
Citation: Shang, J.; Gao, M.; Li, Q.;

Pan, J.; Zou, G.; Jeon, G. Hybrid-Scale

Hierarchical Transformer for Remote

Sensing Image Super-Resolution.

Remote Sens. 2023, 15, 3442.

https://doi.org/10.3390/rs15133442

Academic Editors: Prashant K.

Srivastava and Salah Bourennane

Received: 19 April 2023

Revised: 21 June 2023

Accepted: 30 June 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Hybrid-Scale Hierarchical Transformer for Remote Sensing
Image Super-Resolution
Jianrun Shang 1, Mingliang Gao 1 , Qilei Li 2, Jinfeng Pan 1,*, Guofeng Zou 1 and Gwanggil Jeon 1,3

1 School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255000, China;
21404020515@stumail.sdut.edu.cn (J.S.); mlgao@sdut.edu.cn (M.G.); gfzou@sdut.edu.cn (G.Z.);
gjeon@inu.ac.kr (G.J.)

2 School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK; q.li@qmul.ac.uk

3 Department of Embedded Systems Engineering, Incheon National University,
Incheon 22012, Republic of Korea

* Correspondence: pjfbysj@163.com

Abstract: Super-resolution (SR) technology plays a crucial role in improving the spatial resolution
of remote sensing images so as to overcome the physical limitations of spaceborne imaging sys-
tems. Although deep convolutional neural networks have achieved promising results, most of them
overlook the advantage of self-similarity information across different scales and high-dimensional
features after the upsampling layers. To address the problem, we propose a hybrid-scale hierar-
chical transformer network (HSTNet) to achieve faithful remote sensing image SR. Specifically, we
propose a hybrid-scale feature exploitation module to leverage the internal recursive information
in single and cross scales within the images. To fully leverage the high-dimensional features and
enhance discrimination, we designed a cross-scale enhancement transformer to capture long-range
dependencies and efficiently calculate the relevance between high-dimension and low-dimension
features. The proposed HSTNet achieves the best result in PSNR and SSIM with the UCMecred
dataset and AID dataset. Comparative experiments demonstrate the effectiveness of the proposed
methods and prove that the HSTNet outperforms the state-of-the-art competitors both in quantitative
and qualitative evaluations.

Keywords: super-resolution; remote sensing image; convolutional neural network; transformer;
self-similarity

1. Introduction

With the rapid progress of satellite platforms and optical remote sensing technol-
ogy, remote sensing images (RSIs) have been broadly deployed in civilian and military
fields, e.g., disaster prevention, meteorological forecast, military mapping, and missile
warning [1,2]. However, due to hardware limitations and environmental restrictions [3,4],
RSIs often suffer from low-resolution (LR) and contain some intrinsic noise. Upgrading
physical imaging equipment to improve resolution is often plagued by high costs and long
development cycles. Therefore, it is of utmost urgency to explore the remote sensing image
super-resolution (RSISR).

Single-image super-resolution (SR) is a highly ill-posed visual problem which aims
to reconstruct high-resolution (HR) images from corresponding degraded LR images. To
this end, many representative algorithms have been proposed, which can be roughly di-
vided into three categories, i.e., interpolation-based methods [5,6], reconstruction-based
methods [7,8], and learning-based methods [9,10]. The interpolation-based methods gen-
erally utilize different interpolation operations, including bilinear interpolation, bicubic
interpolation, and nearest interpolation, to estimate unknown pixel value [11]. These
methods are relatively straightforward in practice, while the reconstructed images lack
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essential details. In contrast, reconstruction-based methods improve image quality by
incorporating prior information of the image as constraints into the HR image. These
methods can restore high-frequency details with the help of prior knowledge, while they
require substantial computational costs, making it difficult for them to be readily applied
to RSIs [12]. Learning-based approaches try to produce HR images by learning the map-
ping relationship established between external LR–HR image training pairs. Compared
with the aforementioned two lines of methods, learning-based methods achieve better
performance and become the mainstream in this domain due to the powerful feature
representation ability provided by convolutional neural networks (CNNs) [13]. However,
learning-based methods generally adopt the post-upsampling framework [14], which solely
exploits low-dimensional features while ignoring the discriminative high-dimensional fea-
ture information after the upsampling process.

In addition to utilizing nonlinear mapping between LR–HR image training pairs, the
self-similarity of the image is also employed to improve the performance of SR algorithms.
Self-similarity refers to the property of similar patches appear repeatedly in a single image
and is broadly adopted in image denoising [15,16], deblurring [17], and SR [18–20]. Self-
similarities are also an intrinsic property in RSIs, i.e., internal recursive information. Figure 1
illustrates the self-similarities in RSIs. One can see that the down-scaled image is on the
left, and the original one is on the right. Similar highway patches with green box labels
appear repeatedly in the same scale image, while the roof of factories with red box labels
appear repeatedly across different scales, and these patches with similar edges and textures
contain abundant internal recursive information. Previously, Pan et al. [21] employed
dictionary learning to capture structural self-similarity features as additional information
to improve the performance of the model. However, the sparse representation of SR has
a limited ability to leverage the internal recursive information within the entire remote
sensing image.

single-scale similarities
cross-scale similarities

Figure 1. Illustration of self-similarities in RSIs with single-scale (green box) and cross-scale (red box).

In this paper, we propose a Hybrid-Scale Hierarchical Transformer Network (HSTNet)
for RSISR. The HSTNet can enhance the representation of the high-dimensional features
after upsampling layers and fully utilize the self-similarity information in RSIs. Specifically,
we propose a hybrid-scale feature exploitation (HSFE) module to leverage the internal
similar information both in single and cross scales within the images. The HSFE module
contains two branches, i.e., a single-scale branch and a cross-scale branch. The former
is employed to capture the recurrence within the same scale image, and the latter is
utilized to learn the feature correlation across different scales. Moreover, we designed a
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cross-scale enhancement transformer (CSET) module to capture long-range dependencies
and efficiently model the relevance between high-dimension and low-dimension features.
In the CSET module, the encoders are used to encode low-dimension features from the
HSFE module, and the decoder is used to utilize to fuse the multiple hierarchies high-
/low-dimensional features so as to enhance the representation ability of high-dimensional
features. To sum up, the main contributions of this work are as follows:

1. We propose an HSFE module with two branches to leverage the internal recursive
information from both single and cross scales within the images for enriching the
feature representations for RSISR.

2. We designed a CSET module to capture long-range dependencies and efficiently
calculate the relevance between high-dimension and low-dimension features. It helps
the network reconstruct SR images with rich edges and contours.

3. Jointly incorporating the HSFE and CSET modules, we formed the HSTNet for RSISR.
Extensive experiments on two challenging remote sensing datasets verify the superi-
ority of the proposed model.

2. Related Literature
2.1. CNN-Based SR Models

Dong et al. [22] pioneered the adoption of an SR convolutional neural network (SR-
CNN) that utilizes three convolution layers to establish the nonlinear mapping relationship
between LR–HR image training pairs. On the basis of the residual network introduced by
He et al. [23], Kim et al. [24] designed a very deep SR convolutional neural network (VDSR)
where residual learning is employed to accelerate model training and improve reconstruc-
tion quality. Lim et al. [25] built the enhanced deep super-resolution model to simplify the
network and improve the computational efficiency via optimizing the initial residual block.
Zhang et al. [26] designed a deep residual dense network in which the residual network
with dense skip connections is used to transfer intermediate features. Benefiting from the
channel attention (CA) module, Zhang et al. [27] presented a deep residual channel atten-
tion network to enhance the high-frequency channel feature representation. Dai et al. [28]
designed a second-order CA mechanism to guide the model to improve the ability of
discriminative learning ability and exploit more conducive features. Li et al. [29] proposed
an image super-resolution feedback network (SRFBN) in which a feedback mechanism is
adopted to transfer high-level feature information. The SRFBN could leverage high-level
features to polish up the representation of low-level features.

Because of the impact of spatial resolution on the final performance of many RSI tasks,
including instance segmentation, object detection, and scene classification, RSISR also raises
significant research interest. Lei et al. [30] proposed a local–global combined network (LGC-
Net) which can enhance the multilevel representations, including local detail features and
global information. Haut et al. [31] produced a deep compendium model (DCM), which
leverages skip connection and residual unit to exploit more informative features. To fuse
different hierarchical contextual features efficiently, Wang et al. [32] designed a contextual
transformation network (CTNet) based on a contextual transformation layer and contextual
feature aggregation module. Ni et al. [33] designed a hierarchical feature aggregation and
self-learning network in which both self-learning and feedback mechanisms are employed
to improve the quality of reconstruction images. Wang et al. [34] produced a multiscale
fast Fourier transform (FFT)-based attention network (MSFFTAN), which employs a multi-
input U-shape structure as the backbone for accurate RSISR. Liang et al. [35] presented a
multiscale hybrid attention graph convolution neural network for RSISR in which a hybrid
attention mechanism was adopted to obtain more abundant critical high-frequency informa-
tion. Wang et al. [36] proposed a multiscale enhancement network which utilizes multiscale
features of RSIs to recover more high-frequency details. However, the CNN-based meth-
ods above generally employ the post-upsampling framework that directly recovers HR
images after the upsampling layer, ignoring the discriminative high-dimensional feature
information after the upsampling process [14].
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2.2. Transformer-Based SR Models

Due to the strong long-range dependence learning ability of transformers, transformer-
based image SR methods have been studied recently by many scientific researchers.
Yang et al. [37] produced a texture transformer network for image super-resolution, in which
a learnable texture extractor is utilized to exploit and transmit the relevant textures to LR
images. Liang et al. [38] proposed SwinIR by transferring the ability of the Swin Trans-
former, which could achieve competitive performance on three representative tasks, namely
image denoising, JPEG compression artifact reduction, and image SR. Fang et al. [39] de-
signed a lightweight hybrid network of a CNN and transformer that can extract beneficial
features for image SR with the help of local and non-local priors. Lu et al. [40] presented a
hybrid model with a CNN backbone and transformer backbone, namely the efficient super-
resolution transformer, which achieved impressive results with low computational cost.
Yoo et al. [41] introduced an enriched CNN–transformer feature aggregation network in
which the CNN branch and transformer branch can mutually enhance each representation
during the feature extraction process. Due to the limited ability of multi-head self-attention
to extract cross-scale information, cross-token attention is adopted in the transformer
branch to utilize information from tokens of different scales.

Recently, transformers have also found their way into the domain of RSISR. Lei et al. [14]
proposed a transformer-based enhancement network (TransENet) to capture features from
different stages and adopted a multistage-enhanced structure that can integrate features from
different dimensions. Ye et al. [42] proposed a transformer-based super-resolution method
for RSIs, and they employed self-attention to establish dependencies relationships within
local and global features. Tu et al. [43] presented a GAN that draws on the strengths of
the CNN and Swin Transformer, termed the SWCGAN. The SWCGAN fully considers the
characteristics of large size, a large amount of information, and a strong relevance between
pixels required for RSISR. He et al. [44] designed a dense spectral transformer to extract the
long-range dependence for spectral super-resolution. Although the transformer can improve
the long-range dependence learning ability of the model, these methods do not leverage the
self-similarity within the entire remote sensing image [45].

3. Methodology
3.1. Overall Framework

The framework of the proposed HSTNet is shown in Figure 2. It is built by the combi-
nation of three kinds of fundamental modules, i.e., a low-dimension feature extraction (LFE)
module, a cross-scale enhancement transformer (CSET) module, and an upsample module.
Specifically, the LFE module is utilized to extract high-frequency features across different
scales, and the CSET module is employed to capture long-range dependency to enhance
the final feature representation. The upsample module is adopted to transform the feature
representation from a low-dimensional space to a high-dimensional space.

Given an LR image ILR, a convolutional layer with a 3× 3 kernel is utilized to extract
the initial feature F0. The process of shallow feature extraction is formulated as

F0 = fsf(ILR), (1)

where fsf(·) represents the operation of the convolutional operation and F0 is the shal-
low feature.

As shown in Figure 3, the LFE module consists of five basic extraction (BE) modules,
and each BE module contains two 3× 3 convolution layers and one hybrid-scale feature
exploitation (HSFE) module. As the core component of the BE module, the HSFE module
is proposed to model image self-similarity. The whole low-dimensional feature extraction
process is formulated as

Fi
LFE = f i

lfe

(
Fi−1

LFE

)
= f i

lfe

(
f i−1
lfe

(
· · · f 1

lfe(F0) · · ·
))

, i = 1, 2, 3, (2)
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where f i
lfe(·) and Fi

LFE represent the operation of ith LFE module and its output. After the
three cascaded LFE modules, a subpixel layer [46] is adopted to transform low-dimensional
features into high-dimensional features, which is formulated as

Fup = Subpixel
(

F3
LFE

)
, (3)

where Fup represents the high-dimension feature and Subpixel(·) denotes the function of
the subpixel layer. The low-dimension features F1

LFE, F2
LFE, and F3

LFE and the high-dimension
feature Fup are fed into three cascaded CSET modules for feature hierarchical enhancement.
To reduce the redundancy of the enhanced features, a 1× 1 convolution layer is employed
to reduce the feature dimension. The complete process including the enhancement and
dimension reduction is formulated as

Fi
CSET =

{
f i
cset

(
Fi

LFE, Fi+1
CSET

)
, i = 1, 2,

f i
cset
(

Fi
LFE, Fup

)
, i = 3,

(4)

where f i
cset(·) and Fi

CSET represent the operation of ith CSET module and its output, respec-
tively. Finally, one convolution layer is employed to obtain SR image ISR from the enhanced
features. A conventional L1 loss function was employed to train the proposed HSTNet
model. Given a training set

{
Ii
LR, Ii

HR
}N

i=1, the loss function is formulated as:

L(θ) =
1
N

N

∑
i=1

∥∥∥FHSTNet

(
Ii
LR

)
− Ii

HR

∥∥∥
1

, (5)

where FHSTNet denotes the proposed model parameterized by θ and N represents the
number of training LR–HR pairs.
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Figure 2. Architecture of the proposed HSTNet for remote sensing image SR.
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Figure 3. Architecture of the LFE module.

3.2. Hybrid-Scale Feature Exploitation Module

To explore the internal recursive information in single-scale and cross-scale, we pro-
pose an HSFE module. Figure 4 exhibits the architecture of the HSFE module, which
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consists of a single-scale branch and a cross-scale branch. The single-scale branch aims to
capture similar features within the same scale, and a non-local (NL) block [47] was utilized
to calculate the relevance of these features. The cross-scale branch was applied to capture
recursive features of the same image at different scales, and an adjusted non-local (ANL)
block [45] was utilized to calculate the relevance of features between two different scales.

(a) Nonlocal (NL) block (b) Adjusted nonlocal (ANL) block 

C
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on
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C
on

v
C
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v

NL

C
on

v

C
TL

C
TL

C
TL

C
TL

ANL

C
on

v

Single-scale branch

Cross-scale branch

down

up

Figure 4. Architecture of the proposed HSFE module.

Single-scale branch: As depicted in Figure 4, we built the single-scale branch to
extract single-scale features. Specifically, in the single-scale branch, several convolutional
layers are applied to capture recursive features, and an NL block is employed to guide
the network to concentrate on informative areas. As shown in Figure 4a, an embedding
function is utilized to mine the similarity information as

f
(
xi, xj

)
= e(θT(xi)ϕ(xj)) = e

(
(Wθ xi)

T(Wϕxj)
)

, (6)

where i is the index of the output position, j is the index that enumerates all positions, and
x denotes the input of the NL block. Wθ and Wϕ are the embeddings weight matrix. The
non-local function is symbolized as

yi =

(
∑
∀j

f
(
xi, xj

)
g
(
xj
))/

∑
∀j

f
(
xi, xj

)
. (7)

The relevance between xi and all xj can be calculated by pairwise function f (·). The
feature representation of xj can be obtained by the function g(·). Eventually, the output of
the NL block is obtained by

zi = Wφyi + xi, (8)

where Wφ is a weight matrix.
The convolution layer following the NL block transforms the input into an attention

diagram, which is then normalized with a sigmoid function. In addition, the main branch
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output features are multiplied by the attention diagram, where the activation values for
each space and channel location are rescaled.

Cross-scale branch: As depicted in Figure 4, the cross-scale branch is utilized to
perform cross-scale feature representation. Specifically, the input of the HSFE module
is considered the basic scale feature, which is symbolized as Fb

in. To exploit the internal
recursive information at different scales, the downsampled scale feature Fd

in is formulated as

Fd
in = f s

down

(
Fb

in

)
, (9)

where f s
down(·) denotes the operation of downsampling with scale factor s.

Two contextual transformation layers (CTLs) [48] are employed to extract feature with
two different scales Fb

in and Fd
in. To align the spatial dimension of the features in different

scales, the downsampled feature is firstly upsampled with the scale factor of s. xb and xb

represent the output of the basic scale and the downsampled scale through the two CTLs,
and this process is formulated as

xb = fctl

(
Fb

in

)
xd = f s

up

(
fctl

(
Fb

in

))
,

(10)

where fctl(·) denotes the operation of two CTLs and f s
up(·) represents the operation of

upsample with scale factor s.
Similar to the single-scale branch, an ANL block [45] was introduced to exploit the

feature correlation between two different scales RSIs. As shown in Figure 4b, the ANL
block is improved compared to the NL block, and they have different inputs. Thus, zi in
Equation (8) for ANL block can be rewritten as

f
(

xd
i , xb

j

)
= e

(
θT(xd

i )ϕ
(

xb
j

))
= e

(
(Wθ xd

i )
T(

Wϕxb
j

))
, (11)

yi =

(
∑
∀j

f
(

xd
i , xb

j

)
g
(

xb
j

))/
∑
∀j

f
(

xb
i , xd

j

)
(12)

zi = Wφyi + xi. (13)

In the cross-scale branch, we employ the ANL block to fuse multiple scale features,
therefore fully utilizing the self-similarity information. The HSFE module can be formu-
lated as

Fout = fsin(Fin) + fcro(Fin) + Fin, (14)

where Fin is the input of the HSFE module and Fout is the output of the HSFE module. fsin(·)
and fcro(·) are the operation of the single-scale branch and cross-scale branch, respectively.

3.3. Cross-Scale Enhancement Transformer Module

The cross-scale enhancement transformer module is designed to learn the dependency
relationship across long distances between high-dimension and low-dimension features
and enhance the final feature representation. The architecture of the CSET module is shown
in Figure 5a. Specifically, we introduced the cross-scale token attention (CSTA) module [41]
to exploit the internal recursive information within an input image across different scales.
Moreover, we use three CSET modules to utilize different hierarchies of feature information.
Figure 5a illustrates in detail the procedure of feature enhancement using CSET-3 module
as an example.

Transformer encoder: The encoders are used to encode different hierarchies of fea-
tures from LFE modules. As shown in Figure 5a, the encoder is mainly composed of a
multi-headed self-attention (MHSA) block and a feed-forward network (FFN) block, which
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is similar to the original design in [49]. The FFN block contains two multilayer percep-
tron (MLP) layers with an expansion ratio r and a GELU activation function [50] in the
middle. Moreover, we adopted layer normalization (LN) before the MHSA block and FFN
block, and employed a local residual structure to avoid the gradient vanishing or explosion
during gradient backpropagation. The entire process of the encoder can be formulated as

Fi
EN
′
= fmhsa

(
fln

(
Fi

LFE

))
+ Fi

LFE

Fi
EN = f f f n

(
fln

(
Fi

EN
′))

+ Fi
EN
′
,

(15)

where fmhsa(·), fln(·), and f f f n(·) denote the function of the MHSA block, layer normaliza-

tion, and FFN block, respectively. Fi
EN
′ is the intermediate output of the encoder. Fi

LFE and
Fi

EN are the input and output of the encoder in the ith CSET module.
Transformer decoder: The decoders are utilized to fuse high-/low-dimensional fea-

tures from multiple hierarchies to enhance the representation ability of high-dimensional
features. As shown in Figure 5a, the decoder contains two MHSA blocks and a CSTA
block [41]. With the CSTA block, the decoder can exploit the recursive information within
an input image across different scales. The operation of the decoder can be formulated as

Fi
DE
′′
= fcsta

(
fln
(

Fup
))

+ Fup

Fi
DE
′
= fmhsa

(
fln

(
Fi

DE
′′)

, Fi
EN
′)

+ Fi
DE
′′

Fi
CSET = fmhsa

(
fln

(
Fi

DE
′))

+ Fi
DE
′

(16)

where fcsta(·) denotes the process of the CSTA block and Fup is the output of Encoder-4.
Each CSET module has two inputs, and the composition of the inputs is determined by
the location of the CSET module. Fi

DE
′ and Fi

DE
′′ represent the intermediate outputs of the

decoder. Fi
CSET represents the output of ith CSET module.

CSTA block: The CSTA block [41] is introduced to utilize the recurrent patch infor-
mation of different scales in the input image. The feature information flow of the CSTA
module is illustrated in Figure 5b. Specifically, the input token embeddings T ∈ Rn×d of
the CSTA block are split into Ta ∈ Rn× d

2 and Tb ∈ Rn× d
2 along the channel axis. Then,

Ts ∈ Rn× d
2 including n tokens from Taand Tl ∈ Rn′×d′ including n′ tokens by rearranging

Tb are generated. The number of tokens in Tl can be set to n′ =
[

h−t′
s′ + 1

]
×
[

w−t′
s′ + 1

]
,

where t′ and s′ represent the stride and token size. To improve efficiency, Ts is replaced
by Ta, and Tl is tokenized with a larger token size and overlapping. Numerous large-size
tokens can be obtained by overlapping, enabling the transformer to actively learn patch
recurrence across scales.

To effectively exploit self-similarity across different scales, we computed cross-scale
attention scores between tokens in both Ts and Tl . Specifically, the queries qs ∈ Rn× d

2 , keys
ks ∈ Rn× d

2 , and values vs ∈ Rn× d
2 were generated from Ts. Similarly, the queries ql ∈ Rn′× d

2 ,
keys kl ∈ Rn′× d

2 , and values vl ∈ Rn′× d
2 were generated from Tl . The reorganized triples(

qs, kl , vl
)

and
(

ql , ks, vs
)

were obtained by swapping their key–value pairs to each other.
Then, the attention operation was executed using the reorganized triples. It should be
noted that the projection of attention operations reduces the last dimension of queries,
keys, and values in Tl from d′ to d/2. Subsequently, we re-projected the attention results
of Tl to the dimension of n′ × d′ then transformed to the dimension of n× d

2 . Finally, we
concatenated the attention results to obtain the output of the CSTA block.
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4. Experiments
4.1. Experimental Dataset and Settings

We evaluate the proposed method on two widely adopted benchmarks [30,31,51],
namely the UCMecred dataset [52] and AID dataset [53], to demonstrate the effectiveness
of the proposed HSTNet.

UCMerced dataset: This dataset consists of 2100 images belonging to 21 categories
of varied remote sensing image scenes. All images exhibit a pixel size of 256× 256 and a
spatial resolution of 0.3 m/pixel. The dataset is divided equally into two distinct sets, one
comprising 1050 images for training and the other for testing.

AID dataset: This dataset encompasses 10,000 remote sensing images, spanning 30
unique categories. In contrast to the UCMerced dataset, all images in this dataset have a
pixel size of 600× 600 and spatial resolution of 0.5 m/pixel. A selection of 8000 images
from this dataset was randomly chosen for the purpose of training, while the remaining
2000 images were used for testing. In addition, a validation set consisting of five arbitrary
images from each category was established.

To verify the generalization of the proposed method, we further adapted the trained
model to the real-world images of Gaofen-1 and Gaofen-2 satellites. We downsampled
HR images through bicubic operations to obtain LR images. Two mainstream metrics,
namely peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM),
were calculated on the Y channel of the YCbCr space for objective evaluation. They are
formulated as

PSNR(ISR, IHR) = 10 · log 10×
(

L2

1
N ∑N

i=1(ISR(i)− IHR(i))
2

)
, (17)

where L represents the maximum pixel, and N denotes the number of all pixels in ISR
and IHR.

SSIM(x, y) =
2uxuy + k1

u2
x + u2

y + k1
·

σxy + k2

σ2
x + σ2

y + k2
, (18)

where x and y represent two images. σxy symbolizes the covariance between x and y. u
and σ2 represent the average value and variance. k1 and k2 denote constant relaxation
terms. Multi-adds and model parameters were utilized to evaluate the computational
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complexity [32,54]. In addition, the natural image quality evaluator (NIQE) was adopted to
validate the reconstruction of real-world images from Gaofen-1 and Gaofen-2 satellites [55].

4.2. Implementation Details

We conducted experiments on remote sensing image data with scale factors of ×2,
×3, and ×4. During training, we randomly cropped 48× 48 patches from LR images and
extracted ground-truth references from corresponding HR images. We also employed
horizontal flipping and random rotation (90◦, 180◦ and 270◦) to augment training samples.
Table 1 presents the comprehensive hyperparameter setting of the cross-scale enhancement
transformer (CSET) module.

Table 1. Parameter setting of the CSET module in the HSTNet.

Heads Head Dim Hidden Size D MLP Dim Layers

Transformer Encoder 6 32 512 512 8
Transformer Decoder 6 32 512 512 1

We adopted the Adam optimizer [56] to train the HSTNet with β1 = 0.9, β2 = 0.99, and
ε = 10−8. The initial learning rate was set to 10−4, and the batch size was 16. The proposed
model was trained for 800 epochs, and the learning rate decreased by half after 400 epochs.
Both the training and testing stages were performed using the PyTorch framework, utilizing
CUDAToolkit 11.4, cuDNN 8.2.2, Python 3.7, and two NVIDIA 3090 Ti GPUs.

4.3. Comparison with Other Methods

To verify the effectiveness of the proposed HSTNet, we conducted comparative ex-
periments with some state-of-the-art (SOTA) competitors, namely SC [12], SRCNN [22],
FSRCNN [57], VDSR [24], LGCNet [30], DCM [31], CTNet [48], ESRT [40], ACT [41], and
TransENet [14]. Among these methods, SC [12], SRCNN [22], FSRCNN [57], VDSR [24],
ESRT [40], and ACT [41] are the methods proposed for natural image SR. LGCNet [30],
DCM [31], CTNet [48], and TransENet [14] are designed for RSISR. The experimental results
for the UCMerced dataset and AID dataset with the scale factors of ×2, ×3 and ×4 are
reported in Table 2.

4.3.1. Quantitative Evaluation

Evaluation with UCMerced dataset: Table 2 shows that the proposed HSTNet achieves
first place among competitors for the UCMerced dataset for all scale factors. Specifically,
the HSTNet improves the PSNR comparatively by 0.71 dB, 0.54 dB, and 0.60 dB for scale fac-
tor ×2 for LGCNet [30], DCM [31] and CTNet [48], respectively. The average PSNR values
of the proposed HSTNet over the second-best TransENet that employs a transformer mod-
ule are 0.16 dB, 0.15 dB and 0.12 dB when the scale factors are ×2, ×3 and ×4, respectively.
Additionally, the HSTNet outperforms LGCNet [30], DCM [31], and CTNet [48] in terms of
SSIM by 0.0183, 0.0027, and 0.0102 for scale factor ×3. Compared to ACT [41], which also
uses a transformer structure, the average PSNR obtained by the proposed method increased
by 0.31 dB, 0.27 dB, and 0.35 dB at scale factors of ×2, ×3 and ×4, respectively. Moreover,
Table 3 lists the mean PSNR of different methods on all 21 classes (All these 21 classes
of UCMerced dataset: 1—Agricultural, 2—Airplane, 3—Baseballdiamond, 4—Beach, 5—
Buildings, 6—Chaparral, 7—Denseresidential, 8—Forest, 9—Freeway, 10—Golfcourse, 11—
Harbor, 12—Intersection, 13—Mediumresidential, 14—Mobilehomepark, 15—Overpass,
16—Parkinglot, 17—River, 18—Runway, 19—Sparseresidential, 20—Storagetanks, and
21—Tenniscourt) of the UCMerced dataset when the scale factor is ×3. One can see that
the proposed HSTNet performs best in 14 scene classes, ranks second in 5 scene classes,
and third in 2 scene classes. The DCM [31] obtains the best PSNR in the other seven
categories. It is worth mentioning that the HSTNet shows more effective performance in
some scenes comprising prominent contours and rich edges, such as “Baseballdiamond”,
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“Buildings”, and “Overpass”. Overall, the mean PSNR in all 21 class scenes of the proposed
HSTNet is 0.55 dB higher than DCM [31].

Table 2. Comparative results for the UCMerced dataset and AID dataset. The best and the second-best
results are marked in red and blue, respectively.

Method Scale
UCMerced Dataset AID Dataset

PSNR SSIM PSNR SSIM

Bicubic ×2 30.76 0.8789 32.39 0.8906
SC [12] ×2 32.77 0.9166 32.77 0.9166
SRCNN [22] ×2 32.84 0.9152 34.49 0.9286
FSRCNN [57] ×2 33.18 0.9196 34.11 0.9228
VDSR [24] ×2 33.47 0.9234 35.05 0.9346
LGCNet [30] ×2 33.48 0.9235 34.80 0.9320
DCM [31] ×2 33.65 0.9274 35.21 0.9366
CTNet [48] ×2 33.59 0.9255 35.13 0.9354
ESRT [40] ×2 33.70 0.9270 35.15 0.9358
ACT [41] ×2 33.88 0.9283 35.17 0.9362
TransENet [14] ×2 34.03 0.9301 35.28 0.9374
Ours ×2 34.19 0.9338 35.35 0.9387

Bicubic ×3 27.46 0.7631 29.08 0.7863
SC [12] ×3 28.26 0.7971 28.26 0.7671
SRCNN [22] ×3 28.66 0.8038 30.55 0.8372
FSRCNN [57] ×3 29.09 0.8167 30.30 0.8302
VDSR [24] ×3 29.34 0.8263 31.15 0.8522
LGCNet [30] ×3 29.28 0.8238 30.73 0.8417
DCM [31] ×3 29.52 0.8394 31.31 0.8561
CTNet [48] ×3 29.44 0.8319 31.16 0.8527
ESRT [40] ×3 29.52 0.8318 31.34 0.8562
ACT [41] ×3 29.80 0.8395 31.39 0.8579
TransENet [14] ×3 29.92 0.8408 31.45 0.8595
Ours ×3 30.07 0.8421 31.61 0.8613

Bicubic ×4 25.65 0.6725 27.30 0.7036
SC [12] ×4 26.51 0.7152 26.51 0.7152
SRCNN [22] ×4 26.78 0.7219 28.40 0.7561
FSRCNN [57] ×4 26.93 0.7267 28.03 0.7387
VDSR [24] ×4 27.11 0.7360 28.99 0.7753
LGCNet [30] ×4 27.02 0.7333 28.61 0.7626
DCM [31] ×4 27.22 0.7528 29.17 0.7824
CTNet [48] ×4 27.41 0.7512 29.00 0.7768
ESRT [40] ×4 27.41 0.7485 29.18 0.7831
ACT [41] ×4 27.54 0.7531 29.19 0.7836
TransENet [14] ×4 27.77 0.7630 29.38 0.7909
Ours ×4 27.89 0.7694 29.57 0.7983

Evaluation with AID dataset: Table 2 reports the averaged evaluation results of
the proposed method in comparison to other methods for AID datasets for scale factors
of ×2, ×3, and ×4. One can see that the proposed HSTNet outperforms SRCNN [22],
FSRCNN [57], and VDSR [24] by 1.17 dB, 1.54 dB, and 0.58 dB for scale factors ×4 in terms
of PSNR values. It proves that the HSTNet ranks first with PSNR scores that are higher than
LGCNet [30] by 0.55 dB, 0.88 dB, and 0.96 dB for scale factors ×2, ×3, and ×4, respectively.
Compared to ESRT [40], which adopts a transformer structure, the average PSNR obtained
by the proposed method increased by 0.20 dB, 0.27 dB, and 0.39 dB at scale factors of
×2, ×3, and ×4, respectively. Compared to the second-best method, TransENet [14],
the HSTNet achieves a performance improvement of 0.16 dB and 0.0013 in PSNR and SSIM
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scores, respectively, for scale factor ×3. In contrast to the UCMerced dataset, the AID
dataset comprises 30 categories of scenes and a significantly larger number of images.
Table 4 reports a detailed performance comparison of different methods for scale factor
×4 on all 30 scene classes (All these 30 classes of AID dataset: 1—Airport, 2—Bareland,
3—Baseballdiamond, 4—Beach, 5—Bridge, 6—Center, 7—Church, 8—Commercial, 9—
Denseresidential, 10—Desert, 11—Farmland, 12—Forest, 13—Industrial, 14—Meadow, 15—
Mediumresidential, 16—Mountain, 17—Park, 18—Parking, 19—Playground, 20—Pond,
21—Port, 22—Railwaystation, 23—Resort, 24—River, 25—School, 26—Sparseresidential,
27—Square, 28—Stadium, 29—Storagetanks, 30—Viaduct) of the AID dataset. It can be
seen that the proposed HSTNet outperforms the other methods in 28 scene classes, while
TransENet [14] obtains the best PSNR scores in the remaining 2 categories. Although the
HSTNet ranks second in those two scene classes, its PSNR values are very close to the
TransENet [14]. Notably, the HSTNet has an overall average PSNR that is 0.48 dB higher
than TransENet [14].

4.3.2. Qualitative Evaluation

To further verify the advantages of the proposed method, the subjective results of
SR images reconstructed by the aforementioned methods are shown in Figures 6 and 7.
Figure 6 shows the reconstruction results of the above methods for the UCMerced dataset
by taking “airplane” and “runway” scenes as examples. Figure 7 shows the visual results
of the “stadium” and “medium-residential” scenes in the AID dataset. In general, the SR
results reconstructed by the proposed method possess sharper edges and clearer contours
compared with other methods, which verifies the effectiveness of the HSTNet.

HR 
(PSNR)

Bicubic 
(27.53 dB)

SRCNN 
(28.85 dB)

FSRCNN 
(29.45 dB)

LGCNet 
(29.70 dB)

DCM 
(30.44 dB)

TransENet 
(30.38 dB)

HSTNet 
(30.53 dB) 

HR 
(PSNR)

Bicubic 
(20.46 dB)

SRCNN 
(23.30 dB)

FSRCNN 
(24.23 dB)

LGCNet 
(25.67 dB)

DCM 
(27.60 dB)

TransENet 
(31.46 dB)

HSTNet 
(31.60 dB)

airplane91  
×3 factor 

runway50 
×4 factor

(a)

(b)

ESRT 
(29.96 dB)

ACT 
(29.98 dB)

ESRT 
(30.41 dB)

ACT 
(28.08 dB)

SC 
(28.37 dB)

SC 
(20.51 dB)

VDSR 
( 29.63 dB)

VDSR 
( 24.07 dB)

Figure 6. Subjective results for UCMerced dataset: (a) “Airplane91” scene with ×3 factor. (b) “Run-
way50” scene with ×4 factor.
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Table 3. Average PSNR of per-category for UCMerced dataset with the scale factor of×3. The best and the second-best results are marked in red and blue, respectively.

Class Bicubic SC [12] SRCNN [22] FSRCNN [57] LGCNet [30] DCM [31] CTNet [48] ESRT [40] ACT [41] TransENet [14] Ours

1 26.86 27.23 27.47 27.61 27.66 29.06 28.53 28.13 27.86 28.02 27.93
2 26.71 27.67 28.24 28.98 29.12 30.77 29.22 29.45 29.78 29.94 29.98
3 33.33 34.06 34.33 34.64 34.72 33.76 34.81 34.88 35.05 35.04 35.13
4 36.14 36.87 37.00 37.21 37.37 36.38 37.38 37.45 37.55 37.53 37.76
5 25.09 26.11 26.84 27.50 27.8 l 28.51 27.99 28.18 28.66 28.81 29.12
6 25.21 25.82 26.11 26.21 26.39 26.81 26.40 26.43 26.62 26.69 26.78
7 25.76 26.75 27.41 28.02. 28.25 28.79 28.42 28.53 28.97 29.11 29.27
8 27.53 28.09 28.24. 28.35 28.44 28.16 28.48 28.47 28.56 28.59 28.65
9 27.36 28.28 28.69 29.27 29.52 30.45 29.60 29.87 30.25 30.38 30.65
10 35.21 35.92 36.15 36.43 36.51 34.43 36.46 36.54 36.63 36.68 36.69
11 21.25 22.11 22.82 23.29 23.63 26.55 23.83 23.87 24.42 24.72 24.91
12 26.48 27.20 27.67 28.06 28.29 29.28 28.38 28.53 28.85 29.03 29.32
13 25.68 26.54 27.06 27.58 27.76 27.21 27.87 27.93 28.30 28.47 28.64
14 22.25 23.25 23.89 24.34 24.59 26.05 24.87 24.92 25.32 25.64 25.74
15 24.59 25.30 25.65 26.53 26.58 27.77 26.89 27.17 27.76 27.83 28.31
16 21.75 22.59 23.11 23.34 23.69 24.95 23.59 23.72 24.11 24.45 24.53
17 28.12 28.71 28.89 29.07 29.12 28.89 29.11 29.14 29.28 29.25 29.32
18 29.30 30.25 30.61 31.01 31.15 32.53 30.60 30.98 31.21 31.25 31.21
19 28.34 29.33 29.40 30.23 30.53 29.81 31.25 31.35 31.55 31.57 31.71
20 29.97 30.86 31.33 31.92 32.17 29.02 32.29 32.42 32.74 32.71 32.98
21 29.75 30.62 30.98 31.34 31.58 30.76 31.74 31.99 32.40 32.51 32.77

AVG 27.46 28.23 28.66 29.09 29.28 29.52 29.41 29.52 29.80 29.92 30.07
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Table 4. Average PSNR of per-category for AID dataset with the scale factor of ×4. The best and the second-best results are marked in red and blue, respectively.

Class Bicubic SRCNN [22] FSRCNN [57] VDSR [24] LGCNet [30] DCM [31] CTNet [48] ESRT [40] ACT [41] TransENet [14] Ours

1 27.03 28.17 27.70 28.82 28.39 28.99 28.80 28.98 29.01 29.23 29.29
2 34.88 35.63 35.73 35.98 35.78 36.17 36.12 36.15 36.15 36.20 36.45
3 29.06 30.51 29.89 31.18 30.75 31.36 31.15 31.35 31.37 31.59 31.69
4 31.07 31.92 31.79 32.29 32.08 32.45 32.40 32.47 32.45 32.55 32.61
5 28.98 30.41 29.83 31.19 30.67 31.39 31.17 31.42 31.42 31.63 31.75
6 25.26 26.59 25.96 27.48 26.92 27.72 27.48 27.73 27.75 28.03 28.23
7 22.15 23.41 22.74 24.12 23.68 24.29 24.10 24.29 24.32 24.51 24.56
8 25.83 27.05 26.65 27.62 27.24 27.78 27.63 27.78 27.79 27.97 28.06
9 23.05 24.13 23.69 24.70 24.33 24.87 24.70 24.88 24.89 25.13 25.32
10 38.49 38.84 38.84 39.13 39.06 39.27 39.25 39.25 39.24 39.31 39.45
11 32.30 33.48 32.95 34.20 33.77 34.42 34.25 34.41 34.43 34.58 34.59
12 27.39 28.15 28.19 28.36 28.20 28.47 28.47 28.53 28.47 28.56 28.76
13 24.75 26.00 25.49 26.72 26.24 26.92 26.71 26.93 26.94 27.21 27.19
14 32.06 32.57 32.50 32.77 32.65 32.88 32.84 32.89 32.87 32.94 33.26
15 26.09 27.37 26.84 28.06 27.63 28.25 28.06 28.25 28.25 28.45 28.54
16 28.04 28.90 28.70 29.11 28.97 29.18 29.15 29.20 29.18 29.28 29.42
17 26.23 27.25 26.98 27.69 27.37 27.82 27.69 27.84 27.84 28.01 28.34
18 22.33 24.01 23.47 25.21 24.40 25.74 25.27 25.80 25.75 26.40 26.38
19 27.27 28.72 28.09 29.62 29.04 29.92 29.66 29.96 29.96 30.30 30.52
20 28.94 29.85 29.50 30.26 30.00 30.39 30.25 30.39 30.38 30.53 30.79
21 24.69 25.82 25.40 26.43 26.02 26.62 26.41 26.62 26.61 26.91 27.18
22 26.31 27.55 27.12 28.19 27.76 28.38 28.19 28.40 28.40 28.61 28.76
23 25.98 27.12 26.77 27.71 27.32 27.88 27.72 27.90 27.89 28.08 28.22
24 29.61 30.48 30.22 30.82 30.60 30.91 30.83 30.92 30.92 31.00 31.27
25 24.91 26.13 25.66 26.78 26.34 26.94 26.75 26.96 26.99 27.22 27.43
26 25.41 26.16 25.88 26.46 26.27 26.53 26.46 26.55 26.54 26.63 26.87
27 26.75 28.13 27.62 28.91 28.39 29.13 28.94 29.17 29.15 29.39 29.72
28 24.81 26.10 25.50 26.88 26.37 27.10 26.86 27.14 27.10 27.41 27.68
29 24.18 25.27 24.73 25.86 25.48 26.00 25.82 26.01 26.02 26.20 26.43
30 25.86 27.03 26.54 27.74 27.26 27.93 27.67 27.92 27.95 28.21 28.48

AVG 27.3 28.4 28.03 28.99 28.61 29.17 29.03 29.18 29.19 29.38 29.57
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Figure 7. Subjective results for AID dataset: (a) “Stadium_23” scene with ×3 factor. (b) “Mediumresi-
dential_100” scene with ×4 factor.

4.4. Results on Real Remote Sensing Data

Real images acquired by GaoFen-1 (GF-1) and GaoFen-2 (GF-2) satellites were em-
ployed to assess the robustness of the HSTNet. The spatial resolutions of GF-1 and GF-2
are 8 and 3.2 m/pixel, respectively. Three visible bands are selected from GF-1 and GF-
2 satellite images to generate the LR inputs. The pre-trained DCM [31], ACT [41], and
the proposed HSTNet models for the UCMerced dataset are utilized for SR image recon-
struction. Figures 8 and 9 demonstrate the reconstruction results of the aforementioned
methods on real data in some common scenes including river, factory, overpass, and paddy
fields. One can see that the proposed HSTNet can obtain favorable results. Compared
with DCM [31] and ACT [41], the reconstructed images of the proposed HSTNet achieved
the lowest NIQE scores in all the four common scenes. Although the pixel size of these
input images is different from the LR images in the training set, which are 600× 600 and
256× 256 for real-world images and training images, respectively, the HSTNet can still
achieve good results in terms of visual perception qualities. It verifies the robustness of the
proposed HSTNet.

4.5. Ablation Studies

Ablation studies with the scale factor of ×4 were conducted on the UCMerced
dataset to demonstrate the effectiveness of the proposed fundamental modules in the
HSTNet model.

4.5.1. Ablation Studies on the LFE Module

Number of LFE and HSFE modules: Table 5 presents a comparative analysis of
varying quantities of LFE and HSFE modules. It indicates that when adopting two LFE
and 2 HSFE modules, the model has the smallest number of parameters and computation,
but the model has the lowest PSNR and SSIM values. The results indicate that the proposed
HSTNet achieves the highest PSNR and SSIM when utilizing three LFE and five HSFE
modules. When employing three LFE and eight HSFE modules, the model has the largest
number of parameters and computation, and its performance is not optimal. Therefore,
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considering the performance of the model and the computational complexity, we adopted
three LFE and five HSFE modules in the proposed method. The results confirm the
effectiveness of the LFE and HSFE modules in the proposed model, as well as the rationality
of the number of LFE and HSFE modules.

Input Bicubic × 4 HSTNet ×4

(b)

Input Bicubic × 3 HSTNet ×3

（a）

ACT ×3DCM ×3

DCM ×3 ACT ×3

NIQE 6.58 6.30 6.18 5.58

NIQE 7.91 7.79 6.65 5.90

Figure 8. Subjective results on real GaoFen-1 satellite data: (a) “River” with ×3 factor. (b) “Factory”
with ×4 factor.

Input Bicubic × 4 HSTNet ×4

(b)

Input Bicubic × 3 HSTNet ×3

（a）

DCM ×3 ACT ×3

DCM ×3 ACT ×3

NIQE 9.33 7.67 7.37 7.23

NIQE 8.67 8.49 7.80 7.73

Figure 9. Subjective results on real GaoFen-2 satellite data: (a) “Overpass” with ×3 factor. (b) “Paddy
fields” with ×4 factor.

Effects of the HSFE module: We devised the HSFE module in the proposed LFE
module to exploit the recursive information inherent in the image. We conducted further
ablation studies by substituting the HSFE module with widely used feature extraction
modules in SR algorithms, namely RCAB [27], CTB [48], CB [58], and SSEM [45] to validate
the effectiveness of the HSFE module. Among them, SSEM [45] is also used to mine
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scale information. As presented in Table 6, the HSFE module outperforms the other
feature extraction modules in terms of PSNR and SSIM, demonstrating its effectiveness in
feature extraction. Meanwhile, it is also competitive in terms of parameter quantity and
computational complexity.

Table 5. Ablation analysis of the number of LFE and HSFE modules (the best result is highlighted
in bold).

Scale Numbers of LFE Numbers of HSFE PSNR SSIM Params Multi-Adds

×4 2 2 27.57 0.7546 30.2M 73.6G
×4 2 5 27.72 0.7603 31.9M 135.9G
×4 2 8 27.61 0.7566 33.6M 205.1G
×4 3 2 27.58 0.7542 40.8M 95.5G
×4 3 5 27.89 0.7694 43.4M 194.4G
×4 3 8 27.73 0.7608 46.0M 292.8G

Table 6. Ablation analysis of different feature extraction modules in LFE module (the best result is
highlighted in bold).

Scale RCAB CTB CB SSEM HSFE PSNR SSIM Params Multi-Adds

×4 3 7 7 7 7 26.33 0.7010 41.2M 112.0G
×4 7 3 7 7 7 27.36 0.7451 40.3M 75.1G
×4 7 7 3 7 7 27.51 0.7510 45.7M 275.2G
×4 7 7 7 3 7 27.61 0.7561 42.5M 160.0G
×4 7 7 7 7 3 27.89 0.7694 43.4M 194.4G

4.5.2. Ablation Studies on the CSET Module

Number of CSET modules: The CSET module is designed to learn the dependency
relationship across long distances between features of different dimensions. To validate the
effectiveness of the proposed CSET modules, we conducted ablation experiments using
varying numbers of CSET modules. Table 7 proves that the configuration of three CSET
modules performs the best in terms of PSNR and SSIM. The features of low-dimension
space are transmitted more to the high-dimension space, reducing the difficulty of opti-
mization and facilitating the convergence of the deep model. The aforementioned results
demonstrate the effectiveness of the CSET module in enhancing the representation of
high-dimensional features.

Effects of the CSTA block: The CSTA [41] block is introduced to enable the CSET
module to utilize the recurrent patch information of different scales in the input image.
To verify the effectiveness of the CSTA module, we analyzed the composition of the
transformer. Table 8 presents the comparative results of two different transformers. It
proves that the CSTA block is beneficial to improve the performance of the HSTNet.

Table 7. Ablation analysis of different feature extraction modules in the LFE module (the best result
is highlighted in bold).

Scale Transformer-3 Transformer-2 Transformer-1 Transformer-0 PSNR SSIM

×4 7 7 7 7 27.54 0.7522
×4 3 7 7 7 27.61 0.7562
×4 3 3 7 7 27.73 0.7618
×4 3 3 3 7 27.89 0.7694
×4 3 3 3 3 27.50 0.7509
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Table 8. Ablation analysis of the CSTA block. The best performances are highlighted in bold.

Transformer PSNR SSIM

MHSA + FFN 27.77 0.7630
MHSA + FFN + CSTA 27.89 0.7694

5. Conclusions and Future Work

In this paper, we present a hybrid-scale hierarchical transformer network (HSTNet) for
remote sensing image super-resolution (RSISR). The HSTNet contains two crucial compo-
nents, i.e., a hybrid-scale feature exploitation (HSFE) module and a cross-scale enhancement
transformer (CSET) module. Specifically, the HSFE module with two branches was built
to leverage the internal recurrence of information both in single and cross scales within
the images. Meanwhile, the CSET module was built to capture long-range dependencies
and effectively mine the correlation between high-dimension and low-dimension features.
Experimental results on two challenging remote sensing datasets verified the effectiveness
and superiority of the proposed HSTNet. In the future, more efforts are expected to simplify
the network architecture and design a more effective low-dimensional feature extraction
branch to improve RSISR performance.
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