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Abstract: With the advent of deep learning, significant progress has been made in low-light image
enhancement methods. However, deep learning requires enormous paired training data, which is
challenging to capture in real-world scenarios. To address this limitation, this paper presents a novel
unsupervised low-light image enhancement method, which first introduces the frequency-domain
features of images in low-light image enhancement tasks. Our work is inspired by imagining a
digital image as a spatially varying metaphoric “field of light”, then subjecting the influence of
physical processes such as diffraction and coherent detection back onto the original image space via
a frequency-domain to spatial-domain transformation (inverse Fourier transform). However, the
mathematical model created by this physical process still requires complex manual tuning of the
parameters for different scene conditions to achieve the best adjustment. Therefore, we proposed
a dual-branch convolution network to estimate pixel-wise and high-order spatial interactions for
dynamic range adjustment of the frequency feature of the given low-light image. Guided by the
frequency feature from the “field of light” and parameter estimation networks, our method enables
dynamic enhancement of low-light images. Extensive experiments have shown that our method
performs well compared to state-of-the-art unsupervised methods, and its performance approximates
the level of the state-of-the-art supervised methods qualitatively and quantitatively. At the same
time, the light network structure design allows the proposed method to have extremely fast inference
speed (near 150 FPS on an NVIDIA 3090 Ti GPU for an image of size 600× 400× 3). Furthermore,
the potential benefits of our method to object detection in the dark are discussed.

Keywords: low-light image enhancement; unsupervised learning; physics-inspired computer vision

1. Introduction

Image capturing in suboptimal lighting conditions is a common occurrence, leading to
images with low brightness, poor contrast, and color distortion, which consequently hinder
computer vision tasks, including object detection and image segmentation. To combat
these issues, low-light image enhancement has emerged as an essential research topic
in computer vision, particularly for improving the visual fidelity of suboptimal photos.
However, suboptimal lighting conditions necessitate a comprehensive approach rather
than simply amplifying brightness to enhance the contrast, as this may inversely impact
the overall quality of the image. Therefore, addressing the fundamental causes of low-light
imaging is crucial to produce high-quality images that meet the needs of various tasks in
computer vision and image analysis.

Various traditional methods have been proposed to further mitigate the degradation
caused by low-light conditions. These methods are divided into two main categories. Some
of the methods depended on the Retinex Theory [1,2] and the others based on histogram
equalization [3,4]. The Retinex-based method involves the decomposition of images into
reflection and illumination components. The first component contains information about
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the scene’s inherent attributes such as texture, edge details, and color. Meanwhile, the
second component contains distribution information on contours and lighting. On the other
hand, the main idea behind histogram equalization methods is to increase the dynamic
range of the gray values in an image by adjusting its gray distribution. It is achieved by
rearranging the pixels of the image to improve its overall dynamic range. These proposed
methods use image-specific curve mapping instead of randomly changing the histogram
distribution or relying on inaccurate physical models, resulting in natural enhancement
without creating unrealistic artifacts. However, previous methods may still have limitations,
particularly concerning their processing of high-noise pictures and their potential to cause
insufficient local brightness enhancement and loss of details.

In recent years, deep Convolutional Neural Networks (CNNs) have established the
state of the art [5–7] in low-light image enhancement due to their ability to learn superior
feature representation. Advanced techniques have emerged for image enhancement, such
as end-to-end learning methods, methods based on learning the components of illumina-
tion, and unsupervised and semi-supervised learning methods. In the context of low-light
image enhancement, CNN models are designed to learn the mapping between a dark input
image and its enhanced counterpart. This mapping can be formulated as a regression
problem, where the network is trained to predict the enhanced image given the dark input
as the input. To achieve this, CNN models make use of multiple convolutional layers, which
extract local patterns and features from the input image. Moreover, some state-of-the-art
models integrate different CNN architectures [7,8] with attention mechanisms [8] to selec-
tively enhance image details while preserving the overall image content. However, most
CNN-based methods necessitate paired training data, which is challenging to acquire for
the same scene with both low-light and normal-light images. To address this, unsupervised
deep learning-based methods have been proposed. One of the most representative models
is the Generative Adversarial Network (GAN) [9–11] for low-light image enhancement.
GANs consist of two main components: a generator and a discriminator. The generator
network generates enhanced images, while the discriminator network evaluates the realism
of these generated images. The training process involves a competitive game between the
generator and discriminator. The generator aims to generate images that can deceive the
discriminator, while the discriminator aims to accurately classify real and generated images.
Through this adversarial training process, the generator learns to produce visually pleasing
and realistic enhancements. Some of the state-of-art methods have also tried to integrate
attention mechanisms in the generator to generate finer enhanced images However, since
these methods lack ground-truth data to guild the network training, they often rely on
carefully selected training data and may produce artifacts or unrealistic enhancements in
the generated images. Moreover, GAN models, usually with complex architectures, can
require significant computational resources and training time than the CNN-based methods.
Furthermore, deep neural networks may pose challenges for practical applications, mainly
due to their high memory footprint and long inference time. Thus, the need arises for
deep models with low computational cost and fast inference speed for deployment on
resource-limited and real-time devices, such as mobile platforms.

Through a brief survey of the model-based and data-driven methods, it is not difficult
to find that three significant challenges in low-light image enhancement still exist, which
are listed below.

(1) Model-based methods aim to build an explicit model to enhance low-light images, but
suboptimal lighting conditions dramatically increase model complexity. Therefore,
these methods require the complex manual tuning of parameters and even the ideal-
ization of some mathematical processes, making it challenging to achieve dynamic
adjustment and even more difficult to achieve optimal enhancement results;

(2) Data-driven methods typically employ a limited size of convolutional kernels to extract
image features, which have a limited receptive field to obtain global illumination
information for adaptive image enhancement. Consequently, bright areas in the
original image may become over-exposed after enhancement processing, leading to
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poor overall visibility. Furthermore, a natural concern for data-driven methods is
the necessity to acquire large amounts of high-quality data, which is very costly and
difficult, especially when these data have to be acquired under real-world illumination
conditions for the same scenarios;

(3) Moreover, although deep neural networks have shown impressive performance in
image enhancement and restoration, their massive parameter leads to large memory
requirements and long inference time, making them unsuitable for resource-limited
and real-time devices. To address these issues, designing deep neural networks
with optimized network structures and reduced parameters is crucial for practical
engineering and real-time device applications, where a low computational cost and
fast inference speed of deep models are highly desired.

