is depicted
in Figure 3.

Compared to the image-based method, this method needs single rays to estimate
barley locations. This property leads to a higher number of ground estimates, since multi-
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ray intersections are usually based on a high number of spatial intersections with low
image residuals. The downsides of this approach are a relatively lower reliability and a
higher signal-to-noise ratio that needs to be addressed before further analysis.

2.3.3. Clustering Approaches

It is essential to form ground-estimation clusters of the same objects before approxi-
mating a PDF for each alien barley plant. Possible locations of alien barleys are estimated by
employing the individual ground points calculated by the monoplotting approach (stated
in Section 2.3.2). Different approaches could be employed to enable this analysis, e.g., a
clustering method such as k-means clustering [31] or self-organizing map (SOM) [32] could
be used to join ground points to form separate clusters; alternatively, Gaussian mixture
model (GMM) [33], or N-nearest neighbor [34] could be used.

An efficient way to form clusters is by employing the L2 norm in N2 nearest neighbor
clustering (NNC). It is therefore a single-parameter approach (one threshold parameter) that
could efficiently join close-by 3D estimates. Each initial cluster is formed by considering a
local member; gradually, the initial clusters update and merge when unchecked members
are considered as potential members based on their closeness to a candidate cluster. The
initial clusters are gradually updated to form a list of final clusters.

The final output of the NNC highly depends on the choice of distance measure
(Euclidean distance, Manhattan distance, or other similarity metrics), and the threshold
parameter that determines the relative closeness of a nominate point to a candidate cluster.
The best clustering results are achieved when most of the points are distributed around
cluster centroids with sufficient distinctiveness. The clustering result will be noisy and
mixed if a considerable amount of salt-and-pepper noise exists, or if traits of mislocated
points connect distinctive clusters. Those problems should be addressed, at least to an
acceptable extent, by either applying an outlier filtering approach on the noisy data prior
to the clustering, or employing a heuristic method to count the number of clusters and
estimate cluster centroids.

2.3.4. Kernel Density Estimation (KDE)

The unknown distribution of local clusters is determined by a suitable approach such
as KDE [24], where a kernel function such as a Gaussian bell is considered along with
a smoothing parameter called bandwidth. The joint PDF of the observed data is finally
formed by calculating the cumulative contribution of all the members of a cluster. The
resultant PDF is consequently employed to localize the regions where the probability
of existence of an alien barley plant is higher. This approach is considered to be non-
parametric if the bandwidth is automatically selected, and it could be applied on a finite
set of observations. One important property of KDE approach is that it is more suitable to
be used to draw inferences about a population, and less suitable for interpolation. Usually,
choosing a kernel is not as important as choosing a bandwidth.

A narrow bandwidth could potentially result in a spiky distribution with a higher
signal-to-noise ratio (SNR). As the value of bandwidth increases, a higher regularization
is applied on the final distribution. Therefore, the bandwidth should be wisely chosen to
smooth the output to a desirable extent. The PDF of KDE is stated as

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi
h

)
, (1)

where N is the number of samples, h is the band width, and summation applies on a local
neighborhood.

The input of KDE is a set of distinctive points as a local cluster, and the output is the
PDF of the cluster. It is important to emphasize that the list of all 3D points should be
clustered before applying KDE. The resultant PDF could be finally normalized according
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to a criterion such as the number of supporting members. This modification could lower
the weights of clusters that have a weakly distributed supporting member.

3. Materials and Method
3.1. Study Area and Reference Data

To facilitate effective reference data capture, a special reference data production trial
was established. The oat cultivar ‘Meeri’ was sown at a normal sowing rate of 500 seeds/m2

but we added seeds of the barley cultivar ‘Alvari’ at a rate of 1 and 0.5 seeds/m2 into
the seed mixture. The oat stand was established using commercial sowing machinery
with 2.5 m working width. A plot border of 30 cm was left unsown between the 70 m
long sowing strips to facilitate accurate visual observation and georeferencing of the alien
barley plants in the oat stand. The reference data production trial was 0.40 ha which was
established on 29 May 2021 in Ilmajoki, Finland. The nitrogen fertilizer application rate
was slightly lowered to 80 kg N ha−1 from the suggested rate of around 110 kg N ha−1 to
reduce risk of lodging. ‘Meeri’ (Boreal Plant Breeding Ltd., Jokioinen, Finland) and ‘Alvari’
(Boreal Plant Breeding Ltd., Jokioinen, Finland) are cultivars commonly used in Finland of
the same earliness level, having 93- and 91-day growing times, respectively. The height of
stand at maturity is 94 cm for ‘Meeri’ and 82 cm for ‘Alvari’ [35].

