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Abstract: Crop chlorophyll content measuring plays a vital role in monitoring crop growth and opti-
mizing agricultural inputs such as water and fertilizer. However, traditional methods for measuring
chlorophyll content primarily rely on labor-intensive chemical analysis. These methods not only
involve destructive sampling but also are time-consuming, often resulting in obtaining monitoring
results after the optimal growth period of crops. Unmanned aerial vehicle (UAV) remote sensing
technology offers the potential for rapidly acquiring chlorophyll content estimations over large areas.
Currently, most studies only utilize single features from UAV data and employ traditional machine
learning algorithms to estimate chlorophyll content, while the potential of multisource feature fusion
and stacking ensemble learning in chlorophyll content estimation research remains largely unex-
plored. Therefore, this study collected UAV spectral features, thermal features, structural features, as
well as chlorophyll content data during maize jointing, trumpet, and big trumpet stages, creating a
multisource feature dataset. Subsequently, chlorophyll content estimation models were built based
on four machine learning algorithms, namely, ridge regression (RR), light gradient boosting machine
(LightGBM), random forest regression (RFR), and stacking ensemble learning. The research results
demonstrate that (1) the multisource feature fusion approach achieves higher estimation accuracy
compared to the single-feature method, with R2 ranging from 0.699 to 0.754 and rRMSE ranging from
8.36% to 9.47%; and (2) the stacking ensemble learning outperforms traditional machine learning
algorithms in chlorophyll content estimation accuracy, particularly when combined with multisource
feature fusion, resulting in the best estimation results. In summary, this study proves the effective
improvement in chlorophyll content estimation accuracy through multisource feature fusion and
stacking ensemble learning. The combination of these methods provides reliable estimation of chloro-
phyll content using UAV remote sensing technology and brings new insights to precision agriculture
management in this field.

Keywords: chlorophyll content; unmanned aerial vehicle; feature fusion; stacking; maize

1. Introduction

Chlorophyll content serves as a crucial indicator of crop photosynthetic and nutritional
status [1]. Obtaining accurate spatial and temporal dynamics of chlorophyll content in crops
is essential for guiding subsequent resource input and yield estimation. Traditional methods
for measuring chlorophyll content in crops predominantly rely on manual chemical analysis,
which suffers from low efficiency and high costs. Consequently, these methods fail to meet
the demand for rapid acquisition of chlorophyll content on a field scale [2]. In recent
years, handheld chlorophyll meters such as the soil plant analysis development (SPAD)-502
plus (Konica Minolta Co., Tokyo, Japan) have emerged as effective tools for rapid and

Remote Sens. 2023, 15, 3454. https://doi.org/10.3390/rs15133454 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15133454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15133454
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15133454?type=check_update&version=2


Remote Sens. 2023, 15, 3454 2 of 20

nondestructive acquisition of crop chlorophyll content [3]. However, these devices require
manual handheld operation and are still not suitable for the swift acquisition of chlorophyll
content estimation across large areas in the field.

Remote sensing technology offers a more cost-effective approach to obtain chlorophyll
content estimation in crops compared to ground-based measurements [4]. Satellite remote
sensing technology, although capable of large-scale data acquisition, is constrained by
weather conditions, spatial resolution, and revisit cycles, making it challenging to obtain
precise crop canopy information and unsuitable for rapid field-scale detection of chloro-
phyll content [5]. In contrast, unmanned aerial vehicle (UAV) remote sensing technology
surpasses satellite remote sensing with its advantages of high mobility, low cost, and su-
perior spatial and temporal resolution, presenting unparalleled potential for field-scale
chlorophyll content monitoring [6–8]. Presently, spectral features derived from UAV multi-
spectral (MS) sensors are widely used to estimate chlorophyll content in current studies [4].
For instance, Wang et al. [3] employed spectral features obtained during the winter wheat
overwintering stage and combined them with feature selection methods to enhance chloro-
phyll content estimation, achieving a coefficient of determination (R2) value of 0.754 and
relative root mean squared error (rRMSE) of 4.504%. In another study, Yang et al. [9] utilized
spectral features to estimate potato chlorophyll content using an ensemble learning method,
resulting in an R2 value of 0.739 and a root mean squared error (RMSE) value of 0.511.
Qiao et al. [10] developed vegetation indices (VIs) at the jointing stage to estimate maize
chlorophyll content, attaining an R2 value of 0.682 and an RMSE value of 2.361. In addition
to spectral features, canopy thermal and structural features obtained from thermal infrared
(TIR) sensors and red–green–blue (RGB) sensors have proven successful in recent studies
for estimating traits such as biomass, yield, leaf area index, and chlorophyll content [11–14].
However, these studies solely employed single features, which possess a relatively simple
structure and may be influenced by soil context, moisture content, and pest and disease
stress [3]. Previous research has indicated that fusing multisource features tends to yield
higher accuracy in trait estimation compared to using single features alone [14]. Thus,
multisource feature fusion emerges as an effective approach to improving the accuracy of
crop chlorophyll content estimation.