Considering the issues above and inspired by previous works [6,7,12], this paper
explores the integration of physical-based reasoning into the data-driven method of low-
light enhancement. Therefore, aiming at the above situation, we propose a novel end-to-
end neural network named the Unsupervised Low-Light Image Enhancement via Virtual
Diffraction in Frequency Domain (ULEFD). The main contributions are summarized below.

(1) Inspired by previous work [12], we proposed a novel low-light image enhancement
method that mapped the physics occurring from the frequency domain into a deep
neural network architecture to build a more efficient image enhancement algorithm.
The proposed method can balance broad applications and performance of the model-
based and data-driven based method, as well as data efficiency and a large requirement
of training data;

(2) Considering strong feature consistency in images under varying lighting conditions,
this paper designed an unsupervised learning network based on the recursive-based
gated convolution block to obtain the global illumination information from the low-
light image. Furthermore, the unsupervised network is independent of paired and
unpaired training data. Through this process, the network is able to extract higher-
order, consistent illumination features in images, thus providing support for the global
adaptive image enhancement task without the large amounts of high-quality data;

(3) In this paper, the superiority of the proposed unsupervised algorithm is verified by
comparative experiments with the state-of-the-art unsupervised algorithms based
on the different low-light public datasets. Furthermore, the expansion experiment
demonstrated that the ULEFD can be accelerated in both physical modeling and net-
work structure levels while still keeping impressive image enhancement performance,
which has great potential for deployment on resource-limited devices for real-time
image enhancement.

The rest of this work is structured as follows: Section 2 concerns related work, describ-
ing current related approaches to low-light image enhancement and the existing problems.
In Section 3, the proposed image enhancement method ULEFD is described in detail.
Section 4 provides the experimental results and discussion. Meanwhile, the expansion
experiments for our method and the comparison methods are also provided in Section 4.
Finally, conclusions and future work are drawn in Section 5.

2. Related Work

For decades, low-light image enhancement has received significant attention in computer
version tasks. As mentioned above, the mainstream methods for low-light image enhancement
can be roughly categorized as model-based and data-driven methods. This section briefly
reviews these related works and discusses the inspiration from these methods.

2.1. Model-Based Methods

Low-light image enhancement is a critical area for image processing, with a range of
classical and more recent algorithms developed to improve image quality in low-light
conditions [5]. Model-based methods include Gamma Correction [13,14], Histogram
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Equalization [15–19], and Retinex Theory [1,20–22], each with its strengths and weaknesses.
Gamma Correction edits the gamma curve of the image to improve contrast by detecting
dark and light segments of the image but struggles with complex global parameter selection
and local over-exposure [23]. Histogram Equalization stretches the dynamic range of the
image by equally distributing pixel values but can lead to artifacts and unexpected local
over-exposure as well [6]. However, Histogram Equalization methods are still widely relied
on, despite their tendency to suffer from color distortion and other image artifacts. The
Retinex Theory decomposes images into reflectance and illumination maps to estimate and
enhance illumination in non-uniform lighting conditions. However, these methods can lead
to unrealistic or partially over-enhanced images without carefully accounting for noise and
other factors [8]. More recent methods abandon these approaches to employ image-specific
curve mapping for light enhancement, which enables broader dynamic range adjustment
and avoids creating unrealistic artifacts. In addition, several other model-based approaches,
including frequency-based [12] and image fusion [9], are also commonly used to enhance
images in low-light conditions. These methods expand the research avenues of low-light
image enhancement methods from different perspectives. However, these types of meth-
ods also suffer from the inability to achieve adaptive adjustment for low-light images.
In general, model-driven methods rely on mathematical models or assumptions about
the underlying image formation process. These methods typically involve handcrafted
image processing algorithms that explicitly capture the characteristics of low-light image
degradation and aim to restore the image based on these assumptions. These methods
have better interpretability, which can provide insights into the physical processes under-
lying low-light image degradation. However, model-driven methods heavily depend on
the accuracy of the assumed degradation models. If the real-world degradation deviates
significantly from the assumptions made by the model, the performance of these methods
may be limited. Moreover, low-light image degradation can be caused by various factors,
such as noise, blur, and non-uniform illumination. Designing a model-driven approach
that accurately captures all these complexities becomes challenging, and the performance
can suffer accordingly.

2.2. Data-Driven Methods

Data-driven methods typically rely on either Convolutional Neural Network (CNN)-
based or Generative Adversarial Network (GAN)-based approaches. Most CNN-based
methods require paired data for supervised training [8,24–27], which can be resource-
intensive to obtain. It often involves collecting data through automated light degradation
and altering camera settings during image acquisition or retouching. To improve the
weakness, some CNN-based methods, such as LL-Net [28] and MBLLEN [29], generate
synthetic data through gamma correction or photosensitivity changes, while datasets
such as LOL [24] and MIT-Adobe FiveK [30] collect paired low-/normal-light images.
Retinex-based deep models [25,31–33] are also trained on paired data. Frequency-based
decomposition-and-enhancement models, such as [34], use real low-light datasets for
training. Nonetheless, these methods are constrained by the amount of paired data re-
quired and often yield poor generalization capabilities. In contrast, unsupervised GAN-
based [10,11,35] methods such as EnlightenGAN [11] and semi-supervised models such
as [36] learn to enhance images without paired data, although a careful selection of unpaired
data is needed. While such methods eliminate paired data’s drawbacks, generalization
and overfitting are still challenges. Overall, the data-based method can effectively learn
complex relationships between low-light and enhanced images without relying on explicit
assumptions or constraints. This adaptability allows them to handle a wide range of low-
light conditions and variations. In addition, these methods enable end-to-end learning,
where the model learns to automatically optimize the enhancement process based on the
provided training data. This holistic approach can lead to improved overall performance,
as the model learns to address various low-light challenges concurrently. However, it is
worth noting that neural networks used in data-driven methods are often considered black
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boxes, making it challenging to interpret the learned representations or understand the
underlying enhancement process. On the other hand, although reference images or any
prior knowledge about the image formation process are not required to guide learning, the
Zero-DCE++ [6] still relies on large-scale training data, which may suffer if the available
data do not cover the entire range of low-light scenarios or if it contains biases that affect
model generalization. Ultimately, data-driven methods are a promising and constantly
evolving field, with ongoing research (such as integrating different neural network ar-
chitectures [7,8,35] with attention mechanisms [8]) into overcoming these challenges and
improving low-light image enhancement. Furthermore, these improvements also come at a
cost; for most of the data-driven methods, a complex and large-scale network is introduced
for image enhancement, and the massive number of parameters makes these methods
time-consuming. When applied in real-time applications, significant delays may occur.
Table 1 summarizes the main properties of the different types of methods.