The second field was a commercial gluten-free-oat production field at a farm with
an area of 60 m × 165 m (~1 hectare) in Seinäjoki, Finland, that was labeled as the val-
idation field (Figure 4b). This field was sown on the 5 of May 2021 at a sowing rate of
530 seeds/m2 with the ‘Avenue’ (Saadzucht Bauer) cultivar, which is one of the most
common cultivars for gluten-free oat production in Finland. The fertilizer application rate
was 130 kg nitrogen ha−1. ‘Avenue’ is a late cultivar with an estimated growing time of
101 days and a height of 94 cm.
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In the test parcels, a careful survey was carried out to detect all barley plants in the oat
stands. The survey was done during the same day as the image capture was carried out.
As the barley cultivars head earlier than oat cultivars, the optimum time for image capture
and for weeding is a two-week time period after barley heading (when the awns become
visible) and before the oat panicles emerge. As the oat cultivars grow taller than the barley
cultivars, many of the barley plants disappear into the oat stand later in the season and
cannot be easily recognized by either human eyes inside a field or drone images.

In the reference data production trial, a total number of 524 barleys were detected
during the field survey and their locations were measured using the Topcon Hiper HR
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RTK GNSS receiver. A total number of 50 alien barley plants were detected and localized
in the validation field. In general, the horizontal positional accuracy of barley plants was
~2 cm in both fields. The approximated height of barley plants was considered as 30 cm.
More specifically, the position where the stem comes out of the ground (site at which the
plant is rooted) was located, which does not give an accurate position of the ear as the stem
is typically tilted and the ear part bent. In practice, these uncertainties were tackled in
the annotation phase by interactively annotating the precise positions of the ears. In total,
21 GCPs were observed in the reference field and 4 GCPs were observed in the validation
field. The reference data production trial was harvested on 7 September 2021. Five 1-row
meter samples of the oat stand produced an estimate that the oat stand had on average
387 oat plants and 433 oat panicles m2. Yield estimation calculated by harvesting a sample
plot of 15 m2 was 4024 kg ha−1 (at 86% dry matter), which was higher than the average oat
yield for the region (3100 kg ha−1) stated in the national yield statistics [36].

3.2. Drone Data

A Matrice M300RTK drone (manufactured by DJI) was employed to capture aerial
photos of the farms. The drone was equipped with a Zenmuse P1 RGB camera (8192 px
by 5460 px), a dual-frequency GNSS receiver, and an IMU sensor (Figure 5). The average
flying height of the drone was 12 m above ground level. The flight was carried out in
the “Smart oblique Capture” mode, which acquires oblique images to the left, right, back,
and front directions using 66 degrees of tilt angle, in addition to nadir images. The data
collection of the reference dataset in Ilmajoki took place on 9 July 2021 at 14:00 local time
(UTC +2:00). The whole experimental field was captured in 56 min. The ground sampling
distance was 1.5 mm at the center of the image at nadir direction. The sky was sunny, and
the solar zenith angle was 42 degrees. Similar settings were used to collect data on the
validation farm on 29 June 2021 at 10:00 local time (UTC +2:00) with a clear sky and a solar
zenith angle of 53 degrees.
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Figure 5. DJI Matrice M300RTK UAV.

In total, 2495 images were captured by the RGB camera in the training field. From the
whole dataset, 2304 images were processed in the BBA. A dense point cloud was generated
using the estimated camera positions and the dense image matching technique. A DSM
with a ground sample distance (GSD) of 1 cm was computed from the dense point cloud.
From the processed dataset, a total of 1495 images were selected based on visibility of
the ground-truth barley observations. The images were divided into eight subsets, seven
(0th–6th) of which contained 200 sub-images, and one (7th) which contained 95 sub-images.
This dataset of eight subsets was called the reference dataset. Three parts of the reference
dataset (parts 0th, 6th, and 7th) were manually labeled. Figure 6 shows examples of two
alien barley plants. The awns of the barley plants are localized in this figure. Overall, 495 of
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the 1495 images were manually labeled using Labelme software [27]. The rest of the dataset
(1st–5th) was used for testing (1000 images).
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Figure 6. Examples of two alien barley plants in a sample image. The awns of the barley ears make
them recognizable. X and Y axes are pixel coordinates.

3.3. Labeling and Classification

All the rectangular image sections of the reference dataset were manually corrected
in 495 images using the Labelme software [27], such that the tail part was meticulously
targeted. The original large images (8192 × 5460 pixels) were divided into 72 smaller
patches (~910 × 682 pixels).