In recent years, with the rapid development of computer technology and artificial
intelligence, using machine learning for estimating crop growth parameters has become a
hot research topic in the field of agriculture [15–17]. To improve the accuracy and stabil-
ity of estimation, machine learning algorithms, especially deep learning methods, have
been widely applied in the study of remote-sensing-based estimation of crop growth pa-
rameters. Deep learning algorithms, by constructing deep neural network models, can
automatically learn high-level feature representations from remote sensing data and op-
timize parameters through large-scale training samples, thereby enhancing estimation
accuracy and generalization ability [18,19]. The advantages of deep learning lie in its ability
to model nonlinear relationships in remote sensing data and perform feature extraction
and combination through multilayer network structures, overcoming the limitations of
traditional methods in feature extraction [20,21]. However, despite the significant achieve-
ments of deep learning in remote sensing estimation, it also faces some challenges [22].
Deep learning algorithms typically require a large amount of training samples and high
computational resources [23,24]. Additionally, the selection and tuning of hyperparameters
can be complex [18]. In order to further improve the performance and robustness of esti-
mation, stacking ensemble learning methods have been introduced into remote sensing
estimation research. Stacking ensemble learning, as an effective ensemble learning method,
combines multiple different base models to achieve more accurate estimation results [12].
It accomplishes this by using the predictions of the base models as new features that are
input into a metamodel for further learning and prediction, thereby improving estimation
performance. Stacking ensemble learning possesses strong generalization ability and adapt-
ability, effectively leveraging the complementarity between different base models to further
enhance estimation accuracy and robustness [13]. In the study of remote-sensing-based
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estimation of crop growth parameters, stacking ensemble learning demonstrates its unique
advantages. Therefore, this study aims to explore and apply stacking ensemble learning
techniques to improve the accuracy and stability of remote-sensing-based estimation of
crop growth parameters.

To address this gap, the present study employs a UAV platform to collect spectral,
thermal, and structural features for estimating maize chlorophyll content, employing
stacking ensemble learning. The specific objectives of this study are as follows: (1) to
evaluate the potential of multisource feature fusion in estimating maize chlorophyll content,
and (2) to investigate the capabilities of stacking ensemble learning in estimating maize
chlorophyll content.

2. Materials and Methods
2.1. Study Area and Experimental Design

The experiments were conducted at the Xinxiang Integrated Experimental Base of the
Chinese Academy of Agricultural Sciences, located in Xinxiang County, Henan Province,
China (113◦45′42′′E, 35◦08′05′′N). Maize was sown on 15 June 2022, covering an area of
approximately 1920 m2, divided into 120 plots measuring 2 m × 4 m each (Figure 1). Each
set of 30 plots received a different gradient of N fertilizer treatment, resulting in a total of
four gradient N fertilizer treatments: N0 (0 kg/hm2), N1 (80 kg/hm2), N2 (120 kg/hm2),
and N3 (160 kg/hm2). Ten maize varieties were selected and replanted three times under
each N fertilizer treatment gradient. Field management adhered to the local best practices,
including timely weeding, pest control, and disease prevention measures.
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Figure 1. Overview of the study area.

2.2. Data Acquisition
2.2.1. UAV Data Acquisition

The MS data and TIR data were collected using a DJI M210 UAV (SZ DJI Technology
Co., Shenzhen, China) equipped with a RedEdge-MX MS sensor (MicaSense Inc., Seattle,
WA, USA) and a Zenmuse XT2 TIR sensor (SZ DJI Technology Co.) (refer to Figure 2).



Remote Sens. 2023, 15, 3454 4 of 20

The RGB data was collected using the DJI Phantom 4 RTK UAV (SZ DJI Technology
Co.) equipped with an RGB sensor (refer to Figure 2). Please refer to Table 1 for further
information on each sensor; Figure 3 shows the images captured by each sensor.
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UAV data were collected at three stages of maize growth: the jointing stage (13 July), 
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servations and minimize errors caused by cloud cover, UAV data acquisition was con-
ducted under clear, cloudless, and windless weather conditions. Flight paths were 

Figure 2. The UAV and the sensors it carries. (a) DJM 210 with MS and TIR sensors, and (b) DJI
Phantom 4 RTK with RGB sensors. Note: The red box in (a) is the MS sensor, and the blue box is the
TIR sensor. The green box in (b) is an RGB sensor.

Table 1. Detailed information about each sensor.