Table 1. The main properties of model-based methods and data-driven based methods.

Method Model-Based Data-Driven

Advantage
Data efficient Require limited priors

Physics are universal High performance
Resource-friendly Dynamic adjustment

Disadvantage
Require precise modeling Careful selection data
Suboptimal performance Efficiency depends on structure
No adaptive adjustment High computational cost

In summary, model-based methods, which aim to build an explicit model to enhance
low-light images, possess resource-friendly properties and impressive data efficiency due
to their universal underlying physical rules. However, when applied in different scenarios,
these methods must converge to a good enough local optimum through carefully designed
handcrafted priors or specific statistical models. In contrast, data-driven methods can im-
prove the ability of model-based methods to understand and analyze data by incorporating
a larger number of parameters. This allows for an implicit representation of enhancement
modeling, resulting in a high-quality local optimum when the model is adequately trained.
However, it is important to note that these methods require large amounts of carefully
selected paired or unpaired data, which are often difficult to obtain. Additionally, these
implicit models restrict the scope of their application due to the lack of general model-based
reasoning and may suffer from overfitting. On the other hand, some data-driven methods,
thanks to their larger number of parameters, are able to dynamically adjust to low-light
image enhancement tasks. Nevertheless, this also brings higher computational costs.

3. Materials and Methods

Figure 1 illustrates the detailed structure of ULEFD, which comprises two primary
modules: the Brightness Adjustment in Frequency-Domain (BAFD) component and the
Global Enhancement Net (GEN) component. The BAFD component takes the L channel as
an input and transforms the L channel from the spatial domain to the frequency domain.
Inspired by the [12], the digital image can be reimaged as a spatially varying metaphoric
“field of light”. After transferring this “field of light” to the frequency domain, it can provide
image brightness adjustment information from physical processes such as diffraction and
coherence detection. In addition, to overcome the problem, the original physical brightness
adjustment model requires complex manual tuning of parameters in various scenes, and
the adjustment effect can only converge to suboptimal results. We used a lightweight
network architecture to extract the L channel feature to achieve dynamic adjustment of the
turning of paraments.
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Figure 1. The detailed structure of the proposed method.

The GEN component takes the low-light image and the dynamic brightness adjustment
proposal as inputs and enhances the image with some carefully designed loss functions.
It consists of different types of convolutional layers, especially the recursive-based con-
volution block block with a variable receptive field to capture local and global image
information and generate high-order spatial information interaction for better performance
of the low-light enhancement.

3.1. Brightness Adjustment in Frequency-Domain Component
3.1.1. Physical Brightness Adjustment

In [12], the authors demonstrate that introducing the concepts of virtual light field
to use the frequency-domain information of images as low-light image enhancement has
significant effects. Specifically, let I(x, y) be the original spatial domain digital image. The
virtual “field of light” of I(x, y) can be represented as:

I(x, y) =
∫ +∞

−∞

∫ +∞

−∞
Ĩi(kx, ky)e+j(kx ,ky)dkxdky (1)

where Ĩi(kx, ky) represents the spatial spectrum of the virtual “field of light” and (kx, ky)
represents the signal(pixel coordinates) in the frequency domain. Then, the brightness
gain can be obtained by transforming the spatial signal to the frequency domain, and this
gain can be represented as a spectral phase: φ(kx, ky), the brightness adjustment can be
defined as:

Ĩo(x, y) = Ĩi(kx, ky)e−iφ(kx ,ky)dkxdky (2)

In the end, the brightness gain in the frequency domain needs to be mapped back to
the image in the normal spatial domain as:

Io(x, y) = IFFT{ Ĩi(kx, ky)e−iφ(kx ,ky)} (3)

where IFFT refers to the inverse Fourier transform, and Io(x, y) now contains frequency-
dependent brightness gain entirely described by the phase function φ(kx, ky).
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As known, digital images have three bands corresponding to the three fundamental
color channels (RGB). However, when performing low-light image enhancement, it is
necessary to adjust the image brightness range while preserving the original color saturation
information of the image. This requires separating the color information from the luminance
information to the greatest extent possible. Therefore, we tried different color space
conversion methods to keep the image color saturation information as much as possible and
adjust only the image brightness information. As shown in Figure 2, through experiments,
we found that brightness adjustment of the image in HLS space [37] has the best effect on
preserving the original color saturation information of the image.

Figure 2. Ablation study of the advantage of HLS color space.

3.1.2. Mathematical Modeling

Given our focus on digital images, we transition from a continuous-valued I(x, y)
in the spatial domain to a pixelated waveform I[n, m]. In the frequency domain, the
discrete waveform I[n, m] is expressed as a sum of complex exponential waves with
different frequencies:

I[n, m] =
1

N2

N−1

∑
k=0

N−1

∑
l=0

Î[k, l]ej2π( kn
N + lm

N ) (4)

where N is the number of pixels in each dimension, j is the imaginary unit, and Î[k, l] is the
discrete Fourier transform (DFT) of I[n, m] defined as:

Î[k, l] =
N−1

∑
n=0

N−1

∑
m=0

I[n, m]e−j2π( kn
N + lm

N ) (5)

Similarly, we shift from continuous (kx, ky) to discrete momentum [kn, km].
Therefore, the Gaussian function with zero mean and variance T can be used for the

phase function φ(kx, ky) transformation as :

φ[kn, km] = S · φ̂ (6)

Resulting in a spectral brightness adjustment operator,

H[kn, km] = e−iφ[kn ,km ] = e−iS·φ̂ (7)

where S is a parameter that maps the loss or gain of spectral brightness adjustment.
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Following the spectral intensity adjustment and inverse Fourier transform operation,
coherent detection generates the real and imaginary parts of the optical field. The combined
processes of diffraction with the low pass spectral phase and coherent detection produce
the output of the physical brightness adjustment model:

Io[n, m] = angle〈IFFT{e−iS·φ̂ · FT{I[n, m]}}〉 (8)

where FT denotes the Fourier transform operation, and angle processes the computation of
the phase from a complex-valued function of its argument.