The data pool of the reference dataset consisted of

- 3463 labeled patches;
- 72,000 unlabeled patches;
- 274 labeled patches reserved as a test set.

The reference dataset was split into a training set and a test set. Approximately 90%
of the reference dataset was considered as the training set, and the remaining 10% was
considered as an independent test set (Figure 7). The training and test samples were
uniformly selected by a randomized process on image level. The validation dataset was
kept completely separated from the training process to demonstrate the usefulness of the
trained classifier on a greater scale. Consequently, the method was assessed by employing
two separate test datasets.
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3.4. Implementation Details

In the geo-referencing and BBA section, Agisoft Metashape software (version 2.0.2) [37]
was employed to process the image data. The output of Metashape was processed by a
Python 3.9 script to create appropriate input for Labelme as json text files. The boundaries
were converted into rectangular shapes and saved as json text files. The results of Labelme
were processed by a Python 3.9 script for the semi-supervised classifier.

The semi-supervised method, Unbiased Teacher v2, was trained on ITC Center for
Science Ltd. (CSC, Bengaluru, India) Mahti cluster [38]. All modifications made to Unbiased
Teacher v2′s code, along with the scripts for running it on Mahti, are available at [23]. Mahti
uses the Slurm workload manager [39], meaning that a resource reservation and running
time estimate must be provided when launching a job. Unbiased Teacher v2 was trained
on a single node with four Nvidia A100 GPUs. Training took 18 h with a batch size of
32. A total number of 20,000 iterations were executed, of which the first 5000 iterations
constituted the fully supervised burn-in stage. All details are available in the GitHub
repository of our fork of Unbiased Teacher v2 [23].

The estimated 3D coordinates of the alien barley plants were clustered by the NNC
method described in (Section 2.3.3) using a MATLAB R2022b script. Each local cluster was
fed into the KDE module to approximate local PDFs. The KDE approach was implemented
in MATLAB as local and global estimators. Several more MATLAB R2022b scripts were
implemented for DSM intersections and clustering. All PDFs were merged to form a
global probabilistic map that was used to estimate the performance metrics of Section 3.5.
For georeferencing, a few GCPs were employed to estimate an Affine transformation.
The GDAL 3.6.2 library [40] was employed inside Python 3.9 to save the georeferencing
parameters of the estimated Affine transformation. QGIS 3.24.2 was employed for map
visualization and plotting. The results were assessed and plotted inside MATLAB R2022b
and Python 3.9.

3.5. Performance Metrics

To demonstrate the effectiveness of our proposed method, two sets of performance
metrics were considered. The first set concerned the object-level detections, including true
positive rate (TPR) and overall accuracy. Those metrics were employed to demonstrate
the efficiency of the PDF estimator to localize alien barley plants on the farms [41]. TPR is
calculated as

TPR =
TP

TP + FN
(2)

where TP is the number of true positives, and FN is the number of false negatives. TPR is
also called recall. Overall accuracy is calculated as

Accuracy =
TP + TN
nP + nN

(3)

where TN is the number of true negatives, nP is the number of positives, and nN is the
number of negatives. Precision is calculated as

Precision =
TP

TP + FP
(4)

where FP is the number of false positives.
The second set consisted of average precision (AP) [42] and average recall (AR), which

assessed the performance of the object detectors at the image level. Average precision is
calculated as

APX =
∑N

i=1 Precision(i)X
N

(5)
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where N is the number of images, and Precision(i)X is the precision of the ith image at the
intersection over union (IoU) of X. Average recall (AR) is calculated as

ARX =
∑N

i=1 Recall(i)X
N

(6)

where Recall(i)X is the recall of the ith image at the IoU of X. Both AP and AR were
reported at an IoU of 50% as AP50 and AR50.

4. Results
4.1. Image-Level Detection

The semi-supervised object detector was successfully trained by a stochastic gradient-
based approach. Two examples of successfully detected barleys are shown from different
views in Figures 8 and 9. It is visible in these figures that the barley ears look different from
each viewpoint. Therefore, a sufficient amount of training cases seemed to be necessary to
train a qualified object detector.
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Figure 8. A successful case of an automatically labeled barley (no. 5) from 8 supporting views. Blue
texts plotted at the center are pixel coordinates of corresponding blue crosses.

