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Abstract: In recent years, unmanned aerial vehicles (UAVs) have gained popularity due to their flexi-
bility, mobility, and accessibility in various fields, including search and rescue (SAR) operations. The
use of UAVs in SAR can greatly enhance the task success rates in reaching inaccessible or dangerous
areas, performing challenging operations, and providing real-time monitoring and modeling of the
situation. This article aims to help readers understand the latest progress and trends in this field by
synthesizing and organizing papers related to UAV search and rescue. An introduction to the various
types and components of UAVs and their importance in SAR operations is settled first. Additionally,
we present a comprehensive review of sensor integrations in UAVs for SAR operations, highlighting
their roles in target perception, localization, and identification. Furthermore, we elaborate on the
various applications of UAVs in SAR, including on-site monitoring and modeling, perception and
localization of targets, and SAR operations such as task assignment, path planning, and collision
avoidance. We compare different approaches and methodologies used in different studies, assess the
strengths and weaknesses of various approaches, and provide insights on addressing the research
questions relating to specific UAV operations in SAR. Overall, this article presents a comprehensive
overview of the significant role of UAVs in SAR operations. It emphasizes the vital contributions of
drones in enhancing mission success rates, augmenting situational awareness, and facilitating efficient
and effective SAR activities. Additionally, the article discusses potential avenues for enhancing the
performance of UAVs in SAR.

Keywords: unmanned aerial vehicles; search; rescue; automatic control; optimization

1. Introduction

The development of unmanned aerial vehicles (UAVs), also known as drones, has
led to a significant improvement in the efficiency of search and rescue (SAR) operations.
The successful implementation of drones in numerous disaster relief efforts has demon-
strated their effectiveness in performing tasks that were previously difficult or impossible
for humans to accomplish. The primary goal of search and rescue missions is to locate the
target as quickly as possible and take necessary follow-up actions, such as the exchange of
information and delivery of supplies, within a limited timeframe. The use of drones for
SAR operations has several advantages, including their ease of deployment, low mainte-
nance cost, high mobility, and ability to hover in areas where the use of manpower may be
dangerous, limited, or require quick decisions.

Traditional data analysis methods often require manual supervision, which may limit
the real-time processing and efficient utilization of data collected by unmanned aerial vehi-
cles (UAVs). With the continuous advancement of UAV technology, including automated
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flight, high-precision sensors, and machine learning algorithms, large amounts of data,
such as images, videos, sounds, etc., can be collected by UAVs within a short timeframe [1].
These data have tremendous potential in assisting search personnel in locating victims or
assessing disaster situations more quickly in search and rescue (SAR) tasks. An assisting
unmanned aerial system facilitated a rescue operation in the Bieszczady Mountains in
Poland [2]. The rescue team used convolutional neural networks to automatically locate
individuals in aerial images, processing a total of 782 images. After 4 h and 31 min of
analysis, the system successfully detected the missing person and provided the coordinates.

The full utilization of UAV data could be greatly facilitated by the development
of unsupervised data analysis methods. Automation algorithms and machine learning
techniques can enhance the autonomy of UAVs, enabling them to automatically identify
and calibrate targets, perform target classification and tracking, and even make real-time
decisions and take action. Through the application of such unsupervised data analysis
methods, the reliance on manual supervision and intervention can be reduced, leading to
lower risks of human errors and subjective judgments, while improving the objectivity and
consistency of data analysis. This is particularly crucial in tasks such as SAR that demand
high levels of timeliness and accuracy.

For example, monitoring glacier instability is crucial for mitigating disaster risks.
Unstable glaciers can trigger ice and snow avalanches that pose threats to human settle-
ments, infrastructure, and tourist areas downstream. Unmanned aerial vehicles (UAVs),
as utilized in the literature [3], are employed to capture digital terrain models (DTMs) of
glaciers. DTMs are three-dimensional models that depict the surface topography, aiding
in understanding glacier structure and evolution. Through techniques such as structured
light scanning and LiDAR, UAVs can generate high-resolution DTMs and construct three-
dimensional models on computers to depict glacier terrain features. When combined with
high-frequency monitoring systems, the DTM information obtained from UAVs can be
employed to monitor glacier activity and instability, providing critical data support for
early warning and effective disaster management of glaciers.

The deployment of drones in SAR operations has several benefits. The ease of de-
ployment of drones could contribute to their quick dispatch in disaster zones, where time
is of the essence. Their low maintenance cost compared to manned aircraft and vehicles
makes them an affordable and practical option for SAR operations. Furthermore, the high
mobility of drones allows them to easily maneuver around obstacles and reach areas that
may be inaccessible to humans. Lastly, drones’ ability to hover in place provides a stable
platform for collecting data and imagery, which is crucial in SAR operations.

In addition to the advantages mentioned above, drones can also be equipped with
various sensors and payloads to enhance their SAR capabilities. These sensors can detect
signals that are difficult to detect visually, such as heat, sound, and electromagnetic radia-
tion, and the drones can deliver supplies such as first aid kits, water, and food directly to
the target site. Consequently, the use of drones in SAR operations can significantly decrease
the time required to locate and aid individuals in need of assistance.

Limitations in the application of drones in search and rescue operations are also
inevitable. Drones are powered by batteries, which have limited capacity and can only
sustain a certain amount of flight time. A more effective payload will lead to larger
power consumption, which may reduce the flight time. Apart from this, adverse weather
conditions such as strong winds, heavy rain, or extreme temperatures can also affect the
flight performance and stability of drones. In addition, aviation regulations impose certain
limitations on drones, including restrictions on flight altitude, airspace, and operating
conditions. For example, drones are typically not allowed to fly beyond the visual line
of sight of the operator or in certain restricted airspace, which can limit their range and
coverage area. Compliance with these regulations is crucial to ensure safe and legal drone
operations, but it can also pose challenges in search and rescue scenarios where drones
may need to operate in remote or restricted areas.



Remote Sens. 2023, 15, 3266 3 of 35

The primary objective of this article is to provide readers with innovative solutions
and inspiration for problem-solving in the field of drone-based search and rescue. We
thoroughly explore various scenarios, including the application of drones in avalanche
search and rescue [4–6], as well as marine search and rescue operations [7–9], highlighting
their potential as powerful tools in critical situations. Additionally, we address specific
challenges encountered in drone-based search and rescue, such as path planning and obsta-
cle avoidance. We discuss a range of representative algorithms, encompassing traditional
and cutting-edge techniques, that have been developed to tackle these challenges, along
with their derivatives and variations.

We aim to promote these representative algorithms and their applications in SAR
scenarios, offering readers valuable insights and inspiration for their own problem-solving
endeavors. Through this, we strive to encourage further research and innovation in the
field of drone-based search and rescue, with the ultimate goal of enhancing the effectiveness
and efficiency of operations, saving lives, and making a positive impact on society. Most
of the present reviews focus on the SAR operation under a single specific circumstance
(e.g., marine [7]) or the specific operation (e.g., path planning [10]). Based on our extensive
study of influential academic works, we conducted a comprehensive review that initially
classified UAVs based on their respective roles, thereby determining the most suitable role
distribution for different types of UAVs. Instead of focusing solely on specific operations or
limited environments, we expanded our scope to encompass a broader range of applications.
We introduced state-of-the-art techniques, along with their derivatives and improvements,
in order to provide a fundamental overview of the current advancements and offer insights
into potential future directions for ongoing research.

The remaining parts of this paper are structured as follows: Section 2 introduces the
classification of UAVs and some components thereof. Section 3 reviews the development
and pros and cons of various applications and algorithms of UAVs in SAR to clarify the
current situation and grasp the future direction.

2. Classification and Design of UAVs for SAR Operations

Unmanned aerial vehicles used for search and rescue missions are required to meet
specific criteria. To fly in various complex environments and withstand different weather
conditions and risks, UAVs must have a certain level of aviation capability and stability.
To locate targets quickly and assist mobility, UAVs must possess high-precision positioning
and navigation capabilities. Drones could be equipped with various sensors to detect
the location, condition, and environmental conditions of targets. These sensors include
thermal imaging sensors, infrared sensors, optical sensors, sonar, and others. High load
capacity and long endurance are also required to carry necessary equipment and supplies
with the sustained flight duration to meet the demands of SAR operations. This section
generally introduces the unmanned aerial vehicle classification and specification. Some
designs addressing the specific problems are introduced in the second subsection.

2.1. Classification of UAVs

According to the difference in structure design, the classification of UAVs could be
divided into different categories [10]. Among all the classifications, corresponding advan-
tages and deficiencies are stated. In the most general way, the UAV could be distinguished
as a fixed-wing UAV, multirotor UAV, and unmanned helicopter. The integration of the
propeller design and fixed-wing design leads to the hybrid UAV type, which could be
specified as an independent classification and could provide aerodynamic advantages (i.e.,
the fixed wing is integrated with the multi-rotor UAV, providing flight efficiency while
granting the ability to perform vertical take-off and landing). For different mission require-
ments, the most appropriate type can be selected according to the characteristics of different
UAV designs.
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2.1.1. Unmanned Helicopter

The unmanned helicopter has a motor on the top (main motor) of the fuselage with
a large propeller to generate lift and achieve all the movements (i.e., pitch yaw and roll),
while also having another motor on the tail with a small propeller to balance the torque
generated by the main motor [11]. Figure 1 presents the schematic diagram of a typical
type of unmanned helicopter.

Figure 1. Schematic diagram of unmanned helicopter [12].

The paper [13] illustrates the design of the helicopter and control systems, including
minimizing the control consumption and satisfying the corresponding constraints in oper-
ating the helicopter. The advantage of the helicopter is its agility. The unique and delicate
structure design enables the unmanned helicopter to change its pose swiftly and achieve
much agile movement. It is suitable for fast operation in a complex environment. However,
the disadvantage is the complexity of its main rotor structure; it requires multiple steering
gears to achieve the movement of the helicopter. This complexity further leads to a high
cost of maintenance.