In summary, in order to use the interference information obtained in the frequency-
domain space at different phases as the brightness adjustment gain of the digital input
image, we first add a small constant bias term b to the light field corresponding to the
input image Ii[n, m] to make the numerical calculation more stable and to achieve the effect
of noise reduction. Then, the input image in the spatial domain is transformed to the
frequency domain by the FFT and subsequently multiplied with the complex exponential
elements, the parameters of which define the frequency-dependent phase. The inverse
Fourier transform (IFFT) is then used to return a complex signal in the spatial domain.
Mathematically, the inverse tangent operation in phase detection behaves like an activation
function. Before calculating the phase, the signal is multiplied by a parameter called the
phase activation gain G. The output phase is normalized to match the image formatting
convention [0–255]. This output is then injected into the original image as a new L channel
in HSL color space (for low-light enhancement). Thus, the output of the physical brightness
adjustment model can be represented as:

Enhancel = tan−1(G ∗ ImIo[n, m]

ReIo[n, m]
) (9)

where ImIo[n, m] and ReIo[n, m] is the imaginary and real component of Io[n, m], and tan−1

is used for calculating the phase gain of the diffraction in frequency domain.

3.1.3. Dynamic Adjustment Tuning

The established brightness adjustment model contains three adjustable parameters:
the mapping parameter S, bias term b, and phase gain parameter G. The parameters
mentioned earlier need manual adjustment to enhance low-light images under varied
conditions. Inspired by previous work [6], we propose to extract global information
from the L channel of the low-light image and use a five-layer multi-layer perceptron,
which consists of five layers of 3*3 point-by-point convolution to learn the parameters as
mentioned earlier from the sufficient dataset. This processing can be represented as:

{S, b, G} = MLP(Il) (10)

where Il represents the L channel of the low-light image I in the HLS color space, and
MLP(·) represents the processing of learning these parameters via the five-layer
multi-layer perceptron.

After obtaining the pixel brightness adjustment proposal in the L channel, it will be
concatenated with the middle layer of GEN and fed into the GEN for further enhancement.
The entire ULEFD is trained end-to-end, which means that all the components are trained
jointly to optimize the overall performance of the network.

3.2. Global Enhancement Net

When utilizing traditional convolutional kernels for image feature extraction, the lim-
ited perceptual fields make it challenging for the network to comprehensively understand
the image. Moreover, the enhanced image is exceptionally vulnerable to noise as there is a
lack of information in the low-illumination image. To address these issues, this paper pro-
poses a Global Light Enhancement Net containing three different convolution structures.
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As Figure 1 shows, firstly, the point-wise (1 × 1 kernel size) and Depth-wise
(3× 3 kernel size) convolution block is used to extract the input low-light image fea-
ture. More specifically, 1× 1 point-wise convolution is applied to aggregate pixel-level
cross-channel context, then 3× 3 depth-wise convolution to encode channel-level spatial
context. This convolution structure has been applied in state-of-the-art image restoration
methods [38,39], proving its effectiveness in image noise reduction.

The essential operation in CNN is “convolution”, which provides local connectiv-
ity and translation equivariance, features that bring efficiency and versatility to CNNs.
However, while enhancing low-light images, the consistency of the original images in
terms of color, contrast, and other image information should be ensured. The small size of
conventional convolutional kernels limits their field of perception and thus cannot model
long-range pixel correlations, making it difficult to retain consistent information about the
global image. To address this challenge, this paper introduces a recursive gated depth
convolutional neural network [40], which focuses on using the recursive gated convolution
for higher-order interaction of image information and long-distance image information
modeling. Specifically, the gating mechanism can selectively combine information from the
different kernel sizes of the convolution based on the importance of features. By assigning
different weights to the features, the model can prioritize important details while suppress-
ing noise and artifacts. At the same time, it allows for the hierarchical representation of
images, capturing both local and global structure information. Thus, the gating mecha-
nism helps to ensure that the restored image remains consistent with the original image.
Moreover, the recursive architecture design helps to build high-order spatial interactions
of image information to preserve the consistency of the image throughout the image en-
hancement process. The use of residual connections allows the GEN component to learn
residual information directly. By learning the difference between input and output images,
the network can focus on modeling the enhancement details rather than attempting to
reconstruct the entire image. This residual learning enhances the network’s capacity for
image enhancement and preserves image consistency. Benefiting from these abilities, the
network is able to avoid severe noise distortion and color degradation when enhancing the
dark regions on the input low-light images.

3.3. Loss Function

Due to the lack of absolute supervision information to guide the training process,
it is tough to recover these two components from low-light images. The only way is to
use relative information in loss function designing, which reduces the assumption of the
existence of absolute ground-truth data. Previous unsupervised methods have proposed
some useful loss functions, such as normalized gradient loss [41], spatial consistency
loss [6,7], and perception loss [11]. However, only some achieve impressive results, mainly
due to the ineffective use of more specific constraint information in designing these loss
functions. Therefore, in this paper, we design each loss function of the algorithm for the
image feature information in different components.

3.3.1. Loss for Brightness Adjustment in Frequency-Domain Component

First, for the component of brightness adjustment in the frequency domain, Low-light
degradation causes changes in pixel intensity and color distribution of images. There-
fore, we adopt the image color histogram prior to constraining the dynamic brightness
adjustment. Specifically, we define an MSE loss inspired by [23,42]. The main idea of this
loss function design is that the color histogram prior information contains not only the
input low-light image’s color distribution information but also the image’s structural and
semantic information at the higher level, which can be extracted from this color distribution
information. The kernel density estimation has been used to keep the loss differentiable:

Lhist =
1
N

N

∑
i=1
‖ Hist(Ii

en)− Hist(Ii
low) ‖

2
2 (11)
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where N represents the batch size of the input, Ii
low represents the input low-light image, Ii

en
represents the enhanced image , and Hist(·) represents the obtained color histogram prior.

In addition, the image maintains its natural and explicit detail content to make the
brightness adjustment, and the smooth illumination loss function Lsi is designed. The main
idea is to make the model more focused on image edges and textures by processing the
gradient information of the low-light and enhanced images. More specifically, the loss
function consists of two different components. The first component is the gradient loss
calculation along the x and y directions.

Lx =
1

HW

H

∑
i=1

W

∑
j=1

ReLU(G(Rlow)i,j) exp(−10G(Rlow)i,j) exp(−10G(I)i,j)

Ly =
1

HW

H

∑
i=1

W

∑
j=1

ReLU(G(Rlow)i,j) exp(−10G(Rlow)i,j) exp(−10G(I)i,j)

(12)

where G(Rlow
i,j ) represents the normalization of the gradient of the pixel (i, j) on the low-

illumination image, G(I)i,j represents the normalization of the gradient of the piexl (i, j) on
the image after enhancement, and H and W represent the height and weight of the image.
Moreover, ReLU represents the rectified linear unit function.