Sensor Name Sensor Type Band Wavelength Bandwidth Image Resolution

RedEdge MX Multispectral Red 668 nm 10 nm 1280 × 960
Green 560 nm 20 nm 1280 × 960
Blue 475 nm 20 nm 1280 × 960

Red edge 717 nm 10 nm 1280 × 960
Near infrared 842 nm 40 nm 1280 × 960

Zenmuse XT2 Thermal Thermal infrared 10.5 µm 6 µm 640 × 512
RGB RGB R, G, B - - 5472 × 3468
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(c) RGB sensor.

UAV data were collected at three stages of maize growth: the jointing stage (13 July),
the trumpet stage (23 July), and the big trumpet stage (2 August). To ensure accurate obser-
vations and minimize errors caused by cloud cover, UAV data acquisition was conducted
under clear, cloudless, and windless weather conditions. Flight paths were planned using
DJI GS PRO 2.0.17 software (SZ DJI Technology Co.). It is crucial to maintain sufficient
frontal and side overlap during data collection to ensure a high point cloud density and
preserve the quality of the digital orthophoto map (DOM) of the study area. Therefore, the
flight altitude was set at 30 m, and the frontal and side overlap were both set at 85% for MS,



Remote Sens. 2023, 15, 3454 5 of 20

TIR, and RGB images, respectively. The acquisition of MS data followed the experience of
previous studies in which MS images of calibration panels were first collected before the
acquisition of MS data. The captured MS images of the calibration panel in each band were
then imported into the Pix4D 4.4.12 software (Pix4D, Lausanne, Switzerland) for calibration
of the MS data. The calibration formula is shown in the following Equation (1):

Ri =
DNi
DNsi

Rsi (1)

where Ri is the reflectance of the ground target in the i-band of the MS camera and DNi is
the corresponding DN value; Rsi is the reflectance of the calibration panel in the i-band of
the MS camera and DNsi is the corresponding DN value.

In addition, 15 ground control points (GCPs) were established in the study area. These
GCPs were evenly distributed throughout the study area and remained fixed during the
entire growth stage of maize (Figure 1). The precise coordinates of the GCPs were obtained
by placing the S3II se GNSS receiver (Situoli Surveying and Mapping Technology Co., Ltd.,
Guangzhou, China) at the center of each GCP. The exact coordinates of the GCPs were then
imported into Pix4D 4.4.12 software to perform geo-calibration of the UAV images.

The acquired UAV images were processed using Pix4D 4.4.12 software to generate a
digital orthophoto map (DOM). The main processing steps included: (1) Initializing the
UAV images obtained during each mission using an automatic feature point matching
algorithm. (2) Importing the coordinates of the 15 GCPs into the image geo-coordinate
correction software to generate high-precision point cloud data based on the structure
of the motion algorithm. (3) Generating the DOM using the inverse distance weighting
method [3].

Once the UAV data were stitched together, the .shp file corresponding to each maize
plot was created in ArcMap 10.8 software (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). The mean canopy reflectance value of each plot was extracted as the
canopy information using the .shp file.

2.2.2. Maize Chlorophyll Content Acquisition

In each plot, three uniformly growing maize plants were randomly selected, and
leaf samples were taken from the top canopy leaves. A piece of leaf tissue measuring
4 cm × 4 cm was cut from each leaf and then finely chopped. The chopped leaves were then
immersed in 40 mL of 95% ethanol solution and kept in darkness for 72 h. Subsequently,
the absorbance of the solution at wavelengths of 649 nm and 665 nm was measured
using a UV-visible spectrophotometer (Shanghai Jing Hua Technology Instruments Co.,
Shanghai, China). The chlorophyll content was calculated based on the absorbance using
Formulas (2)–(4) [10]. The distribution of chlorophyll content at the jointing, trumpet, and
big trumpet stages is shown in Figure 4.

Ca = 13.95A665 − 6.88A649 (2)

Cb = 24.96A649 − 7.32A665 (3)

Chlorophyll content = Ca + Cb (4)

where A649 and A665 are the absorbance of the solution at wavelengths of 649 nm and
665 nm, respectively; Ca is the chlorophyll a content (mg/L); and Cb is the chlorophyll b
content (mg/L).
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2.3. Multisource Features Extraction
2.3.1. Canopy Spectral Features Extraction

The MS data were utilized to calculate VIs as spectral features of the canopy for
estimating chlorophyll content. Five VIs known to be strongly correlated with crop growth
status were employed in this study, and the calculation method for each VI is presented in
Table 2.

Table 2. Spectral features, thermal features, and structural features extracted by each sensor.