The patches containing barley ears were relatively difficult to localize manually inside
the images. The ears of barley were visible only when there was a considerable difference
between the background and a barley ear, as depicted in Figure 8. In this figure, the
same barley is shown from eight different views. It is obvious from Figure 8 that the ear
of the plant is distinguishable with both geometric and radiometric differences from its
neighboring matured oats. The color of the barley has a yellow component that makes it
different from the “forest green” of matured oats. The shape of the ear is spiky and it can
be differentiated from the oats if it is viewed from the correct angle from an appropriate
distance. The size of barley ears was significantly different in images, since oblique imaging
geometry was used, and consequently the GSD was not uniform over the whole image. The
human operator was able to localize most of the desired barley ears; however, detecting
a significant portion of them was assumed to be very difficult due to the problems that
were caused by parameters such as similarity in texture information between barleys and
oats, occlusion, or large distance to the cameras. A false positive case is shown in Figure 10.
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The image residual of this case was low; therefore, it was classified as a barley, but it
is a false detection based on the appearance of the weed. A case with high confidence
(>90%) is shown in Figure 9. It is possible to visually recognize the ear of the plant in this
figure. As the confidence number increases, the visual appearance of the detected plants
slightly improves.
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The performance metrics of the trained object detectors for the training and test sets
are presented in Table 1. All the following metrics were reported at IoU = 50%. For the
semi-supervised method, the AP50 of the classifier was 97.7% on the Ilmajoki training set
and 95.2% on the Ilmajoki test set. The output of the image classifier contained the location
of detected barleys along with a confidence number. Overall, the performance of the trained
classifier was considered acceptable for the project; however, there was a considerable
amount of false image detections. Verifying the correctness of automatically detected barley
plants was difficult for a human operator since, even if some of the detected patches were
located on correct positions, no simple visual mark existed to confirm the detection. Most
of the false image detections were removed when a high confidence threshold of 90% was
used to filter out image detections with lower confidence. For each image detection, the
center of the detected rectangle was projected back to the ground.

Table 1. Average precision of the object detector on the Ilmajoki dataset, at IoU = 50%.

Dataset Unlabeled Data AP50 AR50

Train No 95.2% 99.6%
Train Yes 97.7% 100.0%
Test No 94.5% 98.0%
Test Yes 95.8% 98.3%

Inference speed for the original (8192 × 5460) images was 3.9 s per image after cutting
them into smaller tiles, which took 1.2 s/img, totalling 5.1 s/img.

4.2. Object-Level Detection at Trial Site

Figure 11 shows the 3D object points (alien barleys) in a local neighborhood obtained
by the image–DSM intersection algorithm (Section 2.3.2). The manually obtained positions
of alien barley plants are plotted as pink points. All manually obtained points with a
corresponding cluster of image-based approximation are surrounded by yellow rectangles.
Clusters of estimations that did not correspond to a manually measured 3D point are
surrounded by red rectangles. Figure 11 reveals that the set of 3D manual measurements
does not contain all actual alien barley plants in the field, showing that many alien barley
plants failed to be found by the human operator. This is due to the difficult measurement
conditions on the farm. The figure highlights the importance of using the proposed method
to complete the manual measurement.

Figure 12 shows the effect of employing different confidence thresholds on reducing
the number of outliers from image detection tasks. Local clusters are formed in the figure
by employing NNC with norm L2, and they can be seen plotted as red circles. From
left to right, the acceptance threshold level is gradually increased from 20% to 60%. The
rightmost figure has an acceptance threshold level of 80%. It is obvious from this figure
that the confidence number of the image classifier is correlated to the possibility of points
being outliers.

Results of the NNC method using the L2 norm (Section 2.3.3) are plotted in Figure 13.
The input 3D points were filtered out before the clustering step by considering a relatively
high threshold of 90% for the confidence score of the image detections. Therefore, local
clusters are relatively clear for the clustering method. Each cluster is painted with a random
color in the figure. It is obvious from Figure 13 that the barley plants were well separated.
Clusters with a small number of members could be immediately assigned as outliers and
filtered out. Clusters with a sufficient number of members (>5) were fed into the KDE
algorithm. The result of KDE as a PDF of the alien barley plants is plotted in Figure 14.
On the left side of Figure 14, the PDF is overlaid with supporting point estimates (as red
points) and manually measured barleys (as yellow points). The right side demonstrates
a magnification of a small local neighborhood of the PDF. Figure 15 shows the final PDF
as the probabilistic estimate that is overlaid on the DSM. The search region for detecting
alien barleys could be seen to be significantly limited. Approximately <3% of the pixel
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values are marked as alien barley plants. It is possible that a region contains more than
one barley plant as a result. Overall, 82.9% of the ground-truth alien barley plants were
correctly detected. Figure 16 demonstrates a magnification of a small region in the field.
The shape of the local neighborhoods is according to the selection of the kernel, as can be
seen in this figure. The output of KDE was binarized by considering different thresholds
(20–80%). For each threshold, a TPR value was calculated. The TPR values with respect to
the acceptance threshold for the reference dataset are plotted in Figure 17. According to
this figure, 90.48% TPR was achieved for the threshold 20%.
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4.3. Object-Level Detection at the Test Site