Due to their hovering capability and flexible maneuverability, unmanned helicopters
are well-suited for surveillance and tracking missions such as surveillance of borders, traffic
flow monitoring, search and rescue operations, etc.

2.1.2. Multirotor UAV

Multirotor UAV is the most commonly seen UAV classification. It utilizes the motors
and propellers to generate lift through their high-speed rotation. It could be further divided
according to the number of motors, including the most common types: octocopter (eight
rotors and propellers), hexacopter (six rotors and propellers), quadcopter (four rotors and
propellers), and tricopter (three rotors and propellers).

As Figure 2 presents, Quadcopter X is used as an example to generally illustrate flight
mechanics. Four rotors are installed at the same distance to the gravity center. To balance the
torque generated from the motor rotation, the motors on the same diagonal should remain
in the same rotating direction, while the rotation direction of the motors on the same side
should be different. According to the paper [14], differential thrust controls the pitch, roll,
and yaw movements of the quadcopter. When facing the positive direction of Quadcopter X,
the pitch and roll movements are controlled by the differential thrust between front–behind
pairs of rotors and left–right pairs of rotors, separately. The yaw movement is controlled
by the differential thrust between diagonal pairs of rotors, generating horizontal torque
clockwise or counterclockwise.
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Figure 2. Figure of Quadcopter X [15].

Simplicity in structure is one of the advantages of multirotor UAVs. A few rotors
with propellers and electronic speed controllers (ESC) compose the basic flying frame.
To improve flight performance, the multirotor UAV achieves agility moving in a smaller
region. The vertical take-off and landing (VTOL) promise normal operation under both
outdoor and indoor environments, which is also the reason that it is commonly used in
the research area [15]. Poor endurance is one of the cons. The electricity consumption
rate is high, as multiple rotors are driven to lift the aircraft, and the increase in frame
weight also raises the consumption rate. With a full battery of 2600 mAh, the endurance
of the quadcopter, which weighs 700 g, could only reach about 15–17 min according to
our daily experiment. Thus, conflicts exist between the payload and endurance; a heavier
battery means higher endurance, but also means a reduced payload that it could bear under
specific endurance.

The Quadcopter UAV has good maneuverability and quick response. It is suitable for
fast movement and exploration tasks. For example, it could be used for shooting sports
games, quickly surveying target areas, etc.

2.1.3. Fixed-Wing UAV

Most fixed-wing UAVs (as Figure 3 shows) have a similar dynamic mechanism as
commercial airplanes, such as the Boeing-747. They utilize the pressure difference between
the upper surface and lower surface to generate lift. To achieve this, propulsion is gen-
erated (the thrust point is most commonly located in the tail of the fuselage). Pitch, roll,
and yaw movements are achieved by the operation of elevators, ailerons, and rudders,
respectively. The paper [16] illustrates the design perspectives of fixed-wing UAVs and
analyzes the flight performance, including the design of the fuselage, propeller, airfoil,
and winglet. The corresponding aerodynamic performance and stability are also described
using computational fluid dynamics (CFD).

Figure 3. Figure of fixed wing UAV [17].

Surveillance and large-scale target search are the main tasks assigned to fixed-wing
UAVs under search and rescue conditions [18]. This could be illustrated in the aspect of
energy consumption. Quadrotors require continuous energy consumption to maintain a
certain altitude while fixed-wing UAVs only briefly increase power during altitude climb.
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The experimental results from the literature [19] precisely confirm this point. Fixed-wing
UAVs perform better in terms of energy efficiency, but their operational limitation is high-
speed flight. They require higher speeds to generate sufficient lift, which also expands
their required activity range. Agile movements at high speeds may result in a stall and
significant stress on the UAV.

2.1.4. Hybrid UAV

Combining the advantages of the multirotor UAV and fixed-wing UAV, the hybrid
UAV could achieve VTOL function and operate long-range maneuvers [20]. However,
the installation of multiple sets of motors and propellers (as Figure 4 shows) may introduce
more wind resistance and weight during the operation, while the complexity of the control
system design is also a challenge.

Figure 4. Figure of hybrid UAV [21].

Due to its design characteristic, it is suitable for use as a communication relay station.
It can take off and land vertically when needed and provide communication relay support,
provide wireless network connectivity to remote areas, or support disaster relief commu-
nications. The advantages and limitations of all the mentioned UAV classifications are
summarized in Table 1.

Table 1. The UAV classification and corresponding pros and cons.

UAV Classification Advantage Limitation

Helicopter agile under complex environment high-cost maintenance
Fixed wing long-range maneuver large scale range of activities
Multirotor agile and VTOL large battery consumption

Hybrid VTOL and long-range maneuver more drag and weight

2.2. Types of Design for Various Situations

Many projects aim at innovative designs that address specific problems. Particular
environments (e.g., coastline patrol or indoor environments with multiple obstacles inside)
and specific challenges of the corresponding applications (e.g., communication relays in
out-of-service areas) have been explored.

2.2.1. UAV System Design

For UAV systems for SAR operations, many papers present and discuss different sys-
tem structure designs and solutions for utilizing UAVs in SAR scenarios, including dynamic
systems, communication structures, autonomy, performance evaluation, and challenges in
path planning and obstacle avoidance.

A UAV system is designed for SAR competition in [22], in which take-off, landing,
control, video processing, and packet-dropping task are performed. The advantage of
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the project is its achieving avionic performance with a low-cost structure design, but the
wireless link and communication are restricted, due to which the performance of the
graph processing declined. Compared to this, a fully autonomous UAV solution is pro-
posed in [23] for assisting SAR under natural disasters, under which the SAR functions
of UAVs are discussed, including autonomous path planning, environment perception,
and identification of victim groups.

The paper [24] introduced a modular architecture automatic multi-UAV system with
distributed communication structure for SAR. The schematic of module collaboration in
the system, including planning, plan execution, UAV control, WIFI control, and streaming
configurations, is illustrated. Agents provide video streams to multiple base stations
through the wireless link. However, the specific scenarios and requirements for using
centralized and distributed decision-making are vague. Therefore, it is inspiring for the
works developing the solution to specific environments, such as deep mountains and
forests, urban areas, or at sea. In [25], the performance of UAV-assisted intelligent edge
computing is evaluated and the parameter optimization is proposed for enhancing the UAV
network computing ability and UAV team SAR efficiency. The evaluated path loss is used
as a threshold reference for triggering the intelligent edge computation, but the massive
computation of path planning and obstacle avoidance is a major challenge to UAV-assisted
intelligent edge computing.

For hardware design, some innovative designs are also being researched for promoting
the mobility of drones. In [26], a propeller is designed for high-altitude SAR operation of
UAVs. The result of CFD further proves the effectiveness and integrity of the blade. To
improve the mobility of multirotor UAVs, the paper [27] introduced tiltable rotors into
quadrotor design, developing three types of new movements for quadrotors such as vector-
flying, tilting, hovering, and driving. This leads to better mobility in operating SAR tasks,
and more adaptive movement could be performed in complex environments.

2.2.2. Communication and Deployment

UAV-to-UAV communication plays a critical role in improving the efficiency and
adaptability of UAV swarms. It enables the coordination of tasks, the transmission of status
information, sharing of sensor data, and collaborative localization among UAVs. UAV
swarms can also act as a network of base stations to provide communication services in
areas with poor or no wireless network infrastructure. These UAV-swarm base stations can
enhance the performance of the network by providing flexibility and adaptability.

In the paper [28], UAV teams are utilized for constructing wireless communication
networks in connection-disabled areas. This paper discusses the basic networking architec-
ture, including control and non-payload communication links and data links, and channel
characteristics, including the UAV–ground channel and UAV–UAV channel. To enhance
the UAV network performance, the design consideration is proposed including UAV de-
ployment, energy-aware operation, and device-to-device communication for enhancing the
UAV information propagation. However, the detailed communication strategy is elabo-
rated by assumption, such as the ignorance of Doppler effect compensation between each
relay node. The paper [29] also researched the optimized deployment of UAVs as base
stations. The proposed strategy utilizes the facility location framework [30] to determine
the location of the UAV base station and minimize the total transmit power. The optimized
UAV location is determined by user distribution, but the acquisition of user locations and
optimization of distribution should be further illustrated.

The paper [31] studied the three-dimensional deployment of UAV base stations
(UAVBS) for maximum user coverage with different quality of service, given the restricted
transmitting power and quality requirement for services. To enhance the quality of services,
the paper [32] proposed a model for a UAV base station providing services to randomly dis-
tributed users. Exhaustive search and particle swarm optimization is used for optimizing
the efficiency, which is determined as maximizing the served users with maximum service
quality. The proposed model increases served users by about 17%, but the charging strategy



Remote Sens. 2023, 15, 3266 8 of 35

of the UAV base station should be further discussed to enhance the duration of the system.
The paper [33] introduced a framework for multi-UAV teams to search for targets that
stochastically appear in continuous space with random elements. The implementation in
garden cleaning was used as an example, in which the searching algorithm with a charging
strategy is introduced. The experiment was only achieved in simulation without detailed
target recognition and task allocation process. Table 2 summarizes the pros and cons of
mentioned papers relating to UAV-communication.

Table 2. Pros and cons of papers relating to UAV-communication.

Paper Advantages Disadvantages

[28] - a networking architecture for con-
structing wireless communication net-
works in connection-disabled areas using
UAV teams.

- Communication strategy is elaborated
by assumption.

[29] - facility location framework to determine
the location of the UAV base station and
minimize the total transmit power.