Sensor Type Features Formulation Reference

MS Normalized difference vegetation index
(NDVI) NDVI = (NIR − R)/(NIR + R) [25]

Green normalized difference vegetation
index (GNDVI) GNDVI = (NIR − G)/(NIR + G) [26]

Soil adjusted vegetation index (SAVI) SAVI = (1 + L) × (NIR − R)/(NIR + R + L)
(L = 0.5) [27]

Enhanced vegetation index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 ×
B + 1) [28]

Difference vegetation index (DVI) DVI = NIR − R [29]
Normalized difference red edge (NDRE) NDRE = (NIR − REG)/(NIR + REG) [30]
Red difference vegetation index (RDVI) RDVI = (NIR − R)/(NIR + R)ˆ0.5 [31]

Green difference vegetation index (GDVI) GDVI = NIR − G [32]
Ratio vegetation index (RVI) RVI = NIR/R [33]

Green vhlorophyll index (GCI) GCI = (NIR/G) − 1 [34]
Green atmospherically resistant index

(GARI)
GARI = (NIR − G + 1.7(B − R))/(NIR + G −

1.7(B − R)) [32]

Modified soil adjusted vegetation index
(MSAVI) MSAVI = 1.5(NIR − R)/(NIR + R) + 0.5 [35]

Green ratio vegetation index (RVIGRE) RVIGRE = NIR/G [36]
Chlorophyll index with red edge (CIredege) CIredege = (NIR/REG) − 1 [37]

Chlorophyll index with green (CIgreen) CIgreen = (NIR/G) − 1 [38]

TIR Normalized relative canopy temperature
(NRCT) NRCT = (Ti − Tmin)/(Tmax − Tmin) [39]

RGB Crop cover (CC) CC = number of crop pixels in the plot/total
number of plot pixels [40]

Crop height (CH) CH = DSM − DEM [41]
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2.3.2. Canopy Thermal Features Extraction

Normalized relative canopy temperature (NRCT) was calculated from TIR data as
canopy thermal features to estimate chlorophyll content. NRCT has been widely used to
assess crop growth, and the calculation formula is shown in Formula (5) [39].

NRCT =
Ti − Tmin

Tmax − Tmin
(5)

where Ti is the average canopy temperature of the ith maize plot, Tmin is the lowest
temperature in all maize plots, and Tmax is the highest temperature in all maize plots.

2.3.3. Canopy Structural Features Extraction

Crop cover (CC) and crop height (CH) were extracted from the RGB data as canopy
structural features to estimate chlorophyll content. CC describes the proportion of vegetated
area per unit area and can be used to characterize maize growth. In this study, ArcMap
10.8 software was used, and the excess green (EXG) vegetation index was selected for
soil background removal. Firstly, in ArcMap 10.8 software, the EXG index was calculated
using the red and green bands of the RGB image, according to Formula (6) [12]. The
EXG index primarily measures the difference between the green and red bands to assess
vegetation. The green band is highly sensitive to vegetation reflectance, while the red band
is more strongly correlated with soil reflectance. Therefore, the EXG index can effectively
distinguish between vegetation and soil, providing a basis for soil background removal.
Next, the Reclassify tool in the Spatial Analyst toolbox was used to classify pixels based
on a threshold. A new classified layer was created, where soil pixels were assigned a
specific value (e.g., 0) and vegetation pixels were assigned another specific value (e.g.,
1). This resulted in a vegetation mask file, which was applied to the original RGB image
to effectively remove the soil background, as shown in Figure 5. Finally, the vegetation
coverage was calculated by dividing the total number of vegetation pixels by the total
number of pixels in the area, according to Formula (7) [40].

Extra Green = 2G− R− B (6)

CC =
Number o f crop pixels in the plot

Total number o f plot pixels
(7)Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 21 
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Digital surface models (DSM) of maize at the jointing, trumpet, and big trumpet stages
and bare soil were obtained using Pix4D 4.4.12 software based on RGB images. A raster
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calculator was applied in ArcMap 10.8 software to subtract the DSM of the bare soil from
the DSM of the maize at the jointing, trumpet, and big trumpet stages in turn to obtain the
crop height [41]. The average height of the canopy of each plot was extracted as the CH of
each plot.

2.4. Model Building and Accuracy Assessment
2.4.1. Regression Techniques

The chlorophyll content estimation model was constructed using light gradient boost-
ing machine (LightGBM), random forest regression (RFR), and ridge regression (RR) algo-
rithms. LightGBM and RFR are machine learning algorithms that use boosting and bagging,
respectively, as a framework, both of which have been widely used for crop phenotyp-
ing [42,43]. RR is a method used in regression analysis for dealing with multicollinearity
problems and provides a way of regularizing the model [44]. In RR, the complexity of the
model can be limited by adding an L2 regularization term to prevent overfitting. The tuning
of hyperparameters is crucial to the performance of machine learning algorithms. The
main hyperparameters adjusted by LightGBM and RFR algorithms are n_estimators and
max_depth, where n_estimators are adjusted from 50 to 1000 and max_depth is adjusted
from 1 to 10. The parameter to be adjusted by RR is alpha, and the range for adjusting
alpha is from 0 to 0.03.