The classifier trained using the Ilmajoki training dataset was employed to determine
locations of barley plants in the test dataset. Figure 18 shows a successfully detected
barley plant from 10 different views in this dataset. On the right side of this figure, the
corresponding local cluster and the PDF are plotted. The left side of Figure 19 shows a
local neighborhood with five correctly detected barleys. On the right side of this figure,
two undetected barleys are shown. Overall, 60.5% of all manually measured barleys were
localized by the trained classifier.
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5. Discussion

Automatic recognition of alien barley plants in an oat stand was demonstrated as a
complex vision task that requires employing state-of-the-art image classification methods as
well as photogrammetric techniques. The underlying classification problem was addressed
by combining the results of a semi-supervised classification method with a clustering
approach. The success of the proposed algorithm was demonstrated by detecting the
majority of the target objects at ground level in two real oat production fields. The concept
of employing a semi-supervised classifier was demonstrated as an appropriate sub-solution
for the specific situation of the underlying problem. The results of the semi-supervised
classifier were aligned with previous studies such as [43,44]. A desirable property of
the Unbiased Teacher V2 semi-supervised object detector in localizing target patterns
within image boundaries enabled us to localize alien barley plants precisely inside images;
therefore, precise ground-level localization became achievable. The photogrammetric ray–
DSM intersection led to accurate ground-level results; however, a considerable amount
of noise was observed. Ground estimates of the manually measured barley plants were
also scattered to a noticeable extent; therefore, employing the KDE clustering method was
essential to unify the estimates and remove the weakly detected barleys and outliers.

The performance of our proposed method was astonishingly acceptable on the refer-
ence dataset. The state-of-the-art object detection algorithm was able to correctly recognize
alien barley plants in an image even when it seemed very difficult or impossible for a
human operator. This was due to the complex structure of the classification problem. In
many cases, the target patch was very similar to the background.

An acceptable performance of the complete barley-detection module was success-
fully demonstrated in a separate validation dataset that had a slightly different capturing
situation. In this case, the oat cultivar ‘Avenue’ was used, while in the reference dataset
‘Meeri’ was used. Similarly, the image capture took place 55 days after sowing for the
validation data, while in the reference dataset the difference was 41 days from sowing.
Although ‘Avenue’ is a later cultivar than ‘Meeri’, the development of the oat stand was
more advanced in the validation dataset. In addition, the added alien barley plants were of
one cultivar in the training and the first validation set, but the alien plants in the Seinäjoki
validation set were of an unknown cultivar, although they were barley plants. A drop in
classification accuracy was observed for the validation dataset. The difference between the
classification accuracy of the test part of the reference dataset and that of the validation
dataset was expected, since the condition of the two fields was slightly different. One
reason for why the detection might have been more difficult in the real farm dataset was
that some alien barleys were lower in comparison to the oats, so they might not have been
clearly visible, especially from oblique images. This was likely due to the more advanced
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development of the oat stand. Despite the difference, the proposed method was proven to
be helpful even in that case.

The novel method already showed very good operational performance in the test farm.
To further improve the performance, more datasets collected in different conditions are
needed, including, e.g., different illumination conditions, different relative sizes of the main
and alien crops, and different spectral crop characteristics. Considering the computational
efficiency in terms of computing times and required GPU/CPU, improvements are still
needed. The dataset was huge, as the image ground resolution was 1.6 mm and multiple
images per object points were used. Training and inference were computationally inten-
sive. The subsequent monoplotting and clustering procedures, on the other hand, were
computationally efficient. However, in practical applications, inference would preferably
be carried out during flying; thus, efficient algorithms should be implemented to carry out
detection using onboard computers; examples of efficient implementations are the recent
YOLO architectures [45].

6. Conclusions

The proposed method solved the limitations of the current image classification meth-
ods by combining photogrammetric and clustering methods. The final product as a prob-
abilistic map of the densities of barleys is valuable in terms of prediction power. In
conclusion, coupling the image-based barley detector with the KDE method through the
photogrammetric intersection of space rays and DSM was proven to be a successful tool
in recognizing barleys and filtering the outliers. Our work highlights the potential and
usefulness of state-of-the-art deep-learning-based object detectors in the automation task of
localizing plants on a modern farm. In addition to gluten-free oat production, the method
can also be applied to the seed production of cereals in which the number of seeds of other
cereal species is restricted, as well as in malting barley production.
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