ReLU(x) = max(x, 0) (13)

The other component of Lsi is:

Lsmooth = (‖G(Rlow)− G(I))‖p + ε)/(CWH) (14)

where ‖G(Rlow) − G(I))‖ represents the absolute value of the difference between the
gradient of the enhanced image and the low-light image, p represents the parametric
number (e.g., L1-norm or L2-norm), ε is a very small constant (e.g., 1 × 10−4), C is the
number of the image channel, and H and W are the height and weight of the image. In
summary, the total Lsi loss function is:

Lsi = Lx + Ly + Lsmooth (15)

3.3.2. Loss for Global Enhancement Component

From the two aspects of maintaining image color and contrast consistency, two loss
functions are applied in this paper for global light enhancement. The first loss function
is color constancy loss. The main idea is to calculate the mean channel value for both the
enhanced image and the input low-light image to obtain the average pixel values of the
enhanced image enhancesi,j,c and the input low-light image originalsi,j,c. The processing
can be defined as follows:

enh_colsc =

H
∑

i=1

W
∑

j=1
enhancesi,j,c

H ×W

ori_colsc =

H
∑

i=1

W
∑

j=1
originalsi,j,c

H ×W

(16)
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where c represents the picture channel (red, green, blue), and H and W are the height and
width of the image. Then, the ratio difference between the three different color channels is
calculated as follows:

rg_ratio =

∣∣∣∣ enh_colsr

enh_colsg
− ori_colsr

ori_colsg

∣∣∣∣
gb_ratio =

∣∣∣∣ enh_colsg

enh_colsb
−

ori_colsg

ori_colsb

∣∣∣∣
br_ratio =

∣∣∣∣ enh_colsb
enh_colsr

− ori_colsb
ori_colsr

∣∣∣∣
(17)

where enh_colsr, enh_colsg, enh_colsb represent the pixel values of the r, g, and b channels of
the enhanced image, respectively. Correspondingly, ori_colsr, ori_colsg, ori_colsb represent
the pixel values of the r, g, and b channels of the original image. The final color consistency
loss is obtained by summing the above three ratio differences and taking the mean value of
the results:

Lcol =
1
N

N

∑
i=1

(rg_ratioi + gb_ratioi + br_ratioi) (18)

where N is the number of images.
To preserve the contrast consistency, we add a gradient consistency loss. The main

idea is to extract the gradients of each channel and calculate the gradient consistency loss
by comparing the similarity of the corresponding gradients in the original and enhanced
images. The gradient consistency loss can be represented as:

Lgrad =
1
N

N

∑
i=1

(
1−

¯enhc
i · ¯oric

i

‖ ¯enhc
i ‖ · ‖ ¯oric

i ‖+ 0.00001

)
+

1
N

N

∑
i=1

cos−1

(
¯enhc

i · ¯oric
i

‖ ¯enhc
i ‖ · ‖ ¯oric

i ‖+ 0.00001

)
(19)

where ¯enhc
i and ¯oric

i represent the gradients of the enhanced and original image, respectively;
i represents the number of images; and c represents the color channel of the images.

In the end, we use an exposure control loss (Lexp) to control the exposure level and
avoid under-/over-exposed regions. This loss function quantifies the difference between
the average intensity value of a local region and the desired level of well-exposedness
(E). The calculation of this loss function consists of the following main steps. First, the
enhanced image is fed into the function, which performs an averaging pooling operation
and calculates its grayscale value, obtained by averaging the pixel values of the red, green,
and blue channels.

avg_intensity =
1
r2

r2

∑
i=1

(
Ri + Gi + Bi

3

)
(20)

where r represents the window size of the pooling operation, and Ri, Gi, Bi represent the
color channel of the image. Then, calculate the difference between the average grayscale
value and the given threshold, take the absolute value, and then average to obtain the
exposure control loss as follows:

Lexp =
1
n

n

∑
i=1
|avg_intensityi − E| (21)

where n represents the number of windows for pooling operation, avg_intensityi represents
the average value of the ith pooling window, and E is the given threshold. The range of
values is 5–7, and in our experiments the value is 6.2. Specifically, if you want the exposure
adjustment to be dramatic, choose a larger value in this range if possible, and vice versa,
choose a smaller value. Beyond the range, the image will be over-exposed or underexposed.

In summary, the total loss function for the proposed method can be expressed as follows:

L = WhistLhist + WsiLsi + Wcol Lcol + WgradLgrad + WexpLexp (22)
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where the weights Whist, Wsi, Wcol , Wgrad, Wexp are used for balancing the scales of differ-
ent losses. According to the effect of the the model training convergence, the values of
Whist, Wsi, Wcol , Wgrad, Wexp are taken as (0.1, 1, 1, 0.5, 1), respectively

4. Experiment and Results

In this section, we present the implementation details of our proposed low-light image
enhancement method. Afterward, we perform both qualitative and quantitative compar-
isons with state-of-the-art supervised and unsupervised methods, utilizing traditional
metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [43],
and Natural Image Quality Evaluator (NIQE) [44]. In addition, we conduct ablation studies
to demonstrate the effectiveness of each component or loss in the proposed method. Finally,
we investigate the performance of our method to improve the efficiency of downstream
tasks, such as face detection in the dark.

4.1. Implementation Details

The framework is implemented with PyTorch on an NVIDIA 3090 Ti GPU with 24 GB
memory. The batch size used for training is 64. We use the Adam optimizer to train the
network with an initial learning rate of 1× 10−4 and a decay rate of 0.5 every 50 epochs. We
mainly use two datasets for training and comparisons: the LOL dataset [24] and VE-LOL
dataset [45].

4.2. Quantitative Evaluation

In this section, we compare our method with several state-of-the-art low-light image
enhancement methods. These methods include one conventional method (Vevid [12]),
three supervised methods(KinD++ [26], Restormer [38], LACN [8]), and four unsupervised
methods (Zero-DCE++ [6], Reference-freeLLIE [46], EnlightGAN [11], LE-GAN [35]). To
demonstrate the robustness of our proposed method, we give more experiments on cross-
datasets. We have fine-tuned all the above methods on the train sets of LOL and VE-
LOL datasets and then evaluated them on their test sets. From Table 2, our method
achieves significantly better results among all unsupervised methods, and its performance
approximates the level of the state-of-the-art supervised methods. It is obvious that the
proposed ULEFD can achieve better PSNR than other unsupervised methods and some
supervised methods, whether trained on the LOL or VE-LOL dataset. Regarding SSIM,
the proposed method achieved results close to the supervised methods KinD++ [26] and
Restormer [38], which do not require any reference images for training. However, the
proposed method has fewer parameters (only 70 K parameters) and costs less running time
during testing.