Stacking ensemble learning is a powerful machine learning technique that combines
predictions from multiple base learners to obtain more accurate overall predictions [13].
This method hierarchically combines different learning algorithms to improve model
performance and generalization ability. The implementation process, which is illustrated in
Figure 6, is as follows: Firstly, the dataset is divided into two sets: the original training set
and the original test set. The original training set is further divided into five subsets named
train1, train2, train3, train4, and train5. Next, the base models are selected. In this study,
LightGBM, RFR, and RR are chosen as the base models. Taking LightGBM as an example,
each of the train1 to train5 subsets is used as the holdout test set, and the remaining four
subsets are used as the training set for a 5-fold cross-validation to train the LightGBM
model. Predictions are then made on the original test set. This process generates five sets
of predictions obtained from training the LightGBM model on the original training set, as
well as five sets of predictions made on the original test set. The predictions obtained from
the original training set are vertically stacked to create feature A1, while the predictions
obtained from the original test set are averaged to create feature B1. The operations for the
RFR and RR models are similar. After training the three base models, their predictions on
the original training set are used as features A1, A2, and A3, respectively. Multiple linear
regression is employed as the metamodel to train the stacking ensemble model. Using the
trained stacking ensemble model, the predictions obtained from the three base models on
the original test set are combined to create features B1, B2, and B3. Finally, the model makes
predictions using these features to obtain the final prediction results.

2.4.2. Assessment Methods

In this study, the dataset was divided into a training set and a test set in a 4:1 ratio
to ensure the accuracy and reliability of model training and evaluation. The results of the
dataset division are presented in Table 3. During the training phase, the model’s parameters
were adjusted using grid search and fivefold cross-validation on the training set to find the
optimal parameter combination. Grid search allows for trying different parameter combi-
nations and evaluating the model’s performance on the training set. This approach helps
identify the parameter configuration that maximizes the model’s performance, improving
accuracy and stability. Finally, after the model training is completed, it is applied to the
test set for evaluation. The evaluation of the model on the test set is conducted using the
coefficient of determination (R2) and relative root mean square error (rRMSE) as evaluation
metrics to objectively measure the model’s performance. R2 measures the model’s ability to
explain the variability of the target variable, while rRMSE quantifies the relative magnitude
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of prediction errors. The formulas for calculating R2 and rRMSE are provided as Equations
(8) and (9), respectively [45,46].

R2 = 1− ∑n
i=1 (xi − yi)

2

∑n
i=1 (xi − y)2 (8)

rRMSE =

√
∑n

i=1 (xi−yi)
2

n
y

× 100% (9)

where xi is the measured chlorophyll content, yi is the estimated chlorophyll content, y
is the mean of the measured chlorophyll content, and n is the number of samples in the
test set.
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Figure 6. Stacking ensemble learning implementation process.

Table 3. Descriptive statistics for chlorophyll content (mg/L) of the training set and the test set.

Dataset Sample Size Min Mean Max Standard
Deviation

Coefficient of
Variation (%)

Training set 288 20.55 39.97 58.56 6.12 15.32
Test set 72 17.94 39.76 56.39 6.71 16.87

Figure 7 shows the overall workflow of this study. Fifteen VIs was first extracted from
the MS data as spectral features, NRCT from the TIR data as thermal features, and CC
and CH from the RGB data as structural features. The chlorophyll content of 120 plots
measured at three growth stages, a total of 360 samples, were then used as input samples.
Finally, the chlorophyll content was estimated based on RR, LightGBM, RFR, and stacking
algorithms. The key to this study is to explore the potential of multisource feature fusion
with stacking in chlorophyll content estimation.
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3. Results
3.1. Multisource Features Fusion Chlorophyll Content Estimation

The input variables for estimating the chlorophyll content of maize included three
canopy features: spectral, thermal, and structural. RR, LightGBM, RFR, and stacking were
employed for estimation, as indicated in Table 4 and Figure 8. In terms of estimating
chlorophyll content using single features, the RFR, LightGBM, and stacking algorithms
exhibited the highest accuracy when utilizing structural features, yielding R2 values ranging
from 0.622 to 0.659 and rRMSE values ranging from 9.81% to 10.48%. While RR gives
the highest estimation accuracy when using thermal features, R2 is 0.602 and rRMSE is
11.68%. Notably, the fusion of multisource features led to a significant improvement in
estimation accuracy compared to single features. In the case of dual-feature fusion, the
thermal + structural combination yielded the best estimation results for the RFR, RR, and
stacking algorithms, with R2 values ranging from 0.680 to 0.711 and rRMSE values ranging
from 9.09% to 9.52%. The spectral + thermal combination yielded the best estimation results
for the RR algorithms, with an R2 value of 0.692 and rRMSE of 9.65%. Moreover, when
all three features were fused, the highest estimation accuracies were achieved by the four
algorithms, with R2 values ranging from 0.699 to 0.754 and rRMSE values ranging from
8.36% to 9.47%. However, it is worth noting that although the three-feature fusion achieved
the highest estimation accuracy, the improvement compared to the optimal two-feature
combination was limited.
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Table 4. Estimated accuracy of single features and multisource feature fusion.