- Acquisition of user locations and opti-
mization of distribution should be further
illustrated.

[31] - the three-dimensional deployment of
UAV base stations for maximum user cov-
erage with different quality of service.

- Quality of service requirements are not
clearly defined.

[32] - a model for a UAV base station
providing services to randomly dis-
tributed users.

- Charging strategy of UAV base station
is not discussed.

[33] - a framework for multi-UAV teams to
search for targets that stochastically ap-
pear in continuous space with random
elements.

- Experiment only achieved in simulation
without detailed target recognition and
task allocation process.

2.2.3. Overcoming GNSS Limitations

Global Navigation Satellite System (GNSS) is a technology that provides global posi-
tioning and navigation services through satellite systems. It is essential to robot navigation,
but the localization to UAV might be restricted under GNSS denial environments. For
the discovery of complex circumstances, such as cave environments, the paper [34] devel-
oped an autonomous system utilizing the flying robot for cave environment perception.
The system is composed of multiple subsystems to achieve full autonomy of UAVs. The re-
quirements of the UAV are also proposed including operative under lacking sources of
light and access to GNSS.

The paper [35] introduced a framework to detect the target in complex environ-
ments based on Decentralised Partially Observable Markov Decision Processes. However,
the framework requires a known map for its autonomous operation. In [36], an indoor nav-
igation strategy is introduced using ultra-wideband (UWB) localization based on the time
difference of arrival (TDOA). The anchors are set in the experimental room, transmitting
the signal to the quadrotor for localization. In addition, the paper [37] further determines
the target location with the proposed system.

2.2.4. Marine and Offshore Operations

The UAV system could also play an important role in marine and offshore operations,
such as assessing fire disasters on offshore oil platforms or rescuing drowning victims [7].
In [8], a system is developed for searching castaways by multi-UAVs based on artificial
neuronal networks. The system predicts the location range of victims based on the wind
and sea currents while keeping track of the discovered victim and finding the rest at the
same time. It lays little focus on the UAV charging problem and more information could be
considered as clues for searching for victims. The paper [38] focuses on providing stable
long-range communication based on Long Term Evolution (LTE) data links. However, it
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requires expanding the reserved system capacity, which may impact the safe operation of
UAVs. The paper [39] also indicates that safety issues will occur when operating UAVs at
long range. A method for UAV long-range safety modeling is proposed, which utilizes
fault tree analysis and relevant calculations for risk assessment.

2.2.5. Energy Efficiency during Operation

The energy aspect is essential for the SAR operation of UAVs. Drones are limited
by their battery level [40], which means, in other words, the power supply is inadequate
for SAR missions. As the former context illustrates, the factors that affect the energy
consumption of a UAV are various, including its maximum speed, operating altitude,
devices equipped, and its weight (with payload). To study the energy supply, Ref. [41]
compares different properties of different battery types (including Pb-acid, NiMH, Li-ion,
NiCad, etc.) and points out that lithium polymer batteries and lithium-ion batteries are the
most common battery types for UAV, which is because of their high energy and power per
unit of battery mass. The UAV could also utilize solar energy for charging, which converts
light into electric current through the photovoltaic (PV) effect. The relevant research on
solar-powered UAVs has been developed recently, including their path planning [42]
and target tracking operations [43]. For energy efficiency, a modified energy model and
two energy management strategies are proposed in [44] by considering the effects of
wind, temperature changes, air density, photovoltaic efficiency of solar cells, and limited
battery capacity.

The paper [45] focuses on energy efficiency issues, modeling the energy requirements
of UAV systems by extracting them from all six possible subsystems, including control,
payloads, and communications. It points out that the improvements in emerging technolo-
gies can contribute to enhancing the energy efficiency of UAV systems by incorporating
more energy-efficient components. The concept “Energy harvesting” is introduced in the
paper [46], which refers to the process of capturing and converting energy from the environ-
ment (including the energy generated by the vibration of the UAV) into electricity that can
be used by some distant electronic devices [45]. In the communications aspect, the power
consumption of the system is directly proportional to the communication distance between
the ground station and the UAV. The increase in the distance will lead to a relative increase
in energy consumed. To integrate with AI, [47] uses a multi-agent deep reinforcement
learning method to optimize the energy efficiency of UAV-assisted device-to-device com-
munication, and defines an appropriate reward function according to the goal to maximize
throughput and energy efficiency.

2.2.6. Artificial Intelligence (AI) integration

Nowadays, AI brings higher autonomy and adaptability to drones, enabling them to
play greater roles in various applications. The applications of AI involve many aspects,
including a control system by AI-based throttle and elevator control [48], autonomous
UAV navigation [49], and learning-based reactive obstacle avoidance maneuver control
frameworks [50]. Multiple applications of UAV communication to different AI algorithms
are also discussed in the paper [51]. The proposed integration provides an efficient system
and enhanced quality of service. The following sections will introduce more AI-integrated
techniques based on the specific operations.

2.2.7. Summary

This section introduces the most common types of drones and their advantages and
disadvantages, including unmanned helicopters, multi-rotor UAVs, fixed-wing UAVs,
and hybrid UAVs. The special designs mentioned in the second subsection focus on
enhancing the reliability and safety of drone SAR systems by improving the drawbacks of
drone-mounted equipment.

Future research on improving drone physical applications may focus on efficient
energy management, including high-energy-density battery technology and intelligent
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energy management systems, as well as lightweight design using lightweight materials
and composites to reduce the weight of drones, thus meeting the demands for increased
payload capacity and long endurance. More specific SAR applications focusing on utilizing
sensors and algorithms will be introduced and discussed in the next section.

3. Application of UAVs in SAR

As the former section shows, multiple applications are applicable to use UAVs to
achieve the preset objective. One typical example is the usage of rotary-wing UAVs in the
2013 Lushan earthquake. When encountering a natural disaster such as an earthquake,
the collapsed building in the residential area becomes the obvious target location for the
SAR team to operate the mission. Therefore, the developed UAV system was applied to
search the collapsed building for rescuing the victims in the mountain areas, which ended
up with a successful identification rate of 80% [52]. Encouragingly, the above applications
only use a single HD camera. To further achieve the tasks in the future, sensors, such
as depth cameras and LiDAR, could be fully utilized to achieve the perception of the
environment or victims. In addition, it is worth mentioning that when a disaster occurs,
drones can not only monitor the situation, modeling and analysis, and detect survivors or
other targets at a safe distance, but also enter the site for SAR operations such as delivering
supplies inside buildings. These mentioned operations require multiple techniques in
UAV control algorithms, including path planning and collision avoidance. For the SAR
application of higher autonomous standards, fast exploration in an unknown environment
and agile movement in tight spaces also contribute plenty to the SAR operation, enabling
better efficiency for the rescue teams.

Therefore, this section illustrates the on-site monitoring, modeling, and analysis of
the disaster area in its first subsection. Next, the methods and research of perception
and localization of targets are introduced, including sensor integration and technical
comparisons. In the last subsection, the technical details of SAR operations are fully
discussed, including the topic of task assignment, path planning (which contains unknown
environments exploration), and collision avoidance (which contains agile movement in
tight spaces).

3.1. On-Site Monitoring, Modeling, and Analysis

Among multiple applications, UAVs are utilized as a tool for environment perception,
providing video streaming and 3D models of disaster areas for the planning of SAR
operations. During catastrophes such as earthquakes and floods, urban areas are extremely
dangerous since the breakdown of buildings might be triggered by the aftershock, soaking,
or the impact of high-speed floating obstacles, endangering the safety of SAR teams.
The amendment information could be obtained by UAV to prevent the rescue team’s
injuries and guarantee the rescue operations’ efficiency.

3.1.1. Monitoring and Modeling on Disaster Area

At disaster sites, traditional methods of manual mapping and measurement may be
limited in terms of time and accuracy due to the varying degrees and extent of the damage.
However, UAVs can use their efficient data collection and processing capabilities to conduct
3D modeling after the disaster, generating accurate digital maps, 3D models, and volume
measurements to support rescue efforts.

Early in 2011, the paper [53] introduced a 3D modeling solution, a low-cost UAV
system along with its components, device, and software, to build the 3D point cloud from
the digital image. To generate the 3D model based on the image or video stream provided
by the UAV camera, the concept of Structure from Motion (SfM) [54] is introduced in the
paper [55] as a low-cost solution that compensates the camera motion and estimating the
3D model of the object. Based on the SfM, multiple software packages are developed
for constructing 3D models based on the point cloud, such as PhotoScan, Pix4D Mapper,
MicMac, and MeshLab. Furthermore, Ref. [55] compared two different photogrammetric
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software, and the parameter settings of both are introduced with the corresponding imaging
time and precision. It concluded that the PhotoScan is more applicable for SAR operation,
by which the modeling is less time-consuming but less detailed than MicMac and MeshLab.
The paper [56] established a 3D model of Pylaia, a suburb of Greece, which utilized Pix4D
Mapper as the tool of SfM. Different from the former context, it also utilized Blender,
an open-source 3D rendering software, to further polish the model as a detailed reference of
the city scene for public use. Generating such a delicate model is time-consuming, but the
introduced concept that using Blender to render the model may provide more details for
the operation of the rescue team.

Besides the earthquake, the SfM could also be used for rescue operations object to
flood and tsunami disasters. The paper [57] introduced the UAV mapping to urban floods
by Random Forest Classifier. A mini-UAV was operated for providing video streaming
above Yuyao city, China, for mapping the waterlogging area inside the urban area. RGB
images and texture information are utilized as the input of the Random Forest Classifier,
outputting the submerged area of the city. The mapping result obtains a high accuracy of
87.3%, but time consumption was nine hours, which may not be applicable for decision-
making during the SAR operation. The paper [58] utilized the UAV building the 3D city
model of Cilacap, Indonesia, integrating the tsunami model with which to simulate the
authentic circumstances under the strike of the tsunami. The corresponding model could
help the rescue team plan evacuation paths for the public. The paper [59] also indicates that
multiple inundation scenarios could be generated using UAV 3D modeling. The project
conducted the experiment in the Drini Coastal Area, whose results also stated that the
model derived is highly satisfying for predicting the circumstances of, and finding a safe
area in, the tsunami disaster. The papers mentioned in this section are summarized in Table
3 with the corresponding characteristics and descriptions.

Table 3. Summary of the Characteristics of the Papers relating to 3D-modelling.

Paper Characteristic Description

[53] - Introduction of a low-cost
UAV system for 3D modeling

- Presents a low-cost solution to construct 3D point
clouds from digital images using a UAV system

[54] - Introduction of the Structure
from Motion (SfM) concept
for 3D modeling

- Presents the SfM concept as a low-cost solution to
compensate for camera motion and estimate the 3D
model of the object based on image or video stream

[55] - Comparison of different pho-
togrammetric software

- Compares two different photogrammetric software,
PhotoScan and MicMac, in terms of parameter settings,
imaging time, and precision, and concludes that Photo-
Scan is more applicable for SAR operation

[56] - Establishment of the 3D
model using open-source 3D
rendering software

- Establishes a 3D model of Pylaia, Greece, using Pix4D
Mapper for SfM and Blender for rendering to provide a
detailed reference of the city scene for public use

[57] - Mapping of an urban
flood using Random Forest
Classifier

- Utilizes a mini-UAV to provide video streaming
for mapping the waterlogging area inside Yuyao city,
China, and applies RGB images and texture informa-
tion as input of the Random Forest Classifier to output
the submerged area of the city with a high accuracy of
87.3%

[58] - Building of a 3D city model
integrated with a tsunami
model

- Utilizes a UAV to build a 3D city model of Cilacap,
Indonesia, integrated with a tsunami model to simu-
late the authentic circumstances under the strike of the
tsunami and help plan evacuation paths for the public

[59] - Generation of inundation
scenarios using UAV 3D
modeling

- Conducts an experiment in Drini Coastal Area to gen-
erate multiple inundation scenarios for predicting the cir-
cumstances and finding the safe area in tsunami disaster
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3.1.2. Building Quality Estimation on Disaster Area

The collapse of buildings during rescue contributes to significant difficulties for SAR
operations. Therefore, the applications of UAVs in disaster areas also include building
inspection, which is used to analyze the possibility of collapse and plan the rescue operation.
For example, the paper [60] developed an image collection system with the post-processing
program, which integrates canny mask into edge detecting technique for defect detection.
Basic defect-detection operations are achieved in this project.

There also exist multiple defect-detection methods operating on buildings and bridges
using UAV photographs, including bridge inspection by videos [61], building inspection
by post-processing photographs [62], and defect detection using computer vision [63].
The result of the UAV bridge fatigue detection in [64] even showed that the best performance
is comparable to human inspectors.

Although the result shows the good feasibility of the proposed method, the limitations
encountered are various [65], including high requirements on the camera, the influence of
vehicle motion on the image quality, and unsatisfying GPS signal. The paper [62] found
unusable data accounting for a large portion of data acquired, while the realignment and
stitching of images are also difficult, which also verified the finding from [64] that camera
specification and illumination requirements are essential to the detection performance.
Therefore, to overcome these limitations mentioned above, an optimized path pattern and
camera setting are proposed in [66], for a UAV system operating 3D modeling using the SfM
method, and analyzing the damage by inspecting the small cracks on the example building,
which is located 8km north of Napa. This technique promotes information collection under
circumstances that endanger the rescue teams.

Since computer vision and neural networks can provide functions such as feature
extraction and image processing, object detection, and recognition, it is extremely useful
for drones surveying building conditions. The paper [67] further introduced speeded-up
robust features (SURF)-based feature detection algorithm to achieve the image stitching,
while the result showed that image stitching is achieved and the feasibility of UAV inspec-
tion on structural damage is verified. Besides the computer vision, The paper [68] utilized
a convolutional neural network to distinguish the collapsed and damaged buildings in
seismic disaster areas. A 3D model of the building is formed using GIS information at
first, and segmentation processing is utilized to separate each building for detailed anal-
ysis with multi-view images. CNN-based damage assessments are operated based on
the information provided. The experiment in old Beichuan town showed the prediction
accuracy reaches 89.39%. The paper [69] integrates the Mask-R-CNN-based deep learn-
ing [70] into the analysis of images captured by UAV to detect defects on the building’s
external wall. It transfers the defect coordinates and integrates the information into BIM
models. The proposed analyzing method could provide abundant information for collapse
prediction, but the BIM model is pointed out as being “not updated often”, which may
generate certain biases during prediction.

3D-point cloud could also be used as the cue in the SAR operation for assessing the
building conditions or environmental situation. The paper [71] developed a method for
assessing building structural damage. High-quality and multi-perspective images are
processed to generate a 3D point cloud for distinguishing the fully damaged structure,
after which the detailed object-based image analysis is conducted for classifying the damage
level of non-fully damaged structures. This project contributes to the method describing the
damage level, providing valuable information for SAR planning. Since the physical damage
and data acquisition conditions might introduce a gap into 3D point clouds, the paper [72]
proposed a gap classification method to improve the performance of damage assessment
based on point clouds.

Table 4 summarizes the content of articles related to UAV-based structural damage in-
spection mentioned in this section.
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Table 4. Summary of papers on UAV-based structural damage inspection.

Paper Main Content

[65] Discussed the UAV flight requirement for building inspection.

[67] Implemented image stitching using SURF algorithm and demonstrated the feasibility
of using UAVs for structural damage inspection

[60] Developed an image collection system with Canny mask and edge detection for de-
fect detection

[64] Introduced a method for bridge fatigue detection using UAVs

[62] Proposed a post-processing photograph-based method for building defect detection

[71] Developed a method for assessing building structural damage, generating 3D point
clouds to distinguish fully damaged structures

[61] Presented a method for bridge inspection using video

[63] Proposed a computer vision-based method for building and bridge defect detection

[66] Proposed an optimized path and camera setting for UAV systems to perform 3D model-
ing and damage analysis

[69] Applied Mask-R-CNN-based deep learning to UAV-captured images to detect defects
on building external walls, and integrated the information into BIM models

[72] Proposed a gap classification method for point cloud-based damage assessment

[68] Used a convolutional neural network to distinguish collapsed and damaged buildings
in seismic disaster areas, and generated 3D models for detailed analysis

3.2. Perception and Localization of Targets

Perception and localization of targets are always the most important section when
conducting search and rescue operations. Thanks to the high-speed mobility and position
advantage, UAVs can be used to quickly survey large areas and identify potential victims,
allowing rescue teams to target areas of need quickly and accurately. In the former cases
illustrated, UAVs could identify hard-to-reach areas and provide real-time updates on
the location and condition of victims. The paper [73] reported two cases using UAVs
achieving the SAR operation, including victim searching in Dry Creek Canyon, Oregon,
by a DJI Phantom 4K quadrotor, and Wahclella Falls Trailhead, Oregon, by an SAR Bot,
which is equipped with a thermal imager and made by Aerial Technology International.
In both missions, the victims were found deceased in an area that the SAR team had
difficulty reaching, which also secured the SAR teams and improved efficiencies. This
section illustrates the perception and localization of targets, which could be achieved
automatically by computer vision algorithms or driven by operators.

Multiple works of literature focusing on utilizing the advantage of computer vision are
introduced, to reduce the involvement of human operators and cut down human factors.
Computer vision refers to the field of artificial intelligence that involves enabling computers
to interpret and understand visual data from the sensor installed, such as images or videos.
The relevant techniques include the integration of histograms of oriented gradients (HOG)
detector to camera [74]. The literature presents the testing result of the HOG detector
with other different detectors including the poselet detector, the discriminatively trained
part-based models (DPM) detector, and pictorial structures (PS) with the discriminant
part detector.

Convolutional Neural Networks (CNNs) are another technique that is commonly
used in computer vision tasks, which particularly are designed to automatically learn
and extract features from input images, through a series of convolutional layers, pooling
layers, and fully connected layers as Figure 5 describes. In [6], a trained support vector
machine (SVM) classifier and Convolutional Neural Networks (CNN) image representa-
tion is used for discovering the victim. Pre-processing procedure in the algorithm finds
the area of interest by using a sliding window to identify the color differences in HSV
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color space. The post-processing procedure improves the decision by hidden Markov
models (HMM) [75]. The proposed detection obtains better accuracy than the traditional
HOG classifier.

Figure 5. Illustration of CNN.

Multiple works of literature further implement the CNN into SAR operation of UAV
under different scenarios, including marine environments [9], mountainous areas, and
avalanche disasters [5,6]. In [76], the CNN is further combined with a robust architecture
deployed on smartphones, which achieved satisfying accuracy. The paper [77] integrates
bio-radar sensors with CNN-trained cameras for further detecting the vital signs of sur-
vivors. For further information, swarm communication in this literature is achieved by the
LoRa ad hoc network.

To achieve similar autonomy and improve the efficiency of SAR operation, multiple
algorithms are developed with sensors and devices integrated. The target information
could be obtained by cellphone GSM uplink signal [78], to localize which the received
signal strength indication (RSSI) localization is conducted. The paper [79] inputs the
cellphone signal to the pseudo-trilateration-trained deep Feed-Forward Neural Network
(FFNN) to find the target location. Furthermore, the CNN extract features are inputted into
FFNN for user motion prediction. Advantages are shown in rapid localization and low
battery consumption cost. The paper [80] proposes tracking the SOS signal emitted from
the applications on cellphones in the wilderness environment, based on which multiple
fixed-wing UAV agents collaboratively localize the victim. The techniques used in the
mentioned literature are summarized in Table 5 for the reference.

Table 5. Literature with techniques used.

Literature HOG CNN SVM HSV HMM RSSI Cellphone Signal

[74] x

[6] x x x x

[75] x

[9] x

[5] x

[76] x

[77] x

[78] x x

[79] x x x

[80] x

In traditional search and rescue operations, rescuers visually scan large areas of interest
to locate missing persons or objects. It allows SAR operators to use their human expertise
and judgment to identify and locate the target of interest. Among the literature focusing
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on human–machine interactive SAR operations, multiple sensors, and videos processing
techniques are adopted for the SAR operation to improve the searching performance
of human operators, including the RGB data selection [81], temporary localized mosaic
view [82], thermal imagery [83].

However, when visual scanning is operated by human rescuers, it can be time-
consuming and difficult, particularly in remote or mountainous areas. Strategies proposed
to mitigate such human factor also includes the inherited limitation from the method itself.
The paper [81] uses the commercial package Loc8 to find the high-contrast color, but the
low-contrast color may restrict the performance of the Loc8.

Thermal images provide high-contrast targets for human rescuers, but environmental
interference (i.e., object occlusion and temperature increase) and equipment quality will
affect the performance of the thermal image. The existing limitations may induce human
errors in detecting victims in operation and a decline in efficiency.

The utilization of RGB and thermal cameras are also of great importance to the devel-
opment of autonomous UAV search and rescue operations.

The former literature [81] has shown an example of RGB cue utilization. The pa-
per [84] further integrates the camera sensor into the fixed-wing UAV for target searching.
The corresponding detection algorithm is designed using YUV instead of RGB color space
for image processing. The advantage of this algorithm is shown to be low cost and high effi-
ciency since the tasks are fully achieved with a lighter computation load compared to other
over-comprehensive commercial packages that require extensive computational loads.

Thermal camera cues provide high-contrast images between the target and the envi-
ronment, enabling the target to be explicitly distinguished. However, the intrinsic limitation
of thermal cameras requires other sensors to be fused to ensure the robustness of SAR
operation. To study the feasibility of thermal cues, the paper [85] integrates four passive
infrared detectors (PIR) sensors and two ultrasonic sensors into the UAV system for the
requirements of victim detection and collision avoidance. The communication module
installed on the system transmits the GPS output to the base station when PIR sensors
detected the targets. To enhance the system searching ability, the paper [4] fused an infrared
camera with an avalanche beacon receiver to discover both snow-covered and uncovered
bodies in the avalanche rescue operation. The paper [86] developed the YOLOV3 algorithm
for integrating the thermal camera and UAV system. The limitation still exists on the
robustness under different environments.

The paper [87] utilizes thermal and RGB cameras on the UAV to localize the victim
autonomously. The output is integrated into the saliency map along with the location and
photos of the victim. The article also researches the system structure and feasibility of
autonomous supply delivery. The paper [88] added a cascade of boosted classifiers working
with Haar-like features into the fusion of thermal and RGB cameras, by which the accuracy
of detection is further improved. Technique analysis of the papers mentioned is provided
in Table 6, including the corresponding advantages and disadvantages.

Table 6. Typical literature works with their technique utilization in UAV SAR operations.

Sensors and Technique Paper Advantages Disadvantages

RGB camera [81,87,88] Low cost, high efficiency Limited contrast

ultrasonic sensors [85] Collision avoidance Limited detection range

Thermal camera [83,85–88] Detection ability under cer-
tain conditions

Limited robustness under
different environments

Video processing [82] Temporary localized mosaic
view increase the operator’s
efficiency

Decision making heavily
relies on human operator
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However, the existing strategies that rely on the RGB and thermal cues have the
same difficulties in improving the output qualities (i.e., resolution of graphics, perception
distance, and connections) for better perception performance. This is highly dependent
on the sensor quality and flight steadiness. One example that reflects the problem is the
maximum detecting range of infrared sensors in [85] could only reach 7 m, which may
largely restrict the efficiency of SAR operation. In addition, localization problems may exist
in autonomous operations under mountainous environments [4–6], since there exist GPS
denial areas and the location of the victim cannot be transmitted.

For further improving SAR performance, the quality of sensors could be further
improved (such as the resolution improvement in integrated thermal systems, the resolution
of thermal cameras is expected to be enhanced for better video processing). Furthermore,
a technique that supplements the performance of human operators will also contribute to
the SAR performance. The examples are presented in the paper [89], where the gaze data
are input DIRL for improving the searching performance of the operator, and the paper [82],
where the best video processing technique is chosen to maximize the SAR efficiency of
human operators. These techniques may avoid the majority of human factors during the
rescue mission, effectively making progress in the operation.

3.3. Search and Rescue Operation

One of the core problems in an SAR operation with an unmanned system is navigation,
which is about driving a vehicle safely from one place to its target without colliding with
other obstacles. The navigation is composed of three parts: task assignment, global path
planning, and local collision avoidance.

3.3.1. Task Assignment

Control of UAVs in SAR operations can be carried out manually by expert pilots,
but one of the problems is that coordination among pilots is difficult because of the dynamic
nature of the environment during a disaster. So the challenging problem of automatic search
by multiple drones has received much attention, and it is a non-deterministic polynomial
(NP) problem of combinatorial optimization under multiple constraints. The successful and
efficient allocation of available resources will be a solver of such a situation, in which rescue
efficiency can be maximized. Vehicles should be able to quickly, reliably, and efficiently
find answers to the question: considering the resources available in the network and
the tasks that should be performed, what is the best allocation of these tasks among us?
The key to solving this problem is to establish the task assignment model and use the
assignment algorithm.

The proposed assignment algorithms can be divided into centralized approaches and
distributed approaches. Centralized approaches, such as genetic algorithms [90,91] and
particle swarm optimization [92], require UAVs to constantly communicate their situational
awareness to a central station, which generates plans for the entire agency team. In addition,
the paper [93] modified the previous genetic algorithm to solve the complexity caused
by heterogeneity in UAV swarm. Max-sum is also a centralized optimization method
suitable for a wide range of UAV applications, including task assignment in SAR [94].
Max-sum enables the best performance of the system’s applications in wireless sensor
networks. The main drawback of the algorithm is the need to replan the entire assignment
for each period to optimize the assignment. Therefore, it may not be suitable for real-time
applications with high dynamics; moreover, it may not fit well with a large number of UAVs
due to the increased communication overhead. This is also the disadvantage of centralized
approaches. Due to limited communication, the centralized approach is slow to respond
to dynamic changes and is susceptible to system failures. However, it should be noted
that, with the development of a cloud-based UAV Internet management system [95] and
less computationally intensive algorithms [96], the UAV may communicate with the cloud
server that coordinates the task allocation between them through the Internet connection in
the future, and the dilemma of the centralized algorithm may be solved.
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The current reality is that most of the environments are uncertain, dynamic, and only
partially observable, so it is difficult to implement a centralized global optimization algo-
rithm. Individual agents need to independently and possibly myopically decide what to
do next based on the information they receive. Various distributed methods have been
proposed. One of the most basic algorithms is the opportunistic task allocation Strategy
(OTA) [97], in which an unmanned aircraft randomly selects blocks in an unexplored search
area. One way to do this is when information is extremely scarce. There are also some com-
plicated distributed methods, such as market-based methods and consensus algorithms.
The key to the market-based approach can be visualized as the auctioneer announcing a
bidding task, each agent sending the bid to the auctioneer, and the highest bidder robot
winning the task. In a multi-drone SAR operation, the bid value is calculated based on the
distance between the drone and the survivor so that the survivor can be rescued in the
shortest possible time. However, this method requires a connected topology and a large
amount of data transmission to send bids [98,99]. The consensus of the distributed algo-
rithm focuses on solving the consistency problem of the distributed systems, and the most
famous one is the Raft algorithm [100], which is considered easy to understand in design
and excellent in performance. It is a crucial step for distributed consensus algorithms from
theoretical research to practical application. In general, centralized and distributed control
should be combined, and distributed control should be used for basic group behaviors
such as formation flight, obstacle avoidance, and collision avoidance. In addition, more
advanced behaviors (e.g., information sharing, task scheduling, distributed computing, etc.)
should be controlled centrally. In recent years, some studies have added the application of
learning. The paper [101] describes the problem as a Markov decision process (MDP) and
uses deep reinforcement learning (DRL) to obtain state-based decisions. Some other studies
have investigated solutions to limited drone battery power, including optimizing energy
efficiency [47] and heterogeneous collaborative systems for vehicles and UAVs [102,103],
and since multiple agents act in a decentralized way, methods to discourage competitive
behavior rather than promote cooperation is also one idea [104]. Task assignment, as a
mature problem, has been studied quite a lot. The various task assignment approaches and
their features are tabulated in Table 7.

Table 7. Comparison of task assignment algorithms for UAVs.

Reference Algorithm Advantages Disadvantages

Shima et al. [90] Genetic algorithms

Centralized
optimization; suitable

for providing good
solutions for high

dimensional
problems

Communication
overhead; slow to

respond to dynamic
changes; the choice of

cost function has a
great influence on

algorithm
performance

Deng et al. [93] Genetic algorithms

Centralized
optimization;

modified to solve
heterogeneity in UAV

swarm

Limited
communication;

susceptible to system
failures

Delle
Monache et al. [94] Max-sum

Centralized
optimization; suitable

for a wide range of
UAV applications

including task
assignment in SAR

Need to replan entire
assignment for each

time period
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Table 7. Cont.

Reference Algorithm Advantages Disadvantages

Kurdi et al. [97]
Opportunistic task
allocation strategy

(OTA)

Distributed
optimization; simple

and suitable for
emergency situations

where there is a
serious lack of

information at the
disaster site

Efficiency of search
and rescue is erratic

Oh et al. [98] Market-based
methods

Distributed
optimization; task
allocation is more

reasonable

Bid negotiation
consumes more time

and computing
resource transmission

Ongaro et al. [100] Raft algorithm

Distributed
consensus algorithm;
easy to understand in
design and excellent

in performance

\

Kim et al. [101] Deep reinforcement
learning

Incorporates learning;
in small examples,

the DRL-based
approach is much
faster than value

iteration and obtained
nearly optimal

solutions

Need a lot of
computational power

in a large example

Huang et al. [103]
Heterogeneous

collaborative systems
for vehicles and UAVs

UAVs and public
transport work

together to greatly
improve the range of

UAVs that can
perform tasks

Affected by the
ground traffic

conditions

3.3.2. Path Planning

The path planning problem for a UAV may be viewed as an optimization problem [105]
in which the most common goal is to find a feasible path from the beginning location to
the terminal position while following different optimization parameters and constraints.
The SAR mission is not always in the open wilderness and may sometimes be in a cluttered
and obstacle-rich environment; for example in an urban area or indoor environment, it is
necessary for a UAV to adopt a path planning algorithm ensuring the traversed path to be
collision-free and optimal in terms of path length. According to the actual situation, there
will be some variations. For example, to realize the comprehensive use of UAVs and mobile
charging stations, VRP with the synchronous network (VRPSN) is defined in [106], which
is a new kind of VRP.

Many methods for UAV path planning have been proposed in recent years. The most
common ones are sampling-based methods, such as RRT and PRobability roadmap; there
are graph-based methods for designing paths, such as Voronoi graph algorithm, concluded
Dijkstra algorithm, A* algorithm, and Markov decision processes [107,108]. It is worth
mentioning that [108] integrates target motion prediction with the tracking trajectory
planning (as Figure 6 shows), enabling the advanced path planning utility. Applications in
this area have been studied as early as 2011; the paper [109] preliminarily addresses SAR
using quadrotors. The paper [110] used a hill-climbing algorithm, iteratively, to first find a
path at each step by the hill-climbing algorithm, and then optimized the objective function
to assign the search effort (flight time) to each cell in the path. The paper [111] broke two
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assumptions and extended a framework for probabilistic search based on decision-making
to merge multiple observations of grid cells and changes in UAV altitude, enabling small,
light, low-speed, and agile UAVs, such as quadrotors, to perform occupancy network-based
search tasks. The paper [112] presents a path planning method where the UAV is regarded
as a Dubins vehicle. The path planning method is based on the tangent graph where the
obstacles are abstracted as circles. Then the tangent graph composes of straight lines and
arcs on the circles. Finally, the shortest path from a source position to a destination can be
found by a graph searching algorithm. However, these algorithms do not consider UAV
kinematic and dynamic limitations. Furthermore, these algorithms require prior knowledge
of the production map, a requirement that greatly limits their applicability.

Figure 6. Path planning when tracking a target in [108].

Another kind of optimal path-planning approach is the potential field-based method.
PF was proposed by Khatib in 1986 [113]. In Potential Fields (PF), Qgoal and obstacles
have attractive and repulsive potentials respectively. The two potential forms the potential
field of the UAV, and the resultant force of the magnetic field on the UAV determines its
motion direction. Then some algorithms are proposed, such as the artificial potential field
and the interfering fluid dynamic [114], to realize global offline path planning. However,
because the potential field method leads the vehicle to the minimum value in the field, it
often falls into the local minimum value. When the target and the obstacle are close to each
other, a feasible route cannot be found.

Biological-Based Path Planning algorithms, which are mainly based on machine
learning, have made great progress in recent years with the support of swarm intelli-
gence techniques. Many algorithms have been proposed, and here are a few of them. A
Genetic Algorithm (GA) can be used to resolve the constrained and unconstrained op-
timization problems, but it cannot guarantee an optimal path. Local minima can occur
in narrow environments, therefore, lower security and narrow corridor problems need
to be avoided [115,116]. Particle Swarm Optimization (PSO) is a classical meta-heuristic
population-based algorithm to resolve problems of multiobjective path planning. The pa-
per [117] used simulation to compare the particle swarm optimization (PSO) with the
other optimizing algorithms, including layered search and rescue, spiral search, and fish-
inspired allocation. They further proposed the algorithm based on the particle swarm
optimization algorithm, reducing the collisions without affecting iterations to convergence.
The paper [118] proposes an optimal trajectory determination method for multi-robot paths
in cluttered environments based on an improved particle swarm optimization algorithm
(IPSO) and an improved gravitational search algorithm (IGSA) to minimize the maximum
path length required for all robots in the environment to reach their respective destinations.
Ant colony optimization algorithm (ACO) is a probabilistic technique for solving compu-
tational problems which can be reduced to finding good paths through graphs. In [119],
they propose an improved ACO to resolve various Vehicle Routing Problems (VRPs),
which is utilized for Unmanned Aerial Vehicle (UAV) task allocation and route planning.
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At last, the comparison between mentioned path planning algorithms is provided in Table 8
for reference.

Table 8. Comparison of path planning algorithms for UAVs.

Reference Algorithm Advantages Disadvantages

[106] VRP with synchronous
network (VRPSN)

Efficient use of UAV and
mobile charging station

Limited applicability

[107,108,112] Graph-based methods Simple to understand and
easy to implement

Kinematic and dynamic
limitations, require prior
knowledge of produc-
tion map

[113,114] Potential Field-based
method

Global offline path plan-
ning, good performance
in terms of path length
and collision avoidance

Local minimum prob-
lem, cannot find feasible
route when target and
obstacle are too close

[115,116] Genetic Algorithm (GA) Can resolve constrained
and unconstrained opti-
mization problems

Lower security and nar-
row corridor problems
need to be avoided

[117] Particle Swarm Opti-
mization (PSO)

Good performance in mul-
tiobjective path planning

Limited applicability,
need to avoid narrow
corridor problem

[118] A hybridization of
IPSO–IGSA algorithm

The performance is better
than other meta-heuristic
algorithms such as IGSA

Both the environment
and obstacles are static
relative to the robot

Unknown Environments Exploration

It is often important for UAVs to conduct SAR operations under unknown environ-
ments, for example, a GPS-denied environment or a place where no pre-stored map is
available. Therefore, UAVs will be assigned the task of unknown space exploration. Agents
need to formulate an effective exploration strategy along with motion planning to decide
how to move in an unknown environment to minimize exploration time and cost. This usu-
ally requires UAVs to have the real-time ability to perceive the surrounding environment
and adjust strategies.

Plenty of papers focus on developing effective exploration strategies, one of which is
the random exploration strategy. With this method, the robot obtains more information
by randomly choosing the direction and speed to move in an unknown environment. The
Rapidly exploring random trees (RRT) algorithm introduced in the paper [120] is a type
of randomized algorithm that constructs a tree-like structure by repeatedly adding new
nodes to the existing tree, with the goal of efficiently exploring the search space. RRT has
been widely adopted in the robotics community. To further implement the RRT algorithm
practically, the sensors are integrated for the environment perception of robots. This strategy
is also called Sensor-based Random Tree (SRT) [121,122], a variant of the RRT algorithm.
In the SRT algorithm, the robot uses its sensors to check if the proposed connection would
collide with any obstacles in the environment before adding the new point to the tree. The
paper [123] proposed the improvement of the RRT algorithm implementation. Instead of
moving agents using the RRT algorithm, this article uses multiple independent RRT trees
to quickly and efficiently search for frontier points to discover unknown areas.

Similar to the RRT algorithm, the Monte Carlo tree search (MCTS) is also proposed
for area exploration and path planning. It was first proposed as a framework for game
AI in the paper [124], which illustrated the detailed procedures for the MCTS. It is further
implemented in path planning of multiple games, including Ms. Pac-Man [125,126] and a
two-player turn-based strategy board game called Go (in which the multi-agent Monte
Carlo is considered) [127]. Simulation in games has shown positive results.
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It is further implemented into robot operations, including the coordination of UAVs in
disaster response and casualty discovery [128], and the search and rescue plannings [129].
The Monte Carlo method can estimate the obstacle distribution of the unknown environ-
ment through multiple random sampling, and then generate a probability map, based on
which the path planning could be operated by UAV agents. A comprehensive review of the
Monte Carlo method is presented in [130], which illustrated the development and variants
of the Monte Carlo method in detail.

However, the RRT and Monte Carlo methods both belong to the randomness-based
exploration strategy, which is very inefficient for exploring large areas or complex environ-
ments. This is because agents may repeatedly explore known areas due to the inherited
defect of this strategy [131].

To avoid collisions and repeated exploration, a model-based exploration strategy
is proposed for robot agents to collect and analyze environmental information. This
strategy necessitates the robotic system to model the environment, for instance, by utilizing
technologies such as LiDAR or cameras to construct 3D maps. The robot then employs the
map information to plan a trajectory and conduct an effective exploration.

In this strategy, the state-of-art method is the simultaneous localization and mapping
(SLAM), which is proposed in [132] in 1991. Robots or mobile devices, equipped with
sensors such as cameras, and LiDARs, are supplemented by inertial measurement units
for capturing information about the environment and their movements. Analysis of this
information enables the robot to estimate both its position and the shape of the environment
map simultaneously [133]. The paper [134] briefly introduced the development of the SLAM
technique. Robots such as drones are equipped with LiDAR sensors and other sensors (such
as IMUs) for real-time acquisition of environmental information. By filtering, segmenting,
and registering the point cloud data obtained by LiDAR, the computer can extract feature
information in the environment, such as walls and corridors. After analyzing the sensor
data, the UAV can realize real-time positioning (that is, obtain the position and attitude
of the UAV). At the same time, by combining the extracted feature information with the
position and attitude information of the drone, a map of the indoor environment can be
constructed (for example, LiDAR sensors can generate laser point cloud data for building
a three-dimensional map of the environment). After that, the UAV makes navigation
decisions based on the constructed map and real-time positioning information, such as path
planning, obstacle avoidance, etc., so as to realize the function of environmental exploration.

The paper [135] improved the basic SLAM technique and introduced the FastSLAM
algorithm, and it has been further enhanced into FastSLAM 2.0 [136] in 2003. FastSLAM is
a classical particle filter-based SLAM algorithm that uses two parallel filters: a particle filter
for robot localization and an extended Kalman filter (EKF)-based filter for map building.
The FastSLAM 2.0 algorithm uses the Rao–Blackwellized particle filter (RBPF) to simul-
taneously handle robot position and map building. This improvement can significantly
reduce the number of particles required to achieve accurate SLAM results. The paper [137]
introduced the Unscented FastSLAM based on the unscented particle filter that uses an
unscented Kalman filter (UKF) to further reduce the number of particles, but the UFast-
SLAM is restricted to nonlinear measurement models. The Differential Evolution technique
is proposed in [138] to handle non-linear optimization problems and further enhance the
SLAM performance.

Nowadays, SLAM enhances UAVs’ autonomous control and environment perception,
resulting in increased efficiency, reliability, and safety. A typical SLAM-based exploration
block diagram is introduced in Figure 7 with the basic SLAM function (localization and
mapping), planning layer, and communications layer for UAVs teams through the network.
The proposed SLAM algorithm in the paper [139] utilizes LiDAR and MEMS IMU (Micro
Electro Mechanical System inertial measurement Unit) with a fixed Kalman filter for state
estimation, resulting in improved feature extraction accuracy and reduced filtering algo-
rithm computation. The work in paper [140] further demonstrates an enhanced ability to
navigate unexplored floors through LiDAR grid construction of orthogonal walls, filter-
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ing out static furniture and dynamic human bodies, and utilizing the Linear Quadratic
Estimation (LQE) method to assist in calculating the displacement and orientation of the
robot. The paper [141] suggests the utilization of RGB-D cameras to obtain dense color
and depth images [142] for an onboard UAV SLAM approach. The paper [143] utilizes the
visual SLAM to propose the exploration strategy for distributed multi-UAV systems. Re-
garding the limited connection between each agent, the result shows an obvious reduction
in exploration time and traveled distance for both two and three UAVs.
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Visual 
sensor

detection & pose 
estimation of 
other robots

Visual 
Odometry

Local map 
creation

Path 
Planning & 
control

Goal 
selection 
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Mapping

Planning
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Figure 7. Architecture block diagram of SLAM-based exploration in [143].

Furthermore, the SLAM-based exploration performance of UAV agents is enhanced
by the integration of machine learning [144,145]. Ref. [145] utilizes population coding
algorithms and self-learning features to construct a cooperative multi-coupling system for
collaborative decision-making in UAV-based SLAM operations. By adopting consensus
architecture and neural network training, the drones in the system can reach a consen-
sus and work together to help the system adapt to changing environments and achieve
self-adaptation and optimization. The research in [144] realizes the ability to make in-
door environmental maps in real-time by combining SLAM and the Single Image Depth
Estimation (SIDE) algorithm based on Convolutional Neural Networks (CNN). A learning-
based exploration solution is proposed in work [146], which aims at using an end-to-end
learning method to obtain the geometric information of the environment directly from
RGB images without relying on specialized sensors, resulting in greater flexibility and
adaptability. However, the paper [147] stated that this work shows little difference in
navigation performance from untrained traditional methods. It proposed the Active Neural
SLAM, which achieves fast exploration of unknown areas by modularizing the task and
conducting independent training in each module while combining traditional analytical
path planners with learning-based SLAM modules. This indicates the combination between
the model-based exploration strategy and machine learning has promising prospects for
further development.



Remote Sens. 2023, 15, 3266 23 of 35

In conclusion, UAV SLAM technology enables real-time environmental perception and
mapping, allowing for the deeper detection and recognition of the environment, such as
terrain, obstacles, buildings, and roads. However, the principle of C-SLAM (Collaborative
Simultaneous Localization and Mapping) is to achieve a global perspective by integrating
the local perspectives of multiple UAVs [148], thereby enabling more accurate topological
localization and map construction. The accuracy of map construction and positioning is
affected by the number of drones, limitations in network bandwidth, delay, as well as the
different frame of reference used by each UAV [149,150].

To overcome the technical limitations in C-SLAM, multi-sensor fusion technology
should be further researched and developed to better combine data from different sensors
and improve the robustness and accuracy of localization and map construction. At the
same time, for communication and data transmission in C-SLAM, the UAV SLAM system
should adopt higher-speed data transmission technology and optimize network architec-
ture and protocols to reduce delay and bandwidth limitations. Moreover, the continued
development of SLAM technology and algorithms is improving the reliability of the Model-
Based Exploration Strategy, along with the enhanced performance of UAV environmental
detection. To further enlarge the feasibility of the UAV SLAM under different scenarios,
automatic parameter tuning, including thresholds of feature matching, and RANSAC
parameters, should be further achieved [151]. This leads to the integration between AI (or
learning features) and the SLAM system in future study. For example, machine learning
algorithms can leverage large amounts of real data to learn the relationship between the
environment and parameters, enabling automatic adjustment of SLAM parameters based
on real-time data and environmental changes for improved performance and accuracy.

3.3.3. Collision Avoidance

It is not difficult to find from the above that path planning is to generate a set of
path points that bypass obstacles from the initial position to the final goal, while collision
avoidance takes a given waypoint assignment as a local goal to avoid obstacles. The rest of
this section serves as a survey of these works and presents the development history and
the latest research progress of collision avoidance algorithms, especially smart collision
avoidance in dense and narrow spaces.

Early collision avoidance algorithms mainly targeted static obstacles. Since path
planning also needs to be considered in obstacle avoidance, the predominant idea for
obstacle avoidance in the 1970s and 1980s is to construct a configuration space, and many
improved path-planning algorithms have been proposed. However, none of these classical
algorithms can minimize the input energy and achieve the optimum results while avoiding
obstacles. In the middle of the 1980s, some path-planning algorithms considering uncertain
and dynamic environments were proposed, such as potential functions [113], control
theory, and other heuristic algorithms. These algorithms solve the shortcomings of classical
algorithms but still face challenges when dealing with complex moving obstacles. In the
1990s, many local motion planning algorithms were proposed to improve efficiency, such
as e dynamic window technology, inevitable collision states, and velocity obstacles. Such
algorithms abandon the optimal global solution to improve efficiency and can process
inputs in real-time but, because they do not optimize the trajectories subject to time or
energy, UAVs will fall into a deadlock when facing dynamic obstacles.

After the 2000s, with the development of new technology and improved hardware
computing power, more and more obstacle avoidance algorithms have been proposed,
making UAVs more agile and robust. The paper [152] describes the safety evaluation
process that the international community has deemed necessary to certify such systems
about UAVs. The paper [153] proposes an adaptive tracking controller based on output
feedback linearization that compensates for dynamic changes in the quadrotor’s center of
gravity. The paper [154] combines the improved Lyapunov Guidance Vector Field (LGVF),
the Interfered Fluid Dynamical System (IFDS), and the strategy of varying receding-horizon
optimization from Model Predictive Control (MPC) to track the target and avoid obstacles in
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a complex dynamic environment, Figure 8 presents the demonstration of its Local obstacle
avoidance strategy. In [155], a new extended multi-rotor Voliro is proposed, a new type
of air platform that can fly in any direction while maintaining any direction, significantly
improving the agility of the UAV, and may be used for indoor SAR operations when reduced
in size. The work in the paper [156] even accomplishes a rapid 180-degree course reversal
for UAVs with minimal computational effort, including a simple feedforward/feedback
controller, which was successfully implemented for small fixed-wing UAVs. A new method
for autonomous navigation of small unmanned aerial vehicles (UAVs) in artificial forests
using only a single camera was proposed using Faster region convolutional neural network
(FAR-CNN) to detect tree trunks [157]. The paper [158] proposes a hybrid approach
incorporating first principles and learning to model the quadrotor and its aerodynamic
effects with unprecedented accuracy, enabling flight close to the physical limits of the
platform. Further, the paper [159] presents an online planning method following the
framework of model predictive control (MPC) to jointly optimize the motion of the UAV
and the configurations of the RISs under the consideration of energy efficiency.

Figure 8. Local obstacle avoidance strategy in [154].

The implementation of non-linear MPC into collision avoidance among multi-UAV
agents is proposed in [160]. The critical distance is set with cost penalties for collision-free
operations. The paper [161] also introduced the non-linear MPC collision avoidance into
object transportation, where the agents are required to transport an object collaboratively.
The simulation result proves the validity and convergence of the method. The various task
assignment approaches and their features are tabulated in Table 9.

Table 9. Pros and cons of collision avoidance algorithms for UAVs.

Reference Algorithm Advantages Disadvantages

[113] Potential functions
Can achieve the optimum

results while avoiding
obstacles

Difficulty dealing with
complex moving

obstacles

[154] LGVF and IFDS MPC
Simple principle, high

computational efficiency
and strong practicality

The real-time
performance is poor

[157]
Deep Learning-based
monocular obstacle

avoidance

Achieve flight with
complex, real-world

environment cluttered
with many obstacles

Limited flight speed
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Agile Movement in Tight Spaces

Additionally, the agile movement of drones in confined spaces can provide many
benefits for UAV search and rescue operations. UAVs can expeditiously arrive at the
intended destination, and their agility and hovering capabilities enable them to promptly
respond to search and rescue demands, consequently enhancing the pace of search and
rescue endeavors. Furthermore, UAVs can effortlessly penetrate narrow spaces or perilous
terrains that are arduous for rescue personnel to access. They can penetrate restricted
spaces, edifices, ravines, woodlands, and other arduous-to-reach locales to effectuate search
and rescue tasks.

In UAV flight control, the use of model-based control involves creating a mathematical
model to represent the UAV’s motion and dynamic characteristics. This allows for precise
control of the UAV using techniques such as model predictive control and optimal control.
At present, there exist various model-based flight control methods, among which nonlinear
dynamic inversion (NDI) [162] is one of them. NDI linearizes the dynamics of an aircraft
using an aerodynamic model, which yields a linear system that is fundamentally identical
for all aircraft, given that the aerodynamic model is correct. Based on NDI, the paper [163]
eliminates the sensitivity of model mismatch and reduces the cost of flight control system
design by feeding back angular acceleration. Adaptive control [164,165] is another model-
based flight control method. The adaptive parameters are updated in real-time to maintain
flight stability by adapting to the environment. The paper [166] further applies the Cerebel-
lar Model Arithmetic Computer (CMAC) to update the adaptive parameters for adapting
the varying payload and unknown disturbance simultaneously. Furthermore, the MPC
mentioned in the former context is also included in model-based flight control methods.

Practical issues exist in its application. Firstly, the motion and dynamic characteristics
of UAVs are complex, making it difficult to establish accurate mathematical models [167].
Secondly, there are many uncertainties and interferences in practical application scenarios,
making it challenging to achieve precise model predictive control and optimal control [168].
The instability is also introduced by the deletion of some practical effective terms in models
for simplification of calculation [14].

Therefore, combining deep learning with control theory can effectively address these
issues and improve the robustness and adaptability of UAV control, which has better
prospects for practical applications. The artificial neural network (ANN) is combined
with the model-based flight controller for learning complex control systems. The inte-
gration enables real-time adaptation and learning of the control system, with relatively
simple requirements on hardware and processing procedure. The detailed advantages and
limitations are further illustrated in [168], which is listed in Table 10:

Table 10. Merits and limitations of ANN-integrated model-based flight controller.

Merits Limitations

Can identify nonlinear and multi-variable
systems.

Require large amounts of training data.

Can learn and adapt in real-time. Can learn spurious relationships, leading to
poor generalization.

Relatively simple processing procedures
and hardware implementation.

Lack of interpretability due to black-box na-
ture.

The papers [169,170] proposed hybrid supervised neural network models for dynamic
systems, using flexible modules in non-recurrent and recurrent networks. The model is
evaluated with an autonomous helicopter/UAV system, comparing radial basis and multi-
layer perceptron with the real system. The results confirmed its feasibility and potential for
further investigation. The paper [171] investigates the use of ANN-based dynamic models
for control synthesis and demonstrates that even a simple ANN architecture can accurately
generalize dynamics beyond training data when coupled with LQR and PD control for
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trajectory tracking, making it suitable for control purposes. The paper [172] develops a
ReLU model that combines a quadratic lag model with a double-layered simple ReLU
network. Following training via least-squares regression and stochastic gradient descent,
the model exhibits an overall improvement of 58% in acceleration prediction performance.

The paper [173] proposes a control system design using feedback linearization and a
neural network for model inversion error. Pseudo Control Hedging is used to protect the
adaptive element from non-linearities and the resulting system allows position, velocity,
attitude, and angular rate commands. The outer loop allows tracking of position, veloc-
ity, attitude, and angular rate with an attitude correction. The paper [174] introduces a
hybrid adaptive control method to recover the stability of a damaged aircraft under single
damage, in which direct adaptive ANN compensates less dynamic inversion error and the
simulation results show good effectiveness of the approach. The paper [175] uses a neural
network-based adaptive sliding mode controller to control the altitude of a quadrotor.
The paper [176] integrates the ANN into backstepping flight control of a helicopter, and the
result presents strong resistance to sudden mass-changing perturbations.

The flight control method combined with the neural network can learn the nonlinear
dynamic characteristics of an aircraft, making it highly adaptable and robust, especially for
uncertain or unknown nonlinear system characteristics. However, this method requires a
considerable amount of data for training, resulting in a longer training time.

Despite the significant contributions of academic research towards the development
of technology, the majority of it remains in a simulation stage within the laboratory. This is
due to the presence of various assumptions that may not hold in real-world applications or
may pose implementation challenges in hardware. Therefore, there is still a considerable
distance to cover in the advancement of technology.

4. Future Works

For the future development of drone SAR, a few more problems should be further
discussed by taking advantage of fast technology development. The endurance of a single
UAV agent is highly limited at present. Compromises are made between the payload and
flight duration for the SAR operation. Improving the efficiency of a single drone in locating
multiple targets in a search and rescue operation within a limited timeframe is crucial. So,
the first future direction: we need more lightweight algorithms to reduce the computational
burden of UAVs to improve the efficiency and real-time performance of SAR operations.
Take image recognition technology as an example. Image recognition technology plays
an important role in improving the efficiency of search and rescue, including the use of
advanced deep learning and artificial intelligence algorithms, as well as the integration of
multi-modal information to obtain richer and more comprehensive target information, so as
to improve the accuracy and robustness of image recognition. However, these algorithms
require a high amount of computing power. In the case of limited space for computing
power improvement, lightweight algorithms may be another idea.

The second direction is to more robustly control the UAV to achieve more agile flight
actions. Most of the actual work being performed today is in high-altitude flight search,
and many of the agile flight efforts mentioned in Section 3.3 are just experiments in the ideal
environment of the lab, lacking deep access to disaster sites (such as earthquakes or fire
debris). However, operations, including searching for survivors and delivering supplies,
require drones that can make difficult flights in unknown and hostile environments.

To further enhance the efficiency of the UAV SAR operation, organizing multiple
heterogeneous drones into a group for collaborative search and rescue is the third popular
research direction in the future. Most of the literature focuses on task allocation algorithms
for drone groups based on successfully identified targets at present. More research is
required to be focusing on achieving multi-angle and multi-modal information acquisition
to enhance the robustness of target search, especially the robustness of visual tracking
algorithm, including improvements in UAV ad hoc networks and communication effi-



Remote Sens. 2023, 15, 3266 27 of 35

ciency of drones, as well as enhancing the capability to deal with complex environments
and emergencies.

5. Summary and Concluding Remarks

In this paper, we present a comprehensive review of using UAVs for SAR. The ap-
plications of UAVs in SAR, including on-site monitoring and modeling, perception and
localization of targets, and SAR operations, are elaborated on. In the on-site monitoring
and modeling section, the Structure from Motion (SfM) method is introduced as a state-
of-the-art technique for modeling the disaster area. Although it attracts much attention
as a low-cost effective solution, limitations still exist in input image quality and scene re-
dundancy. The section on Perception and localization of targets introduces plenty of novel
solutions with multiple sensors integrated, the general defects that exist in the solutions
are the conflicts between the payload and the sensors installed, as many sensors trade their
satisfying output quality by the weight and costs.

The SAR operation of UAVs is discussed in Section 3.3, among which the task assign-
ment, path planning, and collision avoidance are further introduced in the SAR operation
subsection, including the exploration strategies (e.g., randomness-based and model-based
exploration strategies), and the agile control of drones (e.g., model-based control and deep
learning combined control). The randomness-based exploration strategies are adaptive
and flexible for complex environments and high-dimensional state spaces, but they tend to
have relatively high computational costs by generating a large number of path samples
in large search spaces and do not guarantee finding the optimal solution. This increases
the computational load and also leads robots to move back and forth in areas that have
already been explored. In contrast, model-based exploration algorithms (such as integration
with the SLAM technique) can generate path samples more selectively during the search
process, reducing the search space and improving path planning efficiency. Furthermore,
models are often adaptively updated and refined in real-time as the robot moves around
the environment and collects sensor data. Therefore, model-based path planning reduces
computational costs and makes real-time path planning feasible. Additionally, the model-
based control of drones is accurate and predictable because it is based on the mathematical
model of the drone’s dynamics, which also brings robustness to sensor noise. However,
the adaptability of the model-based strategy is limited. This problem is covered and fixed
in the deep learning combined control by training with a large amount of labeled data,
but the computational load is expected to be further reduced for better performance.

In conclusion, the use of unmanned aerial vehicles for search and rescue operations
is a promising development that has improved the efficiency and effectiveness of SAR
missions. The benefits of drones, including ease of deployment, low maintenance cost,
high mobility, and sensor integration, make them an attractive option for SAR operations.
The continued development of drones and their sensors will optimistically lead to further
advancements in the field of SAR, making it possible to save more lives in the event of
disasters and emergencies.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicles
SAR Search and rescue
DTM Digital terrain models
VTOL Vertical take-off and landing
ESC Electronic speed controllers
UAVBS Unmanned aerial vehicles base stations
CFD Computational fluid dynamics
GNSS Global navigation satellite system
UWB ultra-wideband
TDOA Time difference of arrival
LTE Long term evolution
SfM Structure from Motion
SURF speeded-up robust features
CNN convolutional neural network
DIRL Deep inverse reinforcement learning
HOG histograms of oriented gradients
DRL Deep reinforcement learning
MDP Markov decision process
VRPSN Vehicle Routing Problems with synchronous network
VRP Vehicle Routing Problems
RRT Rapidly exploring random trees
MCTS Monte Carlo tree search
SLAM Simultaneous Localization and Mapping
ANN Artificial neural network
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