To further demonstrate the generalization ability of the proposed method, we have tested
the proposed method on some real-world low-light image sets, including DICM [18] (64 images),
LIME [21] (10 images), VV1 (24 images), LCDP [47], and SCIE [48] (select 100 low-light images
from the datasets). In the expanding experiments, we use unpaired public datasets and
the NIQE (Naturalness and Image Quality Evaluator) and BRISQUE (Blind/Referenceless
Image Spatial Quality Evaluator) metrics to compare the proposed method quantitatively
with state-of-the-art methods that assess natural image restoration without requiring
ground truth. Table 3 contains the NIQE scores for five different public datasets that
were previously used in relevant studies. In summary, these experimental results show the
effectiveness of our proposed method.
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Table 2. Quantitative comparison results on (LOL [24] and VE-LOL [45]) datasets. Red, blue, and green indicate the best and the second-best and third-best results,
respectively. Where ↑means bigger values are better, and ↓means smaller values are better.

Learning Method LOL VE-LOL Efficiency
PSNR ↑ SSIM ↑ NIQE ↓ PSNR ↑ SSIM ↑ NIQE ↓ Params(M) ↓ FLOPs(G) ↓ Test Time (s) ↓

Conventional LIME (2016) [21] 16.76 0.56 10.61 14.77 0.53 10.85 - - 0.491 (on CPU)
Vevid (2022) [12] 17.23 0.65 10.53 14.92 0.56 10.64 - - 0.0012

Supervised
KinD++ (2021) [26] 21.30 0.82 11.02 20.87 0.80 11.60 8.28 268.79 0.829

Restormer (2022) [38] 23.17 0.84 10.14 22.49 0.82 10.53 8.19 231.56 0.821
LACN (2023) [8] 23.54 0.84 10.11 23.09 0.83 10.19 7.25 195.63 0.744

Unsupervised

Zero-DCE++ (2021) [6] 14.86 0.57 10.95 16.93 0.68 10.81 0.01 28.76 0.0012
Reference-freeLLIE (2023) [46] 16.85 0.58 10.74 19.41 0.69 10.42 0.08 91.27 0.011

EnlightGAN (2021) [11] 16.21 0.59 14.74 17.48 0.65 14.42 8.63 273.24 0.871
LE-GAN (2022) [35] 21.38 0.82 11.32 21.50 0.82 10.71 9.92 294.12 0.907

our (Training on LOL) 21.97 0.83 10.23 21.63 0.83 10.21 0.07 71.45 0.008
our (Training on VE-LOL) 21.44 0.82 10.19 22.12 0.84 10.13 0.07 71.45 0.008

Table 3. NIQE and BRISQUE scores on low-light image sets (DICM [18], LIME [21], VV 1, LCDP [47], SCIE [48]). The best result is in red, whereas the second-best
results are in blue, and the third best results are in green, respectively. Smaller NIQE scores indicate a better quality of perceptual tendency.

NIQE ↓ /BRISQUE ↓ NIQE ↓ /BRISQUE ↓ NIQE ↓ /BRISQUE ↓ NIQE ↓ /BRISQUE ↓ NIQE ↓ /BRISQUE ↓

Learning Method DICM [18] LIME [21] VV 1 LCDP [47] SCIE [48] Avg

Conventional LIME (2016) [21] 11.823/5573.418 10.612/5062.801 11.672/6375.428 9.456/3443.928 10.818/4099.466 10.876/4911.008
Vevid (2022) [12] 11.168/4604.262 12.605/3697.681 10.679/5617.055 10.574/3371.317 11.197/4589.276 11.245/4375.908

Supervised
KinD++ (2021) [26] 15.043/3836.451 10.911/3341.541 11.449/4986.575 9.461/3241.841 11.451/4634.521 11.663/4008.186

Restormer (2022) [38] 14.012/5852.303 10.290/4383.280 11.128/5916.383 9.352/3018.414 10.787/3983.399 11.114/4630.756
LACN (2023) [8] 9.532/2579.112 10.531/2611.333 10.597/2287.331 9.796/2922.254 10.133/2681.562 10.118/2616.318

Unsupervised

Zero-DCE++ (2021) [6] 10.995/7965.129 10.932/2996.481 10.645/5885.046 10.217/4294.057 10.560/3917.639 10.701/5011.670
Reference-freeLLIE (2023) [46] 13.645/7658.416 14.792/6084.275 10.690/7173.563 11.622/3788.007 11.153/3858.341 12.380/5712.520

EnlightenGAN (2021) [11] 15.201/4444.962 11.335/4248.576 11.298/5024.721 9.251/3315.532 10.546/2858.341 11.526/3978.426
LE-GAN (2022) [35] 11.928/3630.062 10.690/4153.124 10.41/2940.849 10.364/4926.882 10.588/2905.512 10.796/3711.286

Our 10.037/3261.936 10.084/3148.224 10.504/3585.173 9.336/3141.579 10.245/2962.109 10.041/3219.804
1 https://sites.google.com/site/vonikakis/datasets (accessed on 8 June 2023).

https://sites.google.com/site/vonikakis/datasets
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4.3. Qualitative Evaluation

Figure 3 shows some representative results for visual comparison from the LOL
dataset. We have zoomed in on the details inside the red and green bounding boxes to
further investigate the differences between these comparison methods. The enhanced
results show that the conventional method LIME [21] enhances the images by directly
estimating the illumination map but has some external noises. For unsupervised methods,
Zero-DCE++ [6] produces under-enhanced and noisy results, respectively. Meanwhile,
the KIND++ [26] has apparent noise and weak illumination. EnlightenGAN [11] suffers
from under-enhanced and over-smoothing. The LE-GAN [35] performs better than the
EnlightenGAN but is still under-enhanced in some local details. Benefiting from the
introduction of the normal illumination reference image, the image enhancement effect
of the Restormer [38] is closest to the ground truth. In contrast, Figure 3 shows that our
method can well preserve the structural and textural image details without reference images
to guide the network. It demonstrates that our proposed method achieves more satisfactory
visualization results than the unsupervised learning methods for comparison, especially in
the exposure level, structure description, and color saturation.

Figure 3. Qualitative results on LOL test dataset.

Figure 4 shows some representative results for visual comparison from the VE-LOL
dataset. This dataset further expands the scenario based on the LOL dataset. The enhanced
results show that the LIME [21] has severe contrast and noise issues. For unsupervised
methods, the results of Zero-DCE++ [6] also suffer from extreme contrast and noise issue.
KIND++ [26] has weak illumination. EnlightenGAN [11] still suffers from under-enhanced
and over-smoothing. Regarding the LE-GAN [35], the global enhancement effect is better
than the above methods, but there are some issues of color distortion in a few details.
In terms of global and local effects of image enhancement, the proposed method in this
paper, especially the model trained on the VE-LOL training set, is able to obtain almost the
same enhancement results as the Restormer [38], which is the supervised learning method,
achieving visual quality close to the ground truth.

Figure 5 shows the image enhancement effect of the algorithm in this paper and
other comparison algorithms in real low-light scenarios, respectively. Zero-DCE++ [6]
fail to suppress noise when the background of the scenarios is extremely dark in the
DICM [18] and LIME [21] datasets. Meanwhile, EnlightenGAN [11] provides limited image
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enhancement in the above scenarios. KIND++ [26] suffer from blurring artifacts in the
LIME [21] dataset. As for the LCDP [47] datasets, Zero-DCE++ [6] and LE-GAN [35]
easily lead to over-exposure artifacts and blurriness, which make the results distorted and
glaring with information loss. LIME [21] retains the contrast information of images in all of
the datasets relatively well, but the overall enhancement effect is weak. In contrast, our
proposed method in all datasets tends to generate the same performance as the state-of-
the-art supervised method Restormer [38], with proper color contrast, sufficient detailed
information, and acceptable and controllable noise.

Figure 4. Qualitative results on VE-LOL test dataset.

Figure 5. Qualitative results on DICM [18], LIME [21], VV 1, LCDP [47], and SCIE [48]
datasets, respectively.
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4.4. Ablation Study
4.4.1. Contribution of BAFD Component

In this ablation study, the network only has the GEN component, and the three
associated loss functions Lcol , Lgrad, and Lexp are considered as the baseline model. The
effects of adding the BAFD component and losses proposed in this paper were compared
and studied. The results are presented in Table 4.

Table 4. The influence of BAFD component and loss functions based on relative information. During
training. Relative losses represent Lcol + Lgrad + Lexp.

Loss Functions BAFD LOL VE-LOL

Lhist Lsi
Relative
Losses Component PSNR SSIM PSNR SSIM

X 17.52 0.80 18.87 0.73
X X X 19.05 0.81 19.42 0.82

X X X 20.39 0.82 21.55 0.83
X X X X 21.44 0.82 22.12 0.84

From Table 4, it can be observed that when we add the other losses proposed in
this paper or the BAFD component to the baseline model, both PSNR and SSIM show
improvement. This proves the effectiveness of the BAFD component and the loss functions
designed with relative information. The BAFD component can adjust the global brightness
information and integrate it into the enhancement process with few parameters, which can
effectively improve the PSNR by 2.87 dB and the SSIM value by 0.02 (PSNR: 17.52→ 20.39,
SSIM: 0.80→ 0.82).

4.4.2. Contribution of Each Loss

In this ablation study, we present the results of ULEFD trained by various combinations
of losses. As shown in Table 5, the performance of the proposed ULEFD steadily increases
with the addition of five loss functions, and the effectiveness of our hybrid loss function
is proved. As shown in Figure 6, the result without the BAFD component has limited
brightness adjustment than the full result. The result of smooth illumination loss Lsi has
a relatively lower color contrast than the full result. Severe color casts emerge when
histogram prior loss to Lhist is discarded.

Table 5. The influence of different training losses.

Loss Functions LOL VE-LOL

Lhist Lsi Lcol Lgrad Lexp PSNR SSIM PSNR SSIM

X 12.62 0.54 14.26 0.57
X X 17.88 0.68 18.49 0.70
X X X 18.24 0.70 18.86 0.71
X X X X 20.72 0.77 21.60 0.79
X X X X X 21.44 0.82 22.12 0.84

Meanwhile, it hampers the correlations between neighboring regions leading to ap-
parent artifacts. Removing the color constancy loss Lcol fails to recover the color contrast of
the image. Removing the gradient consistency loss Lgrad hampers the correlations between
neighboring regions leading to apparent artifacts. Finally, Removing the exposure control
loss Lexp fails to brighten the image compared with the full result. Such results demonstrate
that the BAFD component and each loss used in the proposed method play a significant
role in achieving the final visually pleasing results.
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Figure 6. Ablation study of the contribution of BAFD component and each loss (histogram prior loss
Lhist, smooth illumination loss Lsi, color constancy loss Lcol , gradient consistency loss Lgrad exposure
control loss Lexp). Red boxes indicate the obvious differences and amplified details.

4.5. Pedestrian Detection in the Dark

In this section, we aim to evaluate the effectiveness of low-light image enhancement
methods for the pedestrian detection task in low-light conditions. We utilized the DARK
FACE dataset [49], which consists of 10,000 images captured in low-light conditions. Since
the label of the test set is not accessible to the public, we opt to evaluate the proposed
method on the training and validation sets comprising 6000 images. We adopted the
public deep face detector, Dual Shot Face Detector (DSFD) [50], which pre-trained on the
WIDER FACE dataset [51], to serve as our baseline model. The results of various low-light
image enhancement methods were fed to the DSFD [50] for analysis. We utilized the
evaluation tool from the DARK FACE dataset [49] to compare the average precision (AP) at
various IoU thresholds, including 0.5, 0.7, and 0.9. Table 6 shows the detailed AP results of
our evaluation.

Table 6. The average precision (AP) for face detection in the dark under different IoU thresholds (0.5,
0.7, 0.9). The best result is in red whereas the second best one is in blue under each case.

Method
IoU Thresholds

0.5 0.7 0.9

low-light image 0.231278 0.007296 0.000002
LIME [21] 0.293970 0.013417 0.000007

KinD++ [26] 0.243714 0.008616 0.000003
Restormer [38] 0.304128 0.017581 0.000007

Zero-DCE++ [6] 0.289232 0.014772 0.000006
EnlightenGAN [11] 0.276574 0.015545 0.000003

LE-GAN [35] 0.294977 0.017107 0.000005
Ours 0.303135 0.017204 0.000009

Based on the results presented in Table 6, it is evident that all the methods’ AP scores
decrease as the IoU thresholds increase. At an IoU threshold of 0.9, all the approaches
perform exceptionally poorly. However, under IoU thresholds of 0.5 and 0.7, the pro-
posed method achieves similar AP scores that are only slightly lower than Restormer’s [38]
superior performance. Moreover, our method achieves balanced subject enhancement per-
formance, application performance, and computational cost without using paired training
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data. The proposed method effectively lights up facial features in dark areas while pre-
serving features in well-light areas, ultimately improving pedestrian detection in low-light
conditions. Figure 7 shows examples of object detection using the Dual Shot Face Detector
(DSFD) on low-light images and enhanced images with the proposed method.

Figure 7. Impact of VEViD pre-processing on pedestrian detection in the dark.

5. Discussion

1. Deep-learning-based methods have recently attracted significant attention in the
image processing field. Due to the powerful feature representation ability of the data,
data-driven methods can learn more general visual features. This property means
these methods can be used to relieve some challenges for image enhancement, such as
poor illumination conditions. Our research aims to combine the physical brightness
adjustment model based on frequency information with a data-driven-based low-light
image enhancement method to improve the performance of the dynamic enhancement
for low-light images. Moreover, the proposed method is based on a lightweight
network design, offering it the advantages of a flexible generalization capability and
real-time inference speed. The quantitative results in Tables 2 and 3 show that the
data-driven methods have better image enhancement results on all the test sets than
the conventional method when the training data is sufficient. It is due to the fact
that the data-driven approach relies on the powerful feature extraction capability
of the deep learning network to adjust the brightness of each pixel in the image
dynamically. As for data-driven methods, supervised learning usually has better
image enhancement results because it can rely on normally exposed images to guide
network learning. However, collecting pairs of images in natural environments is
very time-consuming. The data dependence of supervised learning also causes a lack
of generalization ability of the model. Specifically, the model degrades in scenarios
with significant differences from the training data. In contrast, unsupervised learning
reduces the reliance on paired data and performs better generalization. The result
of our method shows that the method in this paper outperforms all unsupervised
learning methods in key metrics and surpasses some of the supervised learning
methods, with a small gap compared to the state-of-the-art supervised learning
methods. In general, its performance is based on each branch of the network. Firstly,
the physical brightness via the frequency-domain model in the BAFD component is
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able to improve the performance of the algorithm by providing interpretability for
algorithm optimization, even with the limited amount of training datasets. Moreover,
the integrated physics modeling procedure represents greater robustness than other
methods for enhanced images with scenario changes. Furthermore, it also significantly
reduces the complexity of designing the network architecture, which leads to the
proposed method only having 70K parameters. Secondly, the design of the GEN
component architecture, which is inspired by image restoration methods and the
variable effective receptive field of the recursive gated deep convolution, keeps the
high-order features and the detail information (such as texture) from the image to
preserve the original structural information of the image and suppress noise generated
by enhanced processing.

2. Through ablation experiments, this paper analyzes the reasons for the performance
improvement of the algorithm from two aspects. First, the ablation experiments
demonstrate that this paper uses the two-branch network structure, and the one-
way network introduces the channel characterizing the image brightness with the
frequency-domain feature model under the assumption of the virtual light field, which
can effectively achieve the brightness adjustment. Moreover, a lightweight parameter
estimation network can achieve dynamic brightness adjustment. Meanwhile, the
other network relies on acquiring global image information to preserve the original
image structure, color contrast, and other critical information while enhancing the
image so that the enhanced image noise can be better suppressed. On the other
hand, the contribution of the loss function of constrained unsupervised learning is
analyzed in this paper through ablation experiments. Through the structure of the
ablation experiment, it is easy to find that for the brightness adjustment branch, the
histogram prior information loss function used in this paper can effectively preserve
the original distribution of image information while brightness adjustment, thus
making it possible to adjust the brightness without losing the original image semantic
structure features. On the other hand, the illumination smoothing loss function allows
the network to reduce the impact of noise on the overall image enhancement results
during the brightness adjustment learning. For the global enhancement branch, this
paper constrains the network to retain the high-level image feature information from
two aspects: color gradient consistency and image gradient change consistency so
that the enhanced images achieve significant improvement in both the quantitative
and qualitative evaluation (in Tables 2 and 3 and Figures 3 and 4). Meanwhile, the
exposure consistency loss further enhances the intuitive image enhancement effect.

3. To analyze the potential of the algorithms in this paper for real-time applications, the
paper first compares the parametric quantities and inference implementations of the
various algorithms in Table 2. It can be seen that the number of parameters of the
proposed method in this paper is better than most of the comparison methods, and
the inference speed is only slightly slower than Zero-DCE++ [6], which is significantly
lightweight and fast for practical applications.

6. Conclusions

In this work, we propose an unsupervised dual-branch network for low-light image
enhancement. One network branch uses the frequency-domain information of low-light
images to achieve dynamic brightness adjustment of images. At the same time, the other
focuses on the global image information to dynamically adjust the overall brightness of
images while preserving the high-level structural features of low-light images themselves,
guiding the network to suppress noise effectively, color contrast differences, and other
problems that exist when enhancing low-light images while enhancing images. Moreover,
the loss functions designed in this paper can effectively guide the network to make dynamic
adjustments while preserving the structural information of low-illumination images. It
further enhances the low-light image enhancement effect and can support the performance
improvement of downstream tasks. Finally, the lightweight network structure design
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reduces the number of network parameters and computational complexity. It improves the
inference speed of this paper, which gives the proposed method the potential to be used in
computing platforms with limited computing power.

Restricted by the imaging principle, when the illumination changes, different objects
in the scene due to their material, surface texture, and other differences in the degree of
reflection of light, resulting in the imaging results and image enhancement results there are
large differences. Specifically, objects with strong reflectivity (such as smooth walls) may be
over-exposed after image enhancement, while objects with poor reflectivity (such as dark
carpets) may still be underexposed. Including the proposed method, most existing methods
improve low-light images by global and uniform approaches without considering the
semantic information of different regions. Therefore, using semantic information to guide
the network training may enable the network to focus more on the differences between
different regions in low-illumination images and produce richer image texture information,
and color distribution. Ultimately, more naturally enhanced images are obtained. Therefore,
in the future, we plan to explore a useful approach to obtain the semantic information and
integrate the semantic information into image sequence enhancement.
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CNN Convolutional Neural Networks

ULEFD
Unsupervised Low-light Image Enhancement via Virtual Diffraction
in Frequency Domain

BAFD Bright Adjustment in Frequency Domain
GEN Global Enhancement Net
FT Fourier Transform
FFT Fast Fourier Transform
IFFT Inverse Fourier Transform
MLP Multi-Layer Perception
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