Sensor
Combination

Features
Combination

RR LightGBM RFR Stacking

R2 rRMSE
(%) R2 rRMSE

(%) R2 rRMSE
(%) R2 rRMSE

(%)

TIR Th 0.602 11.68 0.567 11.05 0.555 11.24 0.622 10.68
MS Sp 0.543 12.05 0.590 10.84 0.573 11.03 0.611 10.66

RGB St 0.568 11.17 0.622 10.31 0.629 10.48 0.659 9.81
MS + TIR Sp + Th 0.692 9.65 0.640 10.13 0.664 9.76 0.703 9.20
MS + RGB Sp + St 0.614 10.51 0.650 9.97 0.640 10.12 0.673 9.59
TIR + RGB Th + St 0.682 9.75 0.690 9.39 0.681 9.52 0.711 9.09
MS + TIR +

RGB Sp + Th + St 0.699 9.47 0.699 9.20 0.739 8.66 0.754 8.36

Note: Th denotes thermal features, Sp denotes spectral features, and St denotes structural features.
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Figures 9 and 10 show scatterplots of the estimated chlorophyll content of maize from
the traditional single spectral feature and the fusion of spectral + thermal + structural
features. As can be observed from Figure 9, the scatterplot of the single spectral feature
model shows a large dispersion, indicating that the model has a large uncertainty and
fluctuation in predicting maize chlorophyll. In contrast, based on the close proximity of
the scatterplot of the multisource feature fusion model to the 1:1 solid line in Figure 10, it
can be concluded that the multisource feature fusion model performs better in predicting
maize chlorophyll. Therefore, the use of multisource feature fusion methods can effectively
overcome the limitations of single spectral features and improve the stability and accuracy
of the estimation models. In addition, as indicated by the green dashed circle in Figures 9
and 10, each model tends to underestimate when the measured chlorophyll content exceeds
46. This issue arises due to spectral saturation in areas with dense vegetation, and similar
challenges have been encountered in studies involving crop yield, leaf area index, and nitro-
gen content estimation [47–49]. However, it is noteworthy that the underestimation in the
multisource feature fusion has been mitigated and is closer to the actual measured values.
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3.2. RR, LightGBM, RFR, and Stacking Chlorophyll Content Estimation

The accuracy of RR, LightGBM, RFR, and stacking in the estimation of chlorophyll
content was statistically shown in Figure 11. Stacking can achieve higher R2 and lower
rRMSE than the other three traditional machine learning algorithms, namely, RR, LightGBM,
and RFR. This demonstrates the robust stability and modelling capability of the stacking
model in the estimation of chlorophyll content in maize. By comparing RR, LightGBM, and
RFR, it can be observed that LightGBM and RFR exhibit similar accuracy, which is higher
than RR.
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3.3. Temporal and Spatial Distribution of Chlorophyll Content

The combination of multisource feature fusion and stacking yielded the highest es-
timation accuracy. Figure 12 illustrates the estimated temporal and spatial distribution
of chlorophyll content across three growth stages. Temporally, the chlorophyll content
exhibited an increasing trend from the jointing stage to the big trumpet stage, which is
consistent with the measured changes in maize’s chlorophyll content (Figure 2). This in-
crease is attributed to the nutritional growth phase of maize, during which the chlorophyll
content gradually rises from the jointing to the big trumpet stage. Spatially, the chlorophyll
content exhibited a gradual increase followed by a decrease with varying levels of fertilizer
application. For instance, the N1 and N2 treatments showed higher chlorophyll content
compared to the N0 treatment. However, the N3 treatment, which received the highest
level of fertilizer, exhibited lower chlorophyll content than the N1 and N2 treatments. This
decline can be attributed to excessive fertilizer treatments negatively impacting maize
growth due to nutrient excess, resulting in decreased chlorophyll content. Previous studies
have also demonstrated that excessive fertilizer application not only wastes resources but
also hampers crop growth, leading to reduced chlorophyll content [4]. These findings
underscore the potential of UAV remote sensing technology in monitoring crop growth
status in the field and aiding fertilizer input decisions.
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4. Discussion
4.1. Analysis of the Potential for Multisource Feature Fusion

Spectral features have become commonly used for estimating crop chlorophyll con-
tent, leaf area index, and yield [9,47,50,51]. However, they can be influenced by sensor
characteristics and external environmental conditions, leading to large estimation errors.
Therefore, this study aimed to investigate whether fusing multisource features could im-
prove the estimation of chlorophyll content compared to using spectral features alone.
The results (Table 4 and Figure 8) demonstrate that multisource feature fusion achieves
higher estimation accuracy than single features. This may be attributed to three factors.
(1) Complementary information: Each feature type provides unique information for the
estimation process. Spectral features capture the reflectance characteristics of leaves, re-
flecting their biochemical composition [10]. Thermal features obtained through thermal
imaging offer insights into plant heat dissipation, which is related to stress levels and
metabolic activities [13]. Structural features, such as CC and CH, provide geometric and
morphological information about plant growth and development [11]. By combining these
diverse features, chlorophyll content estimation models can leverage their complementary
nature, resulting in a more robust and accurate estimation of chlorophyll content [47].
(2) Improved discriminative ability: Fusing multiple feature types enhances the discrimi-
native ability of the estimation model. Solely relying on spectral data can sometimes be
influenced by confounding factors such as varying lighting conditions or atmospheric
disturbances. By incorporating thermal and structural features, the model becomes more
resilient to these limitations and gains additional discriminative power [14]. The fusion
of multisource feature enables the model to extract relevant information from multiple
sources, effectively reducing the impact of noise, and improving the overall accuracy of
chlorophyll content estimation [45]. (3) Adaptability to changing conditions: Maize plants
exhibit dynamic responses to environmental changes, including variations in light, temper-
ature, and water availability [46]. By integrating spectral, thermal, and structural features,
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fusion models demonstrate greater adaptability to such changes. They can capture the
transient response of spectral features and the long-term effects reflected in thermal and
structural features [12]. This adaptability ensures the reliability and effectiveness of the
model across different growth stages, environmental conditions, and varieties. Moreover,
conventional spectral features often suffer from oversaturation in high vegetation zones,
resulting in underestimation of crop yield, leaf area index, and nitrogen content [47–49].
Previous studies have shown that incorporating canopy texture features as complementary
data can effectively address this issue. Similarly, the results of this study suggest that multi-
source feature fusion can also mitigate the impact of spectral saturation in high vegetation
zones [52]. It is important to note that the fusion of all three features (spectral + thermal +
structural) yields the highest estimation accuracy compared to other feature combinations.
However, the improvement in accuracy is minimal compared to the estimation accuracy ob-
tained with the best two-feature fusion. This may be attributed to information redundancy
among multiple features [53].

Further evaluation of the importance of each input feature is shown in Figure 13. The
results indicate that CC ranks first in the feature importance evaluation with a score of
26.97%. This is likely due to the close correlation between CC and leaf density and growth
status of maize plants, which significantly influences chlorophyll content [47]. Next, NRCT
ranks second in the feature importance evaluation with a score of 17.29%. This is because
temperature is an important indicator of plant growth and photosynthesis, making NRCT
a valuable source of information for estimating maize chlorophyll content [49]. CH ranks
third in the feature importance evaluation with a score of 7.68%. CH is closely related to
crop growth status and biomass, providing important references for estimating chlorophyll
content [41]. NDRE, a spectral feature, ranks fourth in the feature importance evaluation
with a score of 5.14%. NDRE is sensitive to reflecting plant photosynthesis and changes
in chlorophyll content, with less susceptibility to spectral saturation [10]. The importance
evaluation of other spectral features falls between 1% and 5%, relatively low. This suggests
a potentially severe linear correlation and data redundancy among these spectral features.
In summary, CC, CH, and NRCT are important features for estimating maize chlorophyll
content, with higher importance than traditional spectral features. These findings support
the profound significance of multisource feature fusion in estimating maize chlorophyll
content. By evaluating the importance of input features, we can enhance the accuracy
and stability of the estimation model, providing valuable guidance for optimizing future
methods and improving models for maize chlorophyll content estimation.

4.2. Analysis of the Potential for Stacking in Chlorophyll Content Estimation

Advancements in computing power have opened up new possibilities for extracting
valuable insights into and understanding of plant behavior [15,54]. In the field of crop
phenotyping, traditional machine learning algorithms such as RR, partial least squares
regression, and support vector regression are commonly utilized [12,48]. However, these
machine learning algorithms only utilize a single model, which limits their performance
and fails to fit complex data patterns effectively, resulting in poor estimation results. In this
study, different machine learning algorithms were employed to estimate maize chlorophyll
content, and their performances were compared. The results showed that the RR algorithm
had the lowest estimation accuracy, while the LightGBM and RFR algorithms performed
relatively well but were surpassed by the stacking ensemble learning method. Firstly, the
RR algorithm exhibited lower accuracy in estimating the maize chlorophyll content. This
could be attributed to the complex nonlinear relationship between chlorophyll content
and various factors such as light, temperature, and soil moisture in plant growth [47]. The
RR algorithm, being a linear machine learning algorithm, may not adequately capture
the nonlinear relationship between chlorophyll content and remote sensing data, thus
limiting its estimation accuracy [44]. In contrast, both the LightGBM and RFR algorithms
demonstrated better estimation performance. These algorithms leverage the ideas of
boosting and bagging, respectively, to integrate multiple decision trees. They possess strong
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nonlinear modeling capabilities, enabling them to capture the complex relationship between
chlorophyll content and remote sensing data more effectively [42,45]. Consequently, they
achieve improved estimation accuracy compared to the RR algorithm. However, the
highest estimation accuracy was observed with the stacking ensemble learning method.
Stacking ensemble learning leverages a multilevel model structure to effectively combine
and integrate the predictions from individual base models, thereby minimizing estimation
errors and enhancing estimation performance [12]. By combining the strengths of different
algorithms, stacking ensemble learning overcomes the limitations of a single model and
maximizes their complementary nature in estimating chlorophyll content [13]. As a result,
it achieves the highest estimation accuracy.
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Based on the stacking ensemble learning method, we progressively eliminated features
with lower contributions to the model, as determined by the feature importance results in
Figure 13, to optimize the application of multisource feature fusion and stacking ensemble
learning in estimating maize chlorophyll content. The corresponding results are shown in
Figure 14. Observing Figure 14, it can be noticed that as relatively unimportant features
were eliminated, the estimation accuracy of the model fluctuated within a certain range
but exhibited an overall increasing trend. Particularly, when features such as Clredege and
those with lower importance were removed, the model achieved the highest estimation
accuracy with an R2 value of 0.797 and rRMSE of 7.63%. Compared to using the full set of
input features, the estimation accuracy significantly improved after eliminating relatively
unimportant features. These results indicate that by evaluating feature importance and
progressively eliminating features with smaller contributions to the model, we were able to
optimize the estimation model for maize chlorophyll content. This process helps reduce
feature redundancy and enhances the robustness and predictive capabilities of the model.
Therefore, the approach based on multisource feature fusion and stacking ensemble learning
holds profound significance for estimating maize chlorophyll content, providing valuable
guidance and insights for future research and model improvements.
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4.3. Implications and Future Research

The contribution of this study lies in proposing a method for estimating maize chloro-
phyll content based on the fusion of multiple data sources and stacking ensemble learning.
Compared to existing research, this method achieves significant improvements in estima-
tion accuracy [10]. By utilizing multiple feature sources from UAV remote sensing data and
integrating different machine learning algorithms, we have achieved a reliable estimation of
maize chlorophyll content. The innovation of this study lies in demonstrating the potential
advantages of multisource feature fusion and stacking ensemble learning in estimating
maize chlorophyll content, providing a new perspective for precision agriculture man-
agement. Compared to existing methods, our approach has several technical differences.
Traditional methods for estimating maize chlorophyll content typically rely on a single-
feature source and use conventional machine learning algorithms for modeling. In contrast,
our study combines multiple feature sources, including UAV spectral features, thermal fea-
tures, and structural features, and utilizes the stacking ensemble learning method to achieve
a more accurate estimation of maize chlorophyll content. The novelty of this approach lies
in its ability to better capture the complex relationship between maize chlorophyll content
and remote sensing data, thereby improving estimation accuracy and stability.

In future research, there are several directions for further exploration and optimization.
Firstly, it is possible to consider introducing more feature sources. For example, exploring
additional remote sensing data sources such as hyperspectral data and radar data can
enrich the feature information [14,55]. Secondly, the stacking ensemble learning approach
can be further improved, for example, by experimenting with different combinations of
base models and optimizing ensemble strategies to further improve estimation accuracy.
Lastly, extending this method to other crops and agricultural management issues is also an
interesting direction. Precision agriculture management requires monitoring and estimation
of the growth and health status of various crops. Therefore, generalizing the methods from
this study to other crops such as wheat, soybeans, etc., can provide comprehensive support
for agricultural production.

5. Conclusions

This study aimed to assess the feasibility and potential of utilizing UAV multisource
feature fusion and stacking ensemble learning for accurately estimating chlorophyll content
in crops. The main findings can be summarized as follows:
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(1) UAV multisource feature fusion surpasses the use of single features alone in terms
of estimation accuracy. Furthermore, the fusion of multiple features effectively ad-
dresses the issue of underestimation caused by spectral saturation in areas with
dense vegetation.

(2) Stacking ensemble learning exhibits superior suitability for chlorophyll content estima-
tion compared to traditional machine learning algorithms. This highlights the substantial
potential of stacking ensemble learning in precision agriculture management.

In conclusion, the combination of UAV multisource feature fusion and stacking en-
semble learning provides an efficient and nondestructive method for rapidly obtaining
accurate chlorophyll content. This approach represents a significant research direction for
future UAV remote sensing applications in precision agriculture